并联式混合动力系统的能量流控制方法

文档序号:3956857阅读:193来源:国知局

专利名称::并联式混合动力系统的能量流控制方法
技术领域
:本发明涉及一种由发动机和蓄电池组成的混合动力系统的功率优化选择,具体地说是一种并联式混合动力系统的能量流控制方法。技术背景混合动力汽车是采用传统的内燃机和蓄电池作为动力源,通过混合使用两套不同的动力系统驱动汽车,如果混合动力匹配得好,可以达到节省燃料和降低排气污染的目的。面对当前全球石油资源的枯竭和环保的巨大压力,混合动力汽车已成为国内外各汽车家厂商竞相发力的研究焦点。由两种能量源组成的混合动力系统,与传统汽车及电动汽车最大的差别是,通过传动轴驱动车轮的能量流既可分别来自发动机或蓄电池,也可同时来自两者。如何合理的进行能量流分配与控制,直接关系到混合动力汽车整车性能,是混合车开发工作的核心和难点。因此,能量流的控制方法是混合动力系统中最为关键的技术。在中国专利局2004年2月公布的专利01819437.0中,PM法西提出了一种建立一个与各种动力源分配选项有关的成本函数,以改善动力源的分配。对于一个特定成本(z-常数),通过在一个归一化的驱动循环中积分相对时间的发电动力而获得能量的总量。从而生成一个能量/成本查询表。其实,混合车的能量流分配与工况等多种因素有关,是个随机的、非线性、多参数、大滞后和非稳态过程,很难建立其精确数学模型,经典控制和现代控制常因模型不准确而导致控制效果不理想。在中国专利局2005年7月公布的专利200420035374.9中,王耀南等提出一种混合动力汽车能量总成智能控制器,其特征在于中央控制器通过数据和地址总线与存储器相连,其内嵌有CAN控制器、A/D模块、D/A模块和I/0模块,CAN控制器由CAN隔离电路与CAN总线相连,1/0模块通过隔离电路与外部的开关信号相连;A/D模块和D/A模块通过线性隔离、信号处理电路与外部的模拟信号相连。在中国专利局2006年7月公布的专利200510000075.0中,薛忠和提出了一种混合动力系统及其动力控制策略和方法。这种方法利用动力系统控制器,根据系统工作情况调配发动机的输出动力,储能器的能量传输和制动器的制动动力。并进一步设定发动机的工作状态(扭矩和转速)。系统控制器根据发动机设定转速和实际工作转速的误差信号,通过设置并控制电机工作扭矩来实现对发动机转速的控制。同时,还通过发动机控制器调控发动机扭矩。但它仅考虑控制发动机,而没有考虑电池的蓄电状态。
发明内容本发明提供了一种以发动机和蓄电池组成的并联式混合动力系统的能量流控制方法,该方法首先在考虑发动机和蓄电池工作在各自最优工作点的基础上,以保持蓄电池的电荷状态为第一优先进行能量流的分配,然后再以整车的燃料经济最优为目标,协调运作,以实现混合动力系统的能量效率最优以及整车系统性能最佳。本发明的目的是通过以下技术方案来实现的:一种并联式混合动力系统的能量流控制方法,其特征在于它包括以下步骤1、车需求功率的控制;在不同的路况下,根据司机的转矩需求、车速以及发动机当前状况等计算出总的车当前需求的功率Pd。在混合系统的设计中,通常将发动机容量设计为提供车辆所需的主要能量,而电池则作为辅助动力单元提供不足的能量和吸收刹车能量;因此,在车子可能的三种工作情况下,即加速、巡航和减速时,能量流控制按以下规则(1)如果车子工作在加速状态,需求功率是大,即Pd〉0,发动机和电池必须同时工作;(2)如果车子工作在减速状态,需求功率负值,S卩Pd<0,发动机停止工作,可利用刹车功率给电池充电;(3)如果车子工作在巡航状态,需求功率为中等或比较小时,即Pd〉0,发动机单独工作,或电池单独工作,或者发动机工作,同时给电池充电。2、蓄电池的电荷状态(S0C)控制;从蓄电池S0C测量装置获取蓄电池的S0C值,并遵守以下绑则(1)维持SOC在50—70W范围;(2)避免电池深度充放电;3、以蓄电池的SOC为第一优先的能量流控制规则;总的能量控制以维持蓄电池的电荷状态为第一优先,发动机的工作取决于电池的SOC;遵守以下规则<table>tableseeoriginaldocumentpage7</column></row><table>具体地(1)当电池SOC〉90X时,电池提供所有功率,不充电;只有刹车时才充电;发动机不工作,只有电池单独提供功率不够时,发动机才补充功率;(2)当电池S0C70X90X时,电池提供功率优先,只有刹车时才充电;发动机不工作,只有电池单独提供功率不够时,发动机才补充功率;(3)当电池S0C40X70X时,电池和发动机同时工作,刹车时电池可充电;(4)当电池S0C30X40X时,发动机优先工作,当发动机有足够剩余功率时,可给电池充电。刹车时电池可充电;(5)当电池S0C〈30X时,发动机给电池充电为第一优先,甚至不惜影响车子性能,刹车时电池可充电。本发明中,釆用模糊能量流控制规则,根据车所需的功率Pd和蓄电池的电荷状态确定所需蓄电池的输出功率Pb,得到发电机和蓄电池最优的功率分配;模糊能量流控制规则如下如果Pd是负大,andS0C〉90X时,那么Pb是零;如果Pd是负中,andS0C〉90X时,那么Pb是零;如果Pd是负小,andS0C〉90X时,那么Pb是零;如果Pd是零,andS0C〉90X时,那么Pb是中;如果Pd是正小,andS0C〉90X时,那么Pb是高;如果Pd是正大,andS0C〉90X时,那么Pb是高;如果Pd是负大,andS0C70^90^时,那么Pb是负小;如果Pd是负中,andSOC70X90X时,那么Pb是负小;如果Pd是负小,andS0C70X90X时,那么Pb是零;如果Pd是零,andS0C70X90X时,那么Pb是正小;如果Pd是正小,andS0C70%~90%时,那么Pb是正大如果Pd是正中,andSOC70%90%时,那么Pb是正大如果Pd是正大,andS0C70%90%时,那么Pb是正大如果Pd是负大,andSOC40%70%时,那么Pb是负中如果Pd是负中,andS0C40%70%时,那么Pb是负小如果Pd是负小,andS0C40%70%时,那么Pb是负小如果Pd是零,andS0C40X70X时,那么Pb负零;如果Pd是正小,andSOC405^70X时,那么Pb是负小;如果Pd是正中,andS0C40X70X时,那么Pb是负中;如果Pd是正大,andS0C40X70X时,那么Pb是负大;如果Pd是负大,andS0C30X40X时,那么Pb是负大;如果Pd是负中,andSOC30X40X时,那么Pb是负大;如果Pd是负小,andSOC30^40^时,那么Pb是负中;如果Pd是零,andSOC30X40X时,那么Pb是零;如果Pd是正小,andS0C30X40X时,那么Pb是零;如果Pd是正中,andS0C30X40X时,那么Pb是正小;如果Pd是正大,andS0C30X40X时,那么Pb是正中;如果Pd是负大,andS0C〈30X时,那么Pb是负大;如果Pd是负中,andS0C〈30^时,那么Pb是负大;如果Pd是负小,andS0C〈30X时,那么Pb是负大;如果Pd是零,andSOC〈30^时,那么Pb是负中;如果Pd是正小,andSOC〈30X时,那么Pb是负小;如果Pd是正中,andS0C〈30^时,那么Pb是负小;如果Pd是正大,且电荷状态<30%时,那么Pb是零;4、系统总体约束包括摩擦功率、发动机开和关以及离合器状态的约束,其中,车需求功率Pd减去所需蓄电池输出功率Pb得到发动机的所需输出功率Pe,根据当前车的需求功率Pd,考虑摩擦功率Pf的约束,确定系统允许发动机的输出功率Pe,:Pd〉0时Pe产PePd<0时Pe〉PfPe尸PePe〈PfPe产Pf再根据发动机开/关状态和离合器的状态,决定系统允许发动机的输出功率Pe、如果发动机是开机的状态同时离合器处在l、2、5位置,那么AND--l,否则AND=0;发动机输出功率Pe'的计算公式AND=1Pe*=PetAND=0Pe*=0得到系统允许蓄电池的输出功率Pb其计算公式设如果发动机是开机而离合器处在l、2、5位置,那么AND==1,否则八即=0;当AND=1时,Pb*=Pb当AND=0时,Pb*=PdS0C〉0.3Pb*=0SOCX0.3以电池输出功率加上发动机输出功率,再减去车所需的功率,得到刹车功率Ps=Pb*+Pe*-Pd考虑当前发动机的状况,系统允许的刹车功率Ps'为设如果发动机是开机而离合器处在l、2、5位置,那么AND==1,否则頎0=0;AND=1Ps*=0AND=0Ps*=Pb*+Pe*-Pd5、将发动机输出功率Pe'命令送发动机优化工作控制器,利用该发动机最加燃料经济曲线,获取当前发动机输出功率的条件下对应的最佳发动机速度;6、将所需蓄电池功率Pb'、发动机功率Pe'、刹车功率Ps'和发动机最佳燃料经济曲线作为输入,送转矩控制器,分别得到发动机转矩命令、发电机和电动机的转矩命令,从而完成能量的分配和控制。本发明中,在模糊能量流控制时,综合考虑混合车的燃料经济、排放和成本等因数,首先建立一个优化的目标函数以目标函数为优化目标,利用遗传算法在多维空间寻找最优解的方法,即进一步调整控制规则,寻找出最优的控制策略。本发明与现有技术相比,其优点是一、能量流的分配尽可能使发动机和蓄电池各自子系统工作在自己的最优工作点上;二、以燃料经济最优为目标,以电池系统为第一优先,协调两个子系统,提高混合动力系统的能量效率,以实现整车系统性能最佳。本发明能够有效的在发动机和蓄电池之间进行合理的能量流分配,既使发动机和蓄电池工作在各自的最佳工作点,又能提高了整个混合动力系统整体的能量效率。图1并联式混合电动车动力系统的控制结构框图;图2并联式混合电动车动力系统能量流图;图3并联式混合电动车能量流的控制方法流程图;图4蓄电池的电荷状态与充放电电流的关系曲线图5能量流控制器的输入输出隶属度函数;图6用遗传算法调模糊规则图7优化的能量流控制器的输入输出隶属度函数;具体实施方式图1所示为本发明所述的并联式混合动力系统的控制结构框图。整个控制结构分三层①需求功率控制器为高级控制层,由车速控制器和转矩传感器组成,根据路况和车当前状况,实时地发出车辆当前需求功率的命令;②能量流控制器为协调管理层,根据上一控制层当前车需求的功率和来自低级控制层反馈的车当前运行的参数,协调和分配功率给下一层执行控制器执行。(D执行控制器包括发动机控制器,负责提供有关发动机当前工作状态的信息,控制发动机转速、转矩命令;蓄电池控制器包括蓄电池SOC的测量,蓄电池充、放电控制,电机控制器发电机和电动机的转换、电机转矩命令等。图2所示为混合动力工作情况下的能量流。本方法采用的混合动力系统主要包括内燃发动机、蓄电池、电动机、发电机以及控制系统等。从能量流到动力系统输出轴的流经路线为并联式,它可提供灵活的、多种多样的组合工作方式。如图2所示,有五种不同的工作模式1)由发动机单独提供功率;2)由电池单独提供能量,通过电动机驱动车轮;3)发动机和电池同时工作;4)发动机提供功率,同时给电池充电;5)刹车能量给电池充电。混合电动车能量流的控制方法流程图如附图3所示。具体实施步骤如下1、根据司机油门踏板位置获得需求的转矩,再由车速传感器获得当前车速,根据司机需求的转矩和车速计算出当前车辆所需的功率Pd,并根据不同工作情况Pd分成7种值车子加速,所需功率为正(Pd>0),并分为正大、正中和正小;车子减速,所需功率为负(PcK0),并分为负大、负中和负小;车子停止,所需功率为零(Pd=0)。2、利用S0C测量装置获得蓄电池的S0C值;3、需要说明的是,混合动力系统虽然有两个能量源,其实,车子需求的功率实质上几乎全部由发动机提供的,因为电池提供车子的功率也是通过发动机充电得到的,只有少部分功率由刹车功率回收的。考虑发动机和电池各自工作在自己的最优工作点,也要考虑发动机充电电池的能量转换效率。因此,能量流的分配采用以电池的S0C为第一优先的分配原则。并根据图4蓄电池的电荷状态与充放电电流的关系曲线制定以蓄电池的S0C为第一优先的能量分配规则,见表1。表l电荷状态%能量源电池充电电池放电90100电池优先零大7090电池优先低大4070发动机优先中中3040发动机优先大低1030发动机唯一大零具体地说,(1)当电池SOD90X时,电池提供所有功率,不充电;只有刹车时才充电;发动机不工作,只有电池单独提供功率不够时,发动机才补充功率;(2)当电池S0C70X90X时,电池提供功率优先,只有刹车时才充电;发动机不工作,只有电池单独提供功率不够时,发动机才补充功率;(3)当电池SOC40X70X时,电池和发动机同时工作,刹车时电池可充电;(4)当电池S0C30X40X时,发动机优先工作,当发动机有足够剩余功率时,可给电池充电。刹车时电池可充电;(5)当电池S0C〈30X时,发动机给电池充电为第一优先,甚至不惜影响车子性能,刹车时电池可充电;另外需要说明的是,蓄电池充电时,表示蓄电池功率Pb〈0,放电时,Pb〉0。Pb也分成7个值正大、正中、正小、零、负小、负中和负大。4、模糊能量流控制器的输入是总的车需求功率Pd和蓄电池的SOC,通过模糊逻辑推理系统的方法,得到蓄电池最优的功率输出。具体的计算方法是首先将车需求的功率(Pd)和蓄电池的SOC通过隶属度函数转换成模糊输入变量,通过存储在模糊运算存储器的模糊算法并通过模糊推理系统的方法得到蓄电池的模糊输出变量,再通过隶属度函数将模糊输出变量转换成普通的蓄电池功率Pb,再由外部系统执行。具体的三十五个模糊规则如表2所示。能量控制器模糊逻辑控制系统的输入输出变量的隶属度函数如图5所示。表2如果Pd是负大,andS0C〉90X时,那么Pb是零;如果Pd是负中,andS0C〉90X时,那么Pb是零;如果Pd是负小,andS0C〉90X时,那么Pb是零;如果Pd是零,andS0C〉90X时,那么Pb是中;如果Pd是正小,andS0C〉90X时,那么Pb是高;如果Pd是正大,andSOC〉90X时,那么Pb是高;如果Pd是负大,andS0C70X90X时,那么Pb是负小;如果Pd是负中,andS0C70X90X时,那么Pb是负小;如果Pd是负小,andS0C70X90X时,那么Pb是零;如果Pd是零,andS0C70X90X时,那么Pb是正小;如果Pd是正小,andSOC70X90X时,那么Pb是正大;如果Pd是正中,andS0C70X90X时,那么Pb是正大;如果Pd是正大,andS0C70X90X时,那么Pb是正大;如果Pd是负大,andS0C40X70X时,那么Pb是负中;如果Pd是负中,andS0C40X70X时,那么Pb是负小;如果Pd是负小,andS0C40X70X时,那么Pb是负小;如果Pd是零,andSOC40X70X时,那么Pb负零;如果Pd是正小,andS0C40X70X时,那么Pb是负小;如果Pd是正中,andS0C40X70X时,那么Pb是负中;如果Pd是正大,andS0C40X70X时,那么Pb是负大;如果Pd是负大,andS0C30X40X时,那么Pb是负大;如果Pd是负中,andS0C30X40X时,那么Pb是负大;如果Pd是负小,andS0C30X40X时,那么Pb是负中;如果Pd是零,andS0C30X40X时,那么Pb是零;如果Pd是正小,andSOC30X40X时,那么Pb是零;如果Pd是正中,andSOC30X40X时,那么Pb是正小;如果Pd是正大,andSOC30X40W时,那么Pb是正中;如果Pd是负大,andS0C〈30X时,那么Pb是负大;如果Pd是负中,andS0C〈30^时,那么Pb是负大;如果Pd是负小,andSOC〈30X时,那么Pb是负大;如果Pd是零,andSOC〈30^时,那么Pb是负中;如果Pd是正小,andS0C〈30^时,那么Pb是负小;如果Pd是正中,andS0C〈30X时,那么Pb是负小;如果Pd是正大,且电荷状态<30%时,那么Pb是零;5、根据能量守恒定律,用总的车需求功率Pd减去所需电池功率Pb可得到所需发动机的功率Pe,(Pe=Pd—Pb)作为输入,根据当前车的需求功率Pd,考虑摩擦功率Pf的约束,来确定系统允许发动机的输出功率Pe,:Pd〉0时Pe产PePd<0时Pe>PfPe产PePe〈PfPe尸Pf6、再根据发动机开/关状态和离合器的状态,决定系统允许发动机的输出功率Pe*。设如果发动机是开机的状态同时离合器处在1、2、5位置,那么AND二4,否则AND-O;发动机输出功率Pe'的计算公式-AND=1Pe*=Pe!AND=0Pe*=07、考虑当前发动机的状况(开、关以及离合器)的因素后,得到系统允许蓄电池的输出功率Pb、其计算公式设如果发动机是开机而离合器处在1、2、5位置,那么AND==1,否则AND=0;当AND=1时,Pb*=Pb当AND-O时,Pb*=PdSOOO.3Pb*=0S0C<0.38、以电池输出功率加上发动机输出功率,再减去车所需的功率,得到刹车功率Ps=Pb*+Pe*-Pd9、考虑当前发动机的状况(开、关以及离合器),系统允许的刹车功率P^为设如果发动机是开机而离合器处在1、2、5位置,那么AND==1,否则AND=0。AND=1Ps*=0AND=0Ps*=Pb*+Pe*-Pd,10、发动机输出功率P^命令送发动机优化工作控制器,利用供应商提供的该发动机最加燃料经济曲线,对应该曲线可获取当前发动机输出功率的条件下对应的最佳发动机速度。11、将所需蓄电池功率Pb'、发动机功率Pe'、刹车功率P^和发动机最佳燃料经济曲线作为输入,送转矩控制器,可分别得到发动机转矩命令、发电机和电动机的转矩命令,从而完成能量的分配和控制。12、上述的功率分配只是考虑发动机和电池两个子系统工作在各自最优的前提下进行的分配。为了提供整车的性能和燃料经济性,本发明采用遗传算法寻找出最优的能量流控制策略。具体做法是首先通过综合考虑燃料经济、排放和成本等因数,构造出一个目标函数以目标函数为优化目标,在本案中也就是通过遗传算法智能的调节模糊控制器的隶属度函数的形状和坐标,也就是调节控制规则,寻找出最优的控制策略。使用遗传算法调模糊规则见图5,优化后的S0C、Pd和Pb的隶属度函数是图6。通过实验证明,本发明能够有效的在发动机和蓄电池之间进行合理的能量流分配,既使发动机和蓄电池工作在各自的最佳工作点,又能提高了整个混合动力系统整体的能量效率和整车的燃料经济。本发明的能量分配方案可推广到其它种类的混合动力车中。权利要求1、一种并联式混合动力系统的能量流控制方法,其特征在于它包括以下步骤1)车需求功率的控制;在不同的路况下,根据司机的转矩需求、车速以及发动机当前状况等计算出总的车当前需求的功率Pd。(1)如果车子工作在加速状态,需求功率是大,即Pd>0,发动机和电池必须同时工作;(2)如果车子工作在减速状态,需求功率负值,即Pd<0,发动机停止工作,利用刹车功率给电池充电;(3)如果车子工作在巡航状态,需求功率为中等或比较小时,即Pd>0,发动机单独工作,或电池单独工作,或者发动机工作,同时给电池充电;2)蓄电池的电荷状态控制;从蓄电池的电荷状态测量装置获取蓄电池的电荷状态值,并遵守以下规则(1)维持电荷状态在50-70%范围;(2)避免电池深度充放电;3)以蓄电池的电荷状态为第一优先的能量流控制规则;总的能量控制以维持蓄电池的电荷状态为第一优先,发动机的工作取决于电池的电荷状态;遵守以下规则(1)当电池电荷状态>90%时,电池提供所有功率,不充电;只有刹车时才充电;发动机不工作,只有电池单独提供功率不够时,发动机才补充功率;(2)当电池电荷状态70%~90%时,电池提供功率优先,只有刹车时才充电;发动机不工作,只有电池单独提供功率不够时,发动机才补充功率;(3)当电池电荷状态40%~70%时,电池和发动机同时工作,刹车时电池可充电;(4)当电池电荷状态30%~40%时,发动机优先工作,当发动机有足够剩余功率时,可给电池充电。刹车时电池可充电;(5)当电池电荷状态<30%时,发动机给电池充电为第一优先,刹车时电池可充电;4)系统总体约束包括摩擦功率、发动机开和关以及离合器状态的约束,其中,车需求功率Pd减去所需蓄电池输出功率Pb得到发动机的所需输出功率Pe,根据当前车的需求功率Pd,考虑摩擦功率Pf的约束,确定系统允许发动机的输出功率Pe1Pd>0时Pe1=PePd<0时Pe>PfPe1=PePe<PfPe1=Pf再根据发动机开/关状态和离合器的状态,决定系统允许发动机的输出功率Pe*如果发动机是开机的状态同时离合器处在1、2、5位置,那么AND==1,否则AND=0;发动机输出功率Pe*的计算公式AND=1Pe*=Pe1AND=0Pe*=0得到系统允许蓄电池的输出功率Pb*,其计算公式设如果发动机是开机而离合器处在1、2、5位置,那么AND==1,否则AND=0;当AND=1时,Pb*=Pb当AND=0时,Pb*=PdSOC>0.3Pb*=0SOC<0.3以电池输出功率加上发动机输出功率,再减去车所需的功率,得到刹车功率Ps=Pb*+Pe*-Pd考虑当前发动机的状况,系统允许的刹车功率Ps*为设如果发动机是开机而离合器处在1、2、5位置,那么AND==1,否则AND=0;AND=1Ps*=0AND=0Ps*=Pb*+Pe*-Pd5)将发动机输出功率Pe*命令送发动机优化工作控制器,利用该发动机最加燃料经济曲线,获取当前发动机输出功率的条件下对应的最佳发动机速度;6)将所需蓄电池功率Pb*、发动机功率Pe*、刹车功率Ps*和发动机最佳燃料经济曲线作为输入,送转矩控制器,分别得到发动机转矩命令、发电机和电动机的转矩命令,从而完成能量的分配和控制。2、根据权利要求1所述的并联式混合动力系统的能量流控制方法,其特征在于采用模糊能量流控制规则,根据车所需的功率Pd和蓄电池的电荷状态确定所需蓄电池的输出功率Pb,得到发电机和蓄电池最优的功率分配;其模糊规则下如果Pd是负大,且电荷状态>90%时,那么Pb是零;如果Pd是负中,且电荷状态〉90%时,那么Pb是零;如果Pd是负小,且电荷状态〉90%时,那么Pb是零;如果Pd是零,且电荷状态>90%时,那么Pb是中;如果Pd是正小,且电荷状态〉90%时,那么Pb是高;如果Pd是正大,且电荷状态>90%时,那么Pb是高;如果Pd是负大,且电荷状态70%90%时,那么Pb是负小;如果Pd是负中,且电荷状态70%90%时,那么Pb是负小;如果Pd是负小,且电荷状态70%90%时,那么Pb是零;如果Pd是零,且电荷状态70%90%时,那么Pb是正小;如果Pd是正小,且电荷状态70%90%时,那么Pb是正大;如果Pd是正中,且电荷状态70%90%时,那么Pb是正大;如果Pd是正大,且电荷状态70%90%时,那么Pb是正大;如果Pd是负大,且电荷状态40%70%时,那么Pb是负中;如果Pd是负中,且电荷状态40%70%时,那么Pb是负小;如果Pd是负小,且电荷状态〔40%70%时,那么Pb是负小;如果Pd是零,且电荷状态40%~70%时,那么Pb负零;如果Pd是正小,且电荷状态40%70%时,那么Pb是负小;如果Pd是正中,且电荷状态40%70%时,那么Pb是负中;如果Pd是正大,且电荷状态40%70%时,那么Pb是负大;如果Pd是负大,且电荷状态30%40%时,那么Pb是负大;如果Pd是负中,且电荷状态30%~40%时,那么Pb是负大;如果Pd是负小,且电荷状态30%40%时,那么Pb是负中;如果Pd是零,且电荷状态30%40%时,那么Pb是零;如果Pd是正小,且电荷状态30%40%时,那么Pb是零;如果Pd是正中,且电荷状态30%40%时,那么Pb是正小;如果Pd是正大,且电荷状态30%~40%时,那么Pb是正中;如果Pd是负大,且电荷状态<30%时,那么Pb是负大;如果Pd是负中,且电荷状态<30%时,那么Pb是负大;如果Pd是负小,且电荷状态<30%时,那么Pb是负大;如果Pd是零,且电荷状态〈30%时,那么Pb是负中;如果Pd是正小,且电荷状态〈30%时,那么Pb是负小;如果Pd是正中,且电荷状态<30%时,那么Pb是负小;如果Pd是正大,且电荷状态<30%时,那么Pb是零;3、根据权利要求2所述的并联式混合动力系统的能量流控制方法,其特征在于:在模糊能量流控制时,首先建立一个优化的目标函数式中,N:试验数据的数目;0ij:估计输出Tij:目标输出以目标函数为优化目标,得到发电机和蓄电池最优的功率分配。全文摘要本发明公开了一种由发动机和蓄电池组成的并联式混合动力系统的能量流控制方法。该方法首先在考虑发动机和蓄电池工作在各自最优工作点的基础上,以保持蓄电池的电荷状态为第一优先进行能量流的分配,然后再以整车的燃料经济最优为目标,协调运作,以实现混合动力系统的能量效率最优以及整车系统性能最佳。本发明能够有效的在发动机和蓄电池之间进行最优的能量流分配,即使发动机和蓄电池工作在各自的最佳工作点,提高了混合动力系统整体的能量效率。文档编号B60W20/00GK101125548SQ200710132018公开日2008年2月20日申请日期2007年9月7日优先权日2007年9月7日发明者杨微子,王爱华申请人:南京工业职业技术学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1