混合动力车辆、混合动力车辆的控制方法及动力输出设备的制作方法

文档序号:3824262阅读:99来源:国知局
专利名称:混合动力车辆、混合动力车辆的控制方法及动力输出设备的制作方法
技术领域
本发明涉及混合动力车辆、混合动力车辆的控制方法、以及动力输出设备。
背景技术
一种已提议的混合动力车辆具有发动机、包括分别连接于发动机的曲轴和连接于驱动轴的行星架和齿圈的行星齿轮单元、连接于行星齿轮单元的太阳齿轮的第一电机(马达,motor)、连接于驱动轴的第二电机、以及能够向第一电机和第二电机传输电力并从第一电机和第二电机中传输电力的蓄电池(例如,见日本专利未审定公开公报No.11-93727)。在该提议的混合动力车辆中,第一电机被驱动和控制以调节发动机的转速。
在装有发动机和驱动电机的混合动力车辆中,一般的控制程序通过所需发动机动力中的变化改变发动机的转速并间歇地启动和停止发动机,以提高能量效率。响应于驾驶员的减速要求,所需发动机动力基本降低为0或降低为制动动力量(摩擦功)并因此降低发动机转速。驾驶员可在减速要求之后立刻发出高加速要求。驱动电机由来自于蓄电池(电池组)的电力供应启动以补偿由于发动机的低响应性导致的不足的动力。高容量蓄电池充分地供应所需电力以补充动力不足,但是必然具有较大尺寸和质量,因此不适用于混合动力车辆的装备。然而,低容量蓄电池不能充分地供应所需电力以补充动力不足。较大的动力不足增加了将从蓄电池中放出的所需电力。甚至在输入和输出极限的容许范围内蓄电池重复地充以较大电力和放掉较大电力也会不利地导致蓄电池的早期损坏。

发明内容
因此,本发明的混合动力车辆、混合动力车辆的控制方法以及动力输出设备的目的在于提高对于改变来自于内燃机的动力输出的要求的响应性。本发明的混合动力车辆、混合动力车辆的控制方法以及动力输出设备的目的还在于减小蓄电装置(诸如二次电池)的负荷。本发明的混合动力车辆、混合动力车辆的控制方法以及动力输出设备的目的还在于提高混合动力车辆或动力输出设备的能量效率。
具有以下所述结构和布置的混合动力车辆、混合动力车辆的控制方法以及动力输出设备可实现上述和其他相关目的的至少一部分。
本发明涉及一种混合动力车辆,它包括内燃机;电力-机械动力输入输出机构,所述电力-机械动力输入输出机构连接到所述内燃机的输出轴并连接到与所述混合动力车辆的一个车轴相连的驱动轴,并且通过电力和机械动力的输入和输出而从所述输出轴和所述驱动轴输入动力和向所述输出轴和所述驱动轴输出动力;电机,所述电机从所述一个车轴和不同于所述一个车轴的另一个车轴之中的任一个车轴输入动力以及向该任一个车轴输出动力;蓄电器单元,所述蓄电器单元向所述电力-机械动力输入输出机构和所述电机传输电力并从所述电力-机械动力输入输出机构和所述电机传输电力;驱动动力需求值设定组件(模块),所述驱动动力需求值设定组件设定驱动所述混合动力车辆所需的驱动动力需求值;车速测量组件,所述车速测量组件测量所述混合动力车辆的车速;转速下限设定组件,所述转速下限设定组件设定对应于所测量的车速的转速下限,所述转速下限表示所述内燃机的最小容许转速;和控制组件,所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在不低于所设定的转速下限的转速下驱动所述内燃机并以对应于所设定的驱动动力需求值的动力来驱动所述混合动力车辆。
本发明的混合动力车辆设定转速下限,所述转速下限是与所测得的车速相对应的内燃机的最小容许转速。内燃机、电力-机械动力输入输出机构以及电机被控制,以便于在不低于设定的转速下限的转速下驱动内燃机以及通过与所设定的驱动动力需求值相对应的动力驱动混合动力车辆。内燃机可通过在固定的输出扭矩的情况下仅增加转速或通过在固定的转速的情况下仅增加输出扭矩而增加输出动力。通过改变吸入空气流量和燃料喷射量而实现的输出扭矩增加比转速增加的情况下需要更少的时间。因此与实现输出动力随转速改变的增加相比,可在更短的时间周期实现输出动力随输出扭矩改变的增加。在不低于取决于所测得的车速的转速下限的转速下被驱动的内燃机对于将从内燃机中输出的动力增加的要求具有更快的响应性。这种布置理想地降低了电机的输出动力,所述电机的输出动力用以补偿由于内燃机的延迟响应所致的用于驱动混合动力车辆所需的动力的不足,从而有效地减小蓄电装置的负荷。
在本发明的一个优选实施例中,混合动力车辆还包括转速需求值设定组件,所述转速需求值设定组件设定对应于所设定的驱动动力需求值的转速需求值,在所述转速需求值下所述内燃机将被驱动。所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在所设定的转速下限与所设定的转速需求值之间的较高转速下驱动所述内燃机。因此所述内燃机在结合考虑取决于驱动动力需求值的转速需求值与取决于车速的转速下限两者而确定的转速下被驱动。也就是说,内燃机在适当的驱动点下被驱动。转速需求值设定组件可将转速需求值设定为内燃机的特定转速,所述特定转速确保与来自于内燃机的所设定的驱动动力需求值相对应的动力的有效输出。这种布置保持了内燃机的高响应性,同时提高了混合动力车辆的能量效率。
在本发明的混合动力车辆中,优选地,转速下限设定组件将转速下限设定为不低于特定驱动点下内燃机特定转速的转速,所述特定驱动点确保用于混合动力车辆在基本平坦的路面上在测定车速下恒速驾驶所需的来自于内燃机的动力的有效输出。甚至在将从内燃机中输出较小的当前要求动力的情况下,响应于输出动力变化的随后要求,这种布置也能够使得内燃机迅速地输出混合动力车辆的恒速驾驶所需的动力或更大的动力。
在本发明的混合动力车辆中,优选地,当设定的驱动动力需求值等同于用于制动混合动力车辆的预定制动动力时,控制组件控制内燃机、电力-机械动力输入输出机构、以及电机以便于停止对于内燃机的燃料喷射。这种布置改进了燃料消耗并提高了混合动力车辆的能量效率。
在本发明的混合动力车辆中,电力-机械动力输入输出机构最好包括连接于三个轴(即,内燃机的输出轴、驱动轴、以及转动轴)并基于从所述三个轴之中的任意两轴中输入以及输出到所述三个轴之中的任意两轴中的动力自动地确定从剩余的一个轴中输入以及输出到所述剩余一个轴中的动力的三轴式动力输入输出组件;以及从转动轴中输入和输出到转动轴中动力的发电机。另外,电力-机械动力输入输出机构最好包括一个转子对电机,所述转子对电机具有连接于内燃机的输出轴的第一转子和连接于驱动轴的第二转子并通过第一转子与第二转子的相对转动被驱动。
本发明涉及一种动力输出设备,所述动力输出设备用于向驱动轴输出动力并且包括内燃机;电力-机械动力输入输出机构,所述电力-机械动力输入输出机构连接到所述内燃机的输出轴并连接到所述驱动轴,并且通过电力和机械动力的输入和输出而从所述输出轴和所述驱动轴输入动力和向所述输出轴和所述驱动轴输出动力;电机,所述电机从所述驱动轴输入动力并向所述驱动轴输出动力;蓄电器单元,所述蓄电器单元向所述电力-机械动力输入输出机构和所述电机传输电力并从所述电力-机械动力输入输出机构和所述电机传输电力;动力需求值设定组件,所述动力需求值设定组件设定所述驱动轴所需的动力需求值;转速测量组件,所述转速测量组件测量所述驱动轴的转速;转速下限设定组件,所述转速下限设定组件设定对应于所测量的转速的转速下限,所述转速下限表示所述内燃机的最小容许转速;和控制组件,所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在不低于所设定的转速下限的转速下驱动所述内燃机并向所述驱动轴输出对应于所设定的动力需求值的动力。
本发明的动力输出设备设定转速下限,所述转速下限是与所测得的驱动轴的转速相对应的内燃机的最小容许转速。内燃机、电力-机械动力输入输出机构以及电机被控制,以便于在不低于设定的转速下限的转速下驱动内燃机以及向驱动轴输出与设定的动力需求值相对应的动力。如上所述的,与实现输出动力随转速改变的增加相比,可在更短的时间周期内实现输出动力随输出扭矩改变的增加。在不低于取决于所测得的驱动轴转速的转速下限的转速下被驱动的内燃机,对于将从内燃机中输出的动力增加的要求具有更快的响应性。这种布置理想地降低了电机的输出动力,所述电机输出动力用以补偿由于内燃机的延迟响应所致的驱动轴所需的动力的不足,从而有效地减小蓄电装置的负荷。本发明的动力输出设备可被安装在车辆上,所述车辆具有与驱动轴相连接的一个车轴。之后在不低于取决于车轴转速的转速下限的转速下驱动内燃机。取代与车轴的转速相对应而与车速相对应地设定转速下限的这种布置,在上述本发明混合动力车辆的特征范围内。也就是说,以上所述的本发明混合动力车辆的各种实施例和布置都可应用于用驱动轴的转速取代车速的动力输出设备。
本发明涉及混合动力车辆的控制方法,所述混合动力车辆包括内燃机;电力-机械动力输入输出机构,所述电力-机械动力输入输出机构连接到所述内燃机的输出轴并连接到与所述混合动力车辆的一个车轴相连的驱动轴,并且通过电力和机械动力的输入和输出而从所述输出轴和所述驱动轴输入动力和向所述输出轴和所述驱动轴输出动力;电机,所述电机从所述一个车轴和不同于所述一个车轴的另一个车轴之中的任一个车轴输入动力以及向该任一个车轴输出动力;和蓄电器单元,所述蓄电器单元向所述电力-机械动力输入输出机构和所述电机传输电力并从所述电力-机械动力输入输出机构和所述电机传输电力;所述控制方法包括以下步骤(a)设定驱动所述混合动力车辆所需的驱动动力需求值;(b)设定对应于所测量的车速的转速下限,所述转速下限表示所述内燃机的最小容许转速;以及(c)控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在不低于所设定的转速下限的转速下驱动所述内燃机并以对应于所设定的驱动动力需求值的动力来驱动所述混合动力车辆。
本发明混合动力车辆的控制方法设定转速下限,所述转速下限是与所测得的车速相对应的内燃机的最小容许转速。内燃机、电力-机械动力输入输出机构以及电机被控制,以便于在不低于设定的转速下限的转速下驱动内燃机以及通过与所设定的驱动动力需求值相对应的动力驱动混合动力车辆。该控制程序确保了内燃机对于将从内燃机中输出的动力增加的要求的快速响应性。这种布置理想地降低了电机的输出动力,所述电机输出动力用以补偿由于内燃机的延迟响应所致的用于驱动混合动力车辆所需的动力的不足,从而有效地减小蓄电装置的负荷。


图1示意性地示出了本发明一个实施例中混合动力车辆的结构;图2是流程图,示出了由包含在图1混合动力车辆中的混合电子控制单元执行的驱动控制例程;图3示出了要求扭矩值设定图的一个示例;图4示出了发动机速度需求值设定图的一个示例;图5示出了发动机的动作线(operation line)和发动机动力需求值Pe*的恒定曲线;图6示出了发动机转速下限设定图的一个示例;图7是示出了包含在图1混合动力车辆中的动力分配集成机构的各个转动元件的扭矩-转速的动力学关系的列线图;图8示意性地示出了一个修正示例中另一混合动力车辆的结构;以及图9示意性地示出了另一个修正示例中又一混合动力车辆的结构。
具体实施例方式
下面将作为一个优选实施例描述执行本发明的一个模式。图1示意性地示出了本发明一个实施例中安装有动力输出设备的混合动力车辆20的结构。如所示的,该实施例的混合动力车辆20包括发动机22、通过缓冲器28与用作发动机22输出轴的曲轴26相连接的三轴式动力分配集成机构30、与动力分配集成机构30相连接并且能够产生电力的电机MG1、安装于用作与动力分配集成机构30相连接的驱动轴的齿圈轴32a的减速器35、与减速器35相连接的另一个电机MG2、以及控制整个动力输出设备的混合电子控制单元70。
发动机22是使用碳氢燃料(诸如汽油或轻油)以输出动力的内燃机。发动机电子控制单元(在下文中称之为发动机ECU)24接收来自于用于检测发动机22的运行状态的各种传感器的信号,并负责发动机22的运行控制,例如,燃料喷射控制、点火控制、以及吸入空气流量调节。发动机ECU24与混合电子控制单元70相通信以便于响应于从混合电子控制单元70中传输的控制信号控制发动机22的运行,同时根据要求向混合电子控制单元70输出与发动机22的运行状态相关的数据。
动力分配集成机构30具有作为外部齿轮的太阳齿轮31、作为内部齿轮并被布置得与太阳齿轮31同轴线的齿圈32、与太阳齿轮31以及与齿圈3相接合的多个小齿轮33、以及以允许其自由旋转(公转)以及在相应轴上自由转动的这样一种方式支撑多个小齿轮33的行星架34。也就是说,动力分配集成机构30被构成为可供作为转动元件的太阳齿轮31、齿圈32以及行星架34的差速运动的行星齿轮机构。动力分配集成机构30中的行星架34、太阳齿轮31、以及齿圈32分别与发动机22的曲轴26、与电机MG1、以及通过齿圈轴32a与减速器35相连接。当电机MG1用作发电机时,从发动机22中输出以及通过行星架34输入的动力根据传动比被分配到太阳齿轮31和齿圈32中。另一方面,当电机MG1用作电动机时,从发动机22中输出以及通过行星架34输入的动力与从电机MG1中输出以及通过太阳齿轮31输入的动力相组合并且所组合的动力被输出到齿圈32。因此输出到齿圈32的动力最终从齿圈轴32a通过齿轮机构60和差速器62被传输到驱动轮63a和63b。
电机MG1和电机MG2两者都是已知的作为发电机以及作为电动机被驱动的同步电动发电机。电机MG1和电机MG2通过逆变器41和42向蓄电池50中以及从蓄电池50中传输电力。将逆变器41和42与蓄电池50相连接的电力线54被构成为由逆变器41和42共用的正极母线和负极母线。这种布置能够使得电机MG1和电机MG2中之一所产生的电力可由另一个电机消耗。这两个电机MG1和MG2的运行都由电机电子控制单元(在下文中称之为电机ECU)40控制。电机ECU40接收控制电机MG1和MG2的运行所需的各种信号,例如,来自于用于检测在电机MG1和MG2中转子的转动位置的转动位置检测传感器43和44的信号以及施加于电机MG1和MG2并由电流传感器(未示出)测量的相电流。电机ECU40向逆变器41和42输出开关(切换)控制信号。电机ECU40与混合电子控制单元70相通信以便于响应于从混合电子控制单元70中传输的控制信号控制电机MG1和MG2的运行,同时根据要求向混合电子控制单元70输出与电机MG1和MG2的运行状态相关的数据。
蓄电池50处于蓄电池电子控制单元(在下文中称之为蓄电池ECU)52的控制下。蓄电池ECU52接收用于蓄电池50的控制所需的各种信号,例如,由设置在蓄电池的终端之间的电压传感器(未示出)测量的终端间电压、由安装于与蓄电池50的输出终端相连接的电力线54的电流传感器(未示出)测量的充-放电电流、以及由安装于蓄电池50的温度传感器(未示出)测量的蓄电池温度。蓄电池ECU52根据要求通过通信向混合电子控制单元70输出与蓄电池50的状态相关的数据。蓄电池ECU52基于电流传感器所测量的累计充-放电电流计算蓄电池50的充电状态(SOC),用于蓄电池50的控制。
混合电子控制单元70被构成为包括CPU72、储存处理程序的ROM74、临时储存数据的RAM76、未示出的输入-输出端口、以及未示出的通信端口的微处理器。混合电子控制单元70通过输入端口接收各种输入来自于点火开关80的点火信号、来自于用于检测变速杆81的当前位置的换档位置传感器82的换档位置SP、来自于测量加速器踏板83的踩踏量的加速器踏板位置传感器84的加速器开度Acc、来自于测量制动器踏板85的踩踏量的制动器踏板位置传感器86的制动器踏板位置BP、以及来自于车速传感器88的车速V。混合电子控制单元70通过通信端口与发动机ECU24、电机ECU40、以及蓄电池ECU52相通信,以向发动机ECU24、电机ECU40、以及蓄电池ECU52中以及从发动机ECU24、电机ECU40、以及蓄电池ECU52中传输各种控制信号和数据,如前面所述的。
如此构成的本实施例的混合动力车辆20基于车速V和加速器开度Acc(相当于驾驶员的加速器踏板83的踩踏量)的检测值计算将被输出到用作驱动轴的齿圈轴32a的要求扭矩。对发动机22和电机MG1和MG2进行运行控制以向齿圈轴32a输出与所计算的要求扭矩值相对应的要求动力量。发动机22和电机MG1和MG2的运行控制选择性地实现扭矩转换驱动模式、充-放电驱动模式、以及电机驱动模式中的一个。扭矩转换驱动模式控制发动机22的运行以输出与要求动力量相当的动力量,同时驱动和控制电机MG1和MG2以使得从发动机22中输出的所有动力借助于动力分配集成机构30和电机MG1和MG2经受扭矩转换而输出到齿圈轴32a。充-放电驱动模式控制发动机22的运行以输出与要求动力量和通过为蓄电池50充电所消耗的或通过使蓄电池50放电所供应的电力量的合计值相当的动力量,同时伴随蓄电池50的充电或放电,驱动和控制电机MG1和MG2以使得从发动机22中输出的相当于要求动力量的所有或部分动力借助于动力分配集成机构30和电机MG1和MG2经受扭矩转换并输出到齿圈轴32a。电机驱动模式停止发动机22的运行并驱动和控制电机MG2以向齿圈轴32a输出与要求动力量相当的动力量。
下面将针对具有上述结构的本实施例的混合动力车辆20的运行进行描述。图2是示出了由混合电子控制单元70执行的驱动控制例程的流程图。在预定时间间隔(例如每数毫秒)下重复地执行该例程。
在驱动控制例程中,混合电子控制单元70的CPU72首先输入控制所需的各种数据,即,来自于加速器踏板位置传感器84的加速器开度Acc、来自于制动器踏板位置传感器86的制动器踏板位置BP、来自于车速传感器88的车速V、电机MG1和MG2的转速Nm1和Nm2、以及蓄电池50的输入极限Win、输出极限Wout、和充-放电要求量Pb*(步骤S100)。电机MG1和MG2的转速Nm1和Nm2是从转动位置检测传感器43和44所检测的电机MG1和MG2中各个转子的转动位置计算出的并通过通信从电机ECU40被接收。蓄电池50的输入极限Win和输出极限Wout是基于温度传感器51测量的蓄电池50的温度Tb和所检测的蓄电池50的当前充电状态(SOC)设定的并且是通过通信从蓄电池ECU52中接收的。蓄电池50的充-放电要求量Pb*是基于蓄电池50的当前充电状态(SOC)设定的并且是通过通信从蓄电池ECU52中接收的。
在数据输入之后,CPU72基于输入的加速器开度Acc、输入的制动器踏板位置BP、输入的车速V设定待输出到齿圈轴32a或连接于驱动轮63a和63b的驱动轴的要求扭矩值Tr*作为车辆所需的扭矩、和驱动混合动力车辆20所需的驱动动力需求值Pv*(步骤S110)。本实施例中设定要求扭矩值Tr*的具体程序预先将要求扭矩值Tr*相对于加速器开度Acc、制动器踏板位置BP、车速V的变化作为要求扭矩值设定图储存在ROM74中,并且从图中读出与给定加速器开度Acc、给定的制动器踏板位置BP、给定的车速V相对应的要求扭矩值Tr*。在图3中示出了要求扭矩值设定图的一个示例。将驱动动力需求值Pv*设定为数值“0”、取决于加速器开度Acc的要求扭矩值Tr*和齿圈轴32a的转速Nr的乘积之间的较大值。通过用车速V乘以转换系数k或通过用减速器35的传动比Gr除电机MG2的转速Nm2获得齿圈轴32a的转速Nr。
之后将驱动动力需求值Pv*与数值“0”相比较(步骤S120)。当驱动动力需求值Pv*等于0时,要求扭矩值Tr*或为0或为负值。这意味着没有从发动机22中输出动力的要求,因此允许发动机22停止,如稍后所述的。当在步骤S120驱动动力需求值Pv*大于0时,需要从发动机22中输出动力。因此将从发动机22中输出的发动机动力需求值Pe*计算为要求扭矩值Tr*与齿圈轴32a的转速Nr的乘积、蓄电池50的充-放电要求量Pb*以及潜在损失(Loss)的和(步骤S130)。发动机速度需求值Nereq被设定为确保发动机动力需求值Pe*从发动机22的有效输出的有效驱动点下发动机22的转速(步骤S140)。本实施例中设定发动机速度需求值Nereq的具体程序预先将发动机速度需求值Nereq相对于发动机动力需求值Pe*的变化作为发动机速度需求值设定图储存在ROM74中,并且从图中读出与给定的发动机动力需求值Pe*相对应的发动机速度需求值Nereq。在图4中示出了发动机速度需求值设定图的一个示例。确保发动机动力需求值Pe*的有效输出的发动机22的有效驱动点(转速Ne×扭矩Te)可由图5中所示的扭矩-转速图中的动作线表示。在恒定发动机动力需求值Pe*的曲线(由虚线示出)与动作线之间的交叉点处的转速和扭矩的组合给出了确保发动机动力需求值Pe*的有效输出的发动机22的有效驱动点。
接下来,CPU72将发动机速度下限Nemin设定为特定驱动点下发动机22的转速,所述特定驱动点确保用于混合动力车辆20在车速V下恒速行驶所需的动力从发动机22中的有效输出(步骤S150)。本实施例中设定发动机速度下限Nemin的具体程序预先将发动机速度下限Nemin相对于车速V的变化作为发动机速度下限设定图储存在ROM74中,并且从图中读出与给定的车速V相对应的发动机速度下限Nemin。在图6中示出了发动机速度下限设定图的一个示例。图6中所示的参考车速Vref被设定为用于确定发动机22的间歇运行的基准。
之后CPU72将发动机速度需求值Nereq与发动机速度下限Nemin之间的较大值设定为发动机22的目标转速Ne*(步骤S160),并用目标转速Ne*除发动机动力需求值Pe*以计算发动机22的目标扭矩Te*(步骤S170)。将发动机速度需求值Nereq与发动机速度下限Nemin之间的较大值设定为发动机22的目标转速Ne*的目的在于确保对于发动机动力需求值Pe*中的突然增加的快速响应。在一个示例中,在混合动力车辆20在较高速度下行驶时,驾驶员可在伴随驱动动力需求值Pv*中的一些减小(但没有减小到零)的减速状态下踩踏在加速器踏板83上。在这种情况下,发动机速度需求值Nereq低于发动机速度下限Nemin。通常,与仅通过转速上升而增加发动机动力相比,可在更短的时间周期内实现仅通过扭矩上升而增加发动机动力。这是由于增加吸入空气流量和燃料喷射量所需的时间比增加发动机22的转动系统的转速所需的时间少。也就是说,在高于发动机速度需求值Nereq的发动机速度下限Nemin下驱动的发动机,对于从发动机22中输出动力增加的要求具有更快/更高的响应性。
之后CPU72根据下面给出的公式(1)从发动机22的目标转速Ne*、齿圈轴32a的转速Nr(=Nm2/Gr)、以及动力分配集成机构30的传动比ρ计算电机MG1的目标转速Nm1*,同时根据下面给出的公式(2)从所计算的目标转速Nm1*和电机MG1的当前转速Nm1计算电机MG1的扭矩指令Tm1*(步骤S210)Nm1*=Ne*·(1+ρ)/ρ-Nm2/(Gr.ρ) (1)Tm1*=先前的Tm1*+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt(2)公式(1)是包含在动力分配集成机构30中的转动元件的动力学关系式。图7是示出了包含在动力分配集成机构30中的各个转动元件的扭矩-转速动力学关系的列线图。左面的轴“S”表示与电机MG1的转速Nm1相等的太阳齿轮31的转速。中间的轴“C”表示与发动机22的转速Ne相等的行星架34的转速。右面的轴“R”表示通过用电机MG2的转速Nm2乘以减速器35的传动比Gr所获得的齿圈32的转速Nr。从图7的该列线图中可容易地引出公式(1)。轴“R”上的两个粗箭头分别表示在目标转速Ne*和目标扭矩Te*的特定驱动点下当从处于稳定运行中的发动机22中输出扭矩Te*时传输到齿圈轴32a的扭矩、以及当从电机MG2中输出扭矩Tm2*时通过减速器35施加于齿圈轴32a的扭矩。公式(2)是用于在目标转速Nm1*下驱动并转动电机MG1的反馈控制的关系式。在以上给出的公式(2)中,右侧第二项中的“k1”和第三项中的“k2”分别表示比例增益和积分项的增益。
在电机MG1的目标转速Nm1*和扭矩指令Tm1*的计算之后,CPU72根据下面给出的公式(3)和(4)作为从电机MG2中输出的最小扭矩和最大扭矩计算扭矩下限Tmin和扭矩上限Tmax(步骤S220)Tmin=(Win-Tm1*·Nm1)/Nm2 (3)Tmax=(Wout-Tm1*·Nm1)/Nm2(4)通过用电机MG2的输入的当前转速Nm2分别除蓄电池50的输入极限Win与作为扭矩指令Tm1*和输入的当前转速Nm1的乘积的电机MG1的功耗(电力消耗,发电)之间的差、蓄电池50的输出极限Wout与电机MG1的功耗(发电)之间的差,分别给出扭矩下限Tmin和扭矩上限Tmax。之后CPU72根据下面给出的公式(5)从要求扭矩值Tr*、电机MG1的扭矩指令Tm1*、动力分配集成机构30的传动比ρ、以及减速器35的传动比Gr中计算将从电机MG2中输出的暂行电机扭矩Tm2tmp(步骤S230)
Tm2tmp=(Tr*+Tm1*)/ρ)/Gr (5)CPU72将暂行电机扭矩Tm2tmp限制于所计算的扭矩下限Tmin和扭矩上限Tmax之间的范围以设定电机MG2的扭矩指令Tm2*(步骤S240)。以这种方式设定电机MG2的扭矩指令Tm2*将输出到齿圈轴32a或驱动轴的要求扭矩值Tr*限制在蓄电池50的输入极限Win与输出极限Wout之间。可容易地从图7的列线图引出公式(5)。
在从驱动控制例程中退出之前,CPU72将发动机22的目标转速Ne*和目标扭矩Te*输送到发动机ECU24,同时将电机MG1和MG2的扭矩指令Tm1*和Tm2*输送到电机ECU40(步骤S250)。发动机ECU24接收目标转速Ne*和目标扭矩Te*并执行发动机22的燃料喷射控制和点火控制,以在目标转速Ne*和目标扭矩Te*的指定驱动点下驱动发动机22。电机ECU40接收目标指令Tm1*和Tm2*并执行包含在各个逆变器41和42中的开关元件的开关控制,以用扭矩指令Tm1*驱动电机MG1以及用扭矩指令Tm2*驱动电机MG2。
当在步骤S120确定驱动动力需求值Pv*等于0时,CPU72指定没有从发动机22中输出动力的要求并给出切断对于发动机22的燃料供应的指令(步骤S180)。依照一具体程序,混合电子控制单元70通过通信端口向发动机ECU24发出燃料切断控制信号。之后CPU72将如上所述的从发动机速度下限设定图中读出的与车速V相对应的发动机速度下限Nemin设定为发动机22的目标转速Ne*(步骤S190),并将发动机22的扭矩指令Te*设定得等于0。之后,在从驱动控制例程中退出之前,CPU72执行步骤S210到S240的处理以设定电机MG1和MG2的扭矩指令Tm1*和Tm2*并将所述设定输送到发动机ECU24和电机ECU40(步骤S250)。当车速V低于参考车速Vref时,将发动机速度下限Nemin设定得等于0。因此在没有转动的情况下停止发动机22。
在混合动力车辆20在较高速度下行驶时,驾驶员可以在不加速(不踏油门)状态踩踏在加速器踏板83上。在不加速状态下,驱动动力需求值Pv*等于0。因此发动机22被切断燃料并在发动机速度下限Nemin下转动。在这种情况下驾驶员踩踏加速器踏板83取消了燃料切断并立刻恢复吸入空气流量和燃料喷射以从发动机22中输出扭矩。发动机22在发动机速度下限Nemin下转动,这使得发动机22有效地输出使得混合动力车辆20在当前车速V下恒速驾驶所需的动力。吸入空气流量和燃料喷射量的简单调节能够使得发动机22立刻有效地输出使得混合动力车辆20恒速驾驶所需的动力。发动机22的驱动点沿动作线(见图5)改变,所述动作线表示从能够使得发动机22有效地输出恒速驾驶所需的动力的特定驱动点开始的有效发动机驱动点的延续。与在低转速下驱动发动机22或停止发动机22的常规控制相比较,这种控制确保发动机22对于输出要求动力的更快速反应。在本实施例的混合动力车辆20的结构中,如通过在步骤S230中设定暂行电机扭矩Tm2tmp清楚示出的,由来自于蓄电池50的电力供应驱动的电机MG2的输出扭矩补偿发动机22的延迟反应。要求动力从发动机22中的快速输出减少了蓄电池50的放电电力并有利地减少了蓄电池50的负荷。因此这种布置有效地避免了较大电力的重复充电和放电所加速的蓄电池50的提前损坏。
如上所述的,本实施例的混合动力车辆20在不低于与车速V相对应的发动机速度下限Nemin的转动速度下驱动发动机22,从而提高发动机22对于输出动力需求值的改变的响应性。本实施例的控制有利地减少了由于发动机的延迟响应所导致的所需驱动动力的不足,从而降低所需的蓄电池50的放电量并减少蓄电池50的负荷。降低的充电和放电量有利地避免了较大电力量的重复充电和放电所加速的蓄电池50的提前损坏。发动机22的更快速响应性还确保了发动机22的驱动点沿动作线到有效发动机驱动点的即时移位。在驱动动力需求值Pv*等于0时而不需要从发动机22中输出动力的情况下,本实施例的控制程序停止对于发动机22的燃料喷射,因此有利地提高了燃料消耗。
本实施例的混合动力车辆20将发动机速度下限Nemin设定为在确保混合动力车辆20在平坦路面上以车速V恒速驾驶所要求动力的有效输出的特定驱动点下的发动机22的特定转速。然而该转速水平不是必需的,并且可将发动机速度下限Nemin设定得略低于或略高于特定驱动点下的特定转速。
本实施例的混合动力车辆20将数值“0”、与取决于加速器开度Acc的要求扭矩值Tr*和齿圈轴32a的转速Nr的乘积之间的较大值设定为驱动动力需求值Pv*。一个可行修正可将驱动动力需求值Pv*设定为取决于加速器开度Acc的要求扭矩值Tr*和齿圈轴32a的转速Nr的乘积。另一个可行修正可将驱动动力需求值Pv*设定为取决于制动器踏板位置BP的要求扭矩值Tr*。在所述修正结构中,燃料切断控制取决于驱动动力需求值Pv*是否为正值。
本实施例的混合动力车辆20响应于高于0的驱动动力需求值Pv*驱动发动机22,并且响应于等于0的驱动动力需求值Pv*切断对于发动机22的燃料供应。一个可行修正可响应于高于预定阈值Pref(大于0)的驱动动力需求值Pv*驱动发动机22,并且响应于低于预定阈值Pref的驱动动力需求值Pv*切断对于发动机22的燃料供应。
在本实施例的混合动力车辆20中,电机MG2的动力通过减速器35经受变速并被输出到齿圈轴32a。在图8所示混合动力车辆120的一个可行修正中,电机MG2的动力可被输出到另一个车轴(即,与车轮64a和64b相连接的车轴/车桥),所述车轴不同于与齿圈轴32a相连接的车轴(即,与车轮63a和63b相连接的车轴)。
在本实施例的混合动力车辆20中,发动机22的动力通过动力分配集成机构30被输出到用作与驱动轮63a和63b相连接的驱动轴的齿圈轴32a。在图9的另一个可行修正中,混合动力车辆220可具有转子对电机230,所述转子对电机230具有连接于发动机的曲轴26的内转子232和连接于用于向驱动轮63a和63b输出动力的驱动轴的外转子234,并且将从发动机22中输出的部分动力传输到驱动轴,同时将动力的剩余部分转化为电力。
应认为上述实施例在所有方面都是例证性的而不是限制性的。在不脱离本发明主要特征的范围和精神的前提下可存在许多修正、改变、和替换。本发明的范围和精神由所附权利要求指定,而不是由前述描述指定。
本发明的技术最好应用于混合动力车辆和动力输出设备的制造工业。
权利要求
1.一种混合动力车辆,包括内燃机;电力-机械动力输入输出机构,所述电力-机械动力输入输出机构连接到所述内燃机的输出轴并连接到与所述混合动力车辆的一个车轴相连的驱动轴,并且通过电力和机械动力的输入和输出而从所述输出轴和所述驱动轴输入动力和向所述输出轴和所述驱动轴输出动力;电机,所述电机从所述一个车轴和不同于所述一个车轴的另一个车轴之中的任一个车轴输入动力以及向该任一个车轴输出动力;蓄电器单元,该蓄电器单元向所述电力-机械动力输入输出机构和所述电机传输电力并从所述电力-机械动力输入输出机构和所述电机传输电力;驱动动力需求值设定组件,所述驱动动力需求值设定组件设定驱动所述混合动力车辆所需的驱动动力需求值;车速测量组件,所述车速测量组件测量所述混合动力车辆的车速;转速下限设定组件,所述转速下限设定组件设定对应于所测量的车速的转速下限,所述转速下限表示所述内燃机的最小容许转速;和控制组件,所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在不低于所设定的转速下限的转速下驱动所述内燃机并以对应于所设定的驱动动力需求值的动力来驱动所述混合动力车辆。
2.根据权利要求1所述的混合动力车辆,其特征在于,所述混合动力车辆还包括转速需求值设定组件,所述转速需求值设定组件设定对应于所设定的驱动动力需求值的转速需求值,在所述转速需求值下所述内燃机将被驱动;其中,所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在所设定的转速下限与所设定的转速需求值之间的较高转速下驱动所述内燃机。
3.根据权利要求2所述的混合动力车辆,其特征在于,所述转速需求值设定组件将所述转速需求值设定成所述内燃机的一个规定转速,所述规定转速确保从所述内燃机有效输出对应于所设定的驱动动力需求值的动力。
4.根据权利要求1所述的混合动力车辆,其特征在于,所述转速下限设定组件将所述转速下限设定成不低于所述内燃机在一规定驱动点处的规定转速的转速,所述规定驱动点确保从所述内燃机高效输出为了在基本平坦的路面上以所测量的车速恒速驱动所述混合动力车辆所需的动力。
5.根据权利要求1所述的混合动力车辆,其特征在于,所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在所设定的驱动动力需求值等同于用于制动所述混合动力车辆的预定制动动力时,停止对所述内燃机的燃料喷射。
6.根据权利要求1所述的混合动力车辆,其特征在于,所述电力-机械动力输入输出机构包括三轴式动力输入输出组件,所述三轴式动力输入输出组件连接到三个轴,即所述内燃机的所述输出轴、所述驱动轴和旋转轴,并基于从所述三个轴之中任意两个轴输入和向该任意两个轴输出的动力,而自动确定从剩下的一个轴输入和向该剩下的一个轴输出的动力;和发电机,所述发电机从所述旋转轴输入动力并向所述旋转轴输出动力。
7.根据权利要求1所述的混合动力车辆,其特征在于,所述电力-机械动力输入输出机构包括一个转子对电机,所述转子对电机具有与所述内燃机的所述输出轴相连的第一转子和与所述驱动轴相连的第二转子,并通过所述第一转子对所述第二转子的相对旋转而被驱动。
8.一种向驱动轴输出动力的动力输出设备,所述动力输出设备包括内燃机;电力-机械动力输入输出机构,所述电力-机械动力输入输出机构连接到所述内燃机的输出轴并连接到所述驱动轴,并且通过电力和机械动力的输入和输出而从所述输出轴和所述驱动轴输入动力和向所述输出轴和所述驱动轴输出动力;电机,所述电机从所述驱动轴输入动力并向所述驱动轴输出动力;蓄电器单元,该蓄电器单元向所述电力-机械动力输入输出机构和所述电机传输电力并从所述电力-机械动力输入输出机构和所述电机传输电力;动力需求值设定组件,所述动力需求值设定组件设定所述驱动轴所需的动力需求值;转速测量组件,所述转速测量组件测量所述驱动轴的转速;转速下限设定组件,所述转速下限设定组件设定对应于所测量的转速的转速下限,所述转速下限表示所述内燃机的最小容许转速;和控制组件,所述控制组件控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在不低于所设定的转速下限的转速下驱动所述内燃机并向所述驱动轴输出对应于所设定的动力需求值的动力。
9.一种混合动力车辆的控制方法,所述混合动力车辆包括内燃机;电力-机械动力输入输出机构,所述电力-机械动力输入输出机构连接到所述内燃机的输出轴并连接到与所述混合动力车辆的一个车轴相连的驱动轴,并且通过电力和机械动力的输入和输出而从所述输出轴和所述驱动轴输入动力和向所述输出轴和所述驱动轴输出动力;电机,所述电机从所述一个车轴和不同于所述一个车轴的另一个车轴之中的任一个车轴输入动力以及向该任一个车轴输出动力;和蓄电器单元,所述蓄电器单元向所述电力-机械动力输入输出机构和所述电机传输电力并从所述电力-机械动力输入输出机构和所述电机传输电力;所述控制方法包括以下步骤(a)设定驱动所述混合动力车辆所需的驱动动力需求值;(b)设定对应于所测量的车速的转速下限,所述转速下限表示所述内燃机的最小容许转速;以及(c)控制所述内燃机、所述电力-机械动力输入输出机构和所述电机,以在不低于所设定的转速下限的转速下驱动所述内燃机并以对应于所设定的驱动动力需求值的动力来驱动所述混合动力车辆。
全文摘要
当驱动动力需求值Pv
文档编号B60W10/26GK1946581SQ20058001229
公开日2007年4月11日 申请日期2005年7月7日 优先权日2004年7月15日
发明者菊池义晃 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1