制动控制装置的制作方法

文档序号:3993745阅读:90来源:国知局
专利名称:制动控制装置的制作方法
技术领域
本发明涉及具有液压制动单元和再生制动单元这两者的混合动力车辆中的制动技术。
背景技术
已知有将发动机和马达作为动力源而行驶的混合动力车辆。在混合动力车辆中能够使用再生制动,所述再生制动是指在车辆减速时使马达作为发动机而工作,并通过将产生的电能回收到蓄电池中而用作制动力。该蓄电池具有以下特性当冬季蓄电池的温度由于车辆长时间放置等而下降时,电能的输入输出量大大地降低。其结果是,在蓄电池温度上升之前的期间,由马达产生的驱动力辅助和能量回收量变少,燃油经济性降低。特别是,在为锂蓄电池的情况下,与镍蓄电池等比较,温度的允许范围非常小。因此,为了提高燃油经济性,需要使蓄电池温度尽快上升到允许范围内。在专利文献1中公开了以下内容当蓄电池温度低时,通过反复进行以减小发动机驱动力的量来增大马达驱动力而使蓄电池放电的控制、以及以增大发动机驱动力的量来减小马达驱动力而使蓄电池充电的控制,来增大蓄电池的放电电流以及充电电流,从而使蓄电池的温度升温。在先技术文献专利文献专利文献1 日本专利文献特开2001-268715号公报;专利文献2 日本专利文献特开2006-278045号公报;专利文献3 日本专利文献特开2007-151216号公报。

发明内容
发明所要解决的问题但是,在专利文献1记载的技术中,当车辆的驱动力小的状态持续时,有可能无法迅速地使蓄电池温度上升。本发明是鉴于这种情况而完成的,其目的在于提供一种在混合动力车辆中当蓄电池温度低时迅速地使蓄电池上升到适当温度的技术。用于解决问题的手段本发明的某方式是制动控制装置。该装置包括发动机,所述发动机驱动车轮;摩擦制动单元,所述摩擦制动单元对分别设置在车辆的各车轮上的轮缸供应工作液而将摩擦部件压在车轮上,由此来产生摩擦制动力;再生制动单元,所述再生制动单元通过对驱动车轮的旋转电机的电力再生来产生再生制动力;再生协调控制单元,所述再生协调控制单元根据来自驾驶员的制动要求来控制所述摩擦制动单元和所述再生制动单元所产生的制动力的分配比率;蓄电池,所述蓄电池回收来自旋转电机的电力;低温判定单元,所述低温判定单元当蓄电池的温度低于预定的温度范围时判定为蓄电池温度低;以及蓄电池温度上升单元,所述蓄电池温度上升单元当通过低温判定单元判定为蓄电池温度低时,在通过旋转电机或者发动机对车辆的加速过程中,通过摩擦制动单元以及再生制动单元中的至少一者使车辆产生制动力而增大旋转电机的负载。根据该方式,当蓄电池温度低时,在车辆的加速过程中产生摩擦制动力以及再生制动力中的至少一者。在产生了摩擦制动力的情况下,旋转电机的负载增大,由于与没有摩擦制动力的情况相比更大的电能从蓄电池向旋转电机释放出,因此能够迅速地提高蓄电池的温度。另外,在产生了再生制动力的情况下,由于电能从旋转电机被回收到蓄电池,因此能够迅速地使蓄电池的温度上升。因此,蓄电池的能量回收性能恢复,燃油经济性也得以提高。并且,在产生了摩擦制动力的情况下,摩擦部材的温度也上升,因此制动感觉也能改善。摩擦制动单元可以包括储能器,所述储能器通过泵驱动而对被供应给轮缸的工作液进行升压;以及储能器压测定单元,所述储能器压测定单元测定储能器的压力。也可以是在储能器通过泵被升压到预定压所需的时间比该储能器处于预定的温度范围时的升压时间长的情况下,低温判定单元判定为蓄电池温度低。由此,利用摩擦制动单元的储能器压来判定蓄电池的低温,因此不需要具有检测蓄电池温度的传感器等。还可以包括低温判定解除单元,所述低温判定解除单元解除低温判定单元进行的蓄电池温度低的判定。低温判定解除单元可以包括加减速计数单元,所述加减速计数单元对车辆经历了加速以及减速的次数进行计数;以及计数判定单元,所述计数判定单元在再生制动单元未工作时,当计数值达到了第一阈值时解除蓄电池温度低的判定,在再生制动单元工作时,当计数值达到了比第一阈值小的第二阈值时解除蓄电池温度低的判定。根据上述,当被判定为蓄电池温度低时,能够基于车辆的加减速次数来解除低温判定。另外,在再生制动单元工作时、即再生协调的实施时,考虑蓄电池的充放电变多的情况,能够以比不工作时更少的加减速次数解除低温判定。还包括低温判定解除单元,所述低温判定解除单元解除低温判定单元进行的蓄电池温度低的判定。低温判定解除单元可以具有温度测定单元,所述温度测定单元测定车厢内温度;以及室温监视单元,所述室温监视单元在车厢内温度为预定值以上的状态持续了预定时间以上时解除蓄电池温度低的判定,所述预定时间是被估计为蓄电池上升到预定的温度范围的时间。根据上述,能够利用车厢内温度来解除蓄电池的低温判定。发明的效果根据本发明,在混合动力车辆中,当蓄电池温度低时,能够迅速地使其上升到适当温度而使基于蓄电池的再生能量的回收量增大。


图1是示出应用了本发明的一个实施方式的制动控制装置的混合动力车辆的简略构成图;图2是示出液压制动单元的构成的图;图3是示出图2的制动E⑶中、与本实施方式涉及的蓄电池低温时的温度上升控制有关的部分的构成的功能框图;图4是由低温判定部进行的蓄电池的低温判定处理的流程图;图5是解除蓄电池低温标识的处理的流程图6是解除蓄电池低温标识的其它的处理的流程图;图7是使蓄电池温度上升的处理的流程图。
具体实施例方式本发明的一个实施方式涉及应用于混合动力车辆中的制动控制装置,所述制动控制装置包括液压制动单元,所述液压制动单元从液压产生源向设置在车辆的各车轮的轮缸供应工作液而对车轮施加制动力;以及再生制动单元,所述再生制动单元通过旋转电机 (以下简称为“马达”)向车轮施加驱动力或者再生制动力。以下,首先对本实施方式涉及的混合动力车辆的构成进行叙述,接着对搭载在混合动力车辆上的液压制动单元的构成进行叙述。之后,对本实施方式涉及的蓄电池低温时的温度上升控制进行详细地说明。图1是示出应用了本实施方式涉及的制动控制装置的车辆100的简略构成图。车辆100作为所谓的混合动力车辆而被构成,并包括发动机2、与作为发动机2的输出轴的曲轴连接的3轴式动力分割机构3、与动力分割机构3连接并能够发电的电动发电机4、 经由变速器5与动力分割机构3连接的前轮用马达6、以及对车辆100的驱动系统整体进行控制的混合动力用电子控制单元(以下,称为“混合动力E⑶”,电子控制单元全部称为 “EOT”。)7。车辆100的右前轮9FR以及左前轮9FL经由驱动轴8与变速器5连结。发动机2是使用例如汽油或轻油等烃系燃料而运转的内燃机,并被发动机ECU 10 控制。发动机E⑶10能够与混合动力E⑶7进行通信,并基于来自混合动力E⑶7的控制信号、来自检测发动机2的工作状态的各种传感器的信号来执行发动机2的燃料喷射控制、 点火控制、吸气控制等。另外,发动机ECU 10根据需要将与发动机2的工作状态有关的信息提供给混合动力ECU 7。车辆100还具有后轮用马达16。车辆100的右后轮9RR以及左后轮9RL经由驱动轴18与变速器15连结。后轮用马达16的输出经由变速器15被传递给左右的后轮9RR、 9RL。动力分割机构3起到以下作用经由变速器5将前轮用马达6的输出传递给左右的前轮9FR、9FL ;将发动机2的输出分配给电动发电机4和变速器5 ;以及对前轮用马达6 和发动机2的旋转速度进行减速或者增速。电动发电机4、前轮用马达6以及后轮用马达16 分别经由包含逆变器的电力转换装置11而与蓄电池12连接,电力转换装置11与马达ECU 14连接。马达ECU 14也能够与混合动力E⑶7进行通信,并基于来自混合动力E⑶7的控制信号等经由电力转换装置11来控制电动发电机4、前轮用马达6以及后轮用马达16。此夕卜,上述的混合动力E⑶7、发动机E⑶10、马达E⑶14均被构成为包含CPU的微处理器, 除CPU以外还包括存储各种程序的ROM、临时存储数据的RAM、输入输出端口以及通信端口寸。在混合动力E⑶7和马达E⑶14的控制下,经由电力转换装置11从蓄电池12向前轮用马达6、后轮用马达16供应电力,由此能够通过前轮用马达6的输出驱动左右的前轮 9FR、9FL,并且通过后轮用马达16的输出驱动左右的后轮9RR、9RL。另外,在发动机效率好的运转区域,车辆100被发动机2驱动。此时,经由动力分割机构3将发动机2的输出的一部分传递给电动发电机4,由此能够使用电动发电机4产生的电力对前轮用马达6进行驱动,或者经由电力转换装置11对蓄电池12进行充电。另外,在对车辆100进行制动时,在混合动力E⑶7和马达E⑶14的控制下,通过从前轮9FR、9FL传递的动力使前轮用马达6旋转,前轮用马达6作为发电机而工作。另外, 通过从后轮9RR、9RL传递的动力使后轮用马达16旋转,后轮用马达16作为发电机而工作。 艮口,前轮用马达6、后轮用马达16、电力转换装置11、混合动力E⑶7以及马达E⑶14等作为通过将车辆100的动能再生为电能来对车辆100进行制动的再生制动单元而发挥功能。本实施方式的制动控制装置除了这样的再生制动单元之外还具有液压制动单元 20,通过执行使两者协调的制动再生协调控制来对车辆100进行制动。混合动力ECU 7所包含的协调控制部通常时根据来自驾驶员的制动要求来决定液压制动力和再生制动力的分配比率,并对液压制动单元20和再生制动单元分别要求制动力。图2示出了液压制动单元20的构成。液压制动单元20包括针对左右的前轮 9FR、9FL设置的盘式制动单元21FR、21FL和针对左右的后轮9RR、9RL设置的盘式制动单元21RR、21RL ;作为制动油的供应源的动力液压源30,所述制动油是对各盘式制动单元 2IFR 21RL供应的工作液;以及液压执行器40,所述液压执行器40通过适当地调整来自动力液压源30的制动油的液压并供应给各盘式制动单元21FR 21RL,由此能够设定针对车辆100的各车轮的制动力。各盘式制动单元21FR 21RL分别包括制动盘22以及制动钳23,在各制动钳23 中内置有未图示的轮缸。并且,各制动钳23的轮缸分别经由独立的流体通路与液压执行器 40连接。当从液压执行器40向制动钳23的轮缸供应制动油时,作为摩擦部件的制动块被压在与车轮一起旋转的制动盘22上,对各车轮施加液压制动转矩。主缸单元27在本实施方式中是带液压增压器的主缸,并包括液压增压器31、主缸 32、调节器33、以及贮存器34。液压增压器31与制动踏板M连结,对被施加在制动踏板M 上的踏板踏力进行放大并传递给主缸32。从动力液压源30经由调节器33对液压增压器 31供应制动流体,由此踏板踏力被增大。并且,主缸32相对于踏板踏力产生具有预定的增力比的主缸压。在主缸32和调节器33的上部配置贮存制动流体的贮存器34。主缸32当制动踏板M的踩入被解除时与贮存器34连通。另一方面,调节器33与贮存器34和动力液压源 30的储能器35这两者连通,将贮存器34作为低压源并将储能器35作为高压源,产生与主缸压基本相等的液压。以下将调节器33中的液压适当地称为“调节器压”。此外,主缸压和调节器压不需要严格地设为相同压,例如也能够以调节器压为若干高压的方式来设计主缸单元27。动力液压源30包含储能器35以及泵36。储能器35将通过泵36升压后的制动流体的压力能量转换成氮等封入气体的压力能量,例如转换为14 22MI^左右来储存。泵 36具有马达36a作为驱动源,其吸入口与贮存器34连接,另一方面,其排出口与储能器35 连接。另外,储能器35还与设置在主缸单元27中的安全阀3 连接。当储能器35中的制动流体的压力异常高、例如为25MPa左右时,安全阀3 打开,高压的制动流体返回到贮存器;34。如上所述,液压制动单元20作为对盘式制动单元21的制动流体的供应源而具有主缸32、调节器33以及储能器35。并且,主缸32与主配管37连接,调节器33与调节器配管38连接,储能器35与储能器配管39连接。这些主配管37、调节器配管38以及储能器配管39分别与液压执行器40连接。
液压执行器40包括形成多个流体通路的执行器块以及多个电磁控制阀。形成为执行器块的流体通路包含单独通路41、42、43以及44、主通路45。单独通路41 44分别与从主通路45分岔并与对应的盘式制动单元21FR、21FL、21RR、21RL连接。由此,各盘式制动单元21FR 21RL能够与主通路45连通。另外,在单独通路41、42、43以及44的中途设置有增压保持阀51、52、53以及M。各增压保持阀51 M分别具有控制接通和断开的螺线管以及弹簧,并且都是在螺线管处于非通电状态时被打开的常开型电磁控制阀。
并且,各盘式制动单元21FR 21RL经由与单独通路41 44分别连接的减压通路46、47、48以及49与减压通路55连接。在减压通路46、47、48以及49的中途设置有减压控制阀56、57、58以及59。各减压控制阀56 59分别具有被控制接通和断开的螺线管以及弹簧,并且均是在螺线管处于非通电状态时被关闭的常闭型电磁控制阀。
主通路45在中途具有连通阀60,通过该连通阀60被划分为与单独通路43以及44 连接的第1通路45a以及与单独通路41和42连接的第2通路45b。S卩,第1通路4 经由单独通路43和44与后轮侧的盘式制动单元21RR以及21RL连接,第2通路4 经由单独通路41和42与前轮侧的盘式制动单元21FR和21FL连接。连通阀60具有被控制接通和断开的螺线管以及弹簧,并且是在螺线管处于非通电状态时被关闭的常闭型电磁控制阀。
另外,主通路45与主通路61、调节器通路62、储能器通路63连接,所述主通路61 被连接在与主缸32连通的主配管37上,调节器通路62被连接在与调节器33连通的调节器配管38上,储能器通路63被连接在与储能器35连通的储能器配管39上。更详细地说, 主通路61与主通路45的第2通路45b连接,调节器通路62和储能器通路63与主通路45 的第1通路4 连接。并且,减压通路55与动力液压源30的贮存器34连接。
主通路61在中途具有主压截止阀64。主压截止阀64具有被控制接通和断开的螺线管以及弹簧,并且是在螺线管处于非通电状态时被打开的常开型电磁控制阀。调节器通路62在中途具有调节器压截止阀65。调节器压截止阀65也具有被控制接通和断开的螺线管以及弹簧,并且是在螺线管处于非通电状态时被打开的常开型电磁控制阀。另外,储能器通路63在中途具有增压线性控制阀66,储能器通路63以及主通路45的第1通路45a 经由减压线性控制阀67与减压通路55连接。
增压线性控制阀66和减压线性控制阀67分别具有线性螺线管以及弹簧,并且均是在螺线管处于非通电状态时被关闭的常闭型电磁控制阀。这里,增压线性控制阀66的输入输出口之间的差压与储能器35中的制动油的压力和主通路45中的制动油的压力的差压对应,减压线性控制阀67的输入输出口间的差压与主通路45中的制动油的压力和减压通路阳中的制动油的压力的差压对应。另外,当将与对增压线性控制阀66以及减压线性控制阀67的线性螺线管供应的电力相应的电磁驱动力设为F1、将弹簧的施加力设为F2、将与增压线性控制阀66以及减压线性控制阀67的输入输出口间的差压相应的差压作用力设为 F3时,有F1+F3 = F2的关系成立。因此,通过连续地控制对增压线性控制阀66以及减压线性控制阀67的线性螺线管供应的电力,能够控制增压线性控制阀66以及减压线性控制阀 67的输入输出口间的差压。
此外,由于增压线性控制阀66如上所述是常闭型电磁控制阀,因此在增压线性控制阀66处于非通电状态的情况下,主通路45被从作为高压液压源的储能器35切断。另外, 由于减压线性控制阀67也如上所述是常闭型电磁控制阀,因此在减压线性控制阀67处于非通电状态的情况下,主通路45也从贮存器34切断。这点,主通路45也可以说还与作为低压液压源的贮存器34连接。另一方面,主通路61在主压截止阀64的上游侧经由模拟器截止阀68与行程模拟器69连接。模拟器截止阀68具有被控制接通和断开的螺线管以及弹簧,并且是在螺线管处于非通电状态的情况下被关闭的常闭型电磁控制阀。行程模拟器69是包含多个活塞和弹簧的模拟器,在模拟器截止阀68打开时生成与驾驶员对制动踏板M的踏力对应的反力。 作为行程模拟器69,为了提高驾驶员的制动操作的感觉而优选采用具有多级弹簧特性的行程模拟器,本实施方式的行程模拟器69具有4级弹簧特性。如上所述构成的动力液压源30和液压执行器40通过作为控制单元的制动E⑶70 而被控制。制动E⑶70作为包含CPU的微处理器而被构成,除CPU之外还具有存储各种程序的ROM、暂时存储数据的RAM、输入输出端口以及通信端口等。并且,制动E⑶70能够与混合动力ECU 7进行通信,并基于来自混合动力ECU 7的控制信号、来自各种传感器的信号对动力液压源30的泵36、构成液压执行器40的电磁控制阀51 M、56 59、60、64 68 进行控制。与制动E⑶70连接的传感器包含调节器压传感器71、储能器压传感器72、以及控制压传感器73。调节器压传感器71在调节器压截止阀65的上游侧检测调节器通路62 内的制动油的压力(调节器压),将表示所检测的值的信号提供给制动ECU 70。储能器压传感器72在增压线性控制阀66的下游侧检测储能器通路63内的制动油的压力(储能器压),将表示所检测的值的信号提供给制动ECU 70。控制压传感器73检测主通路45的第 2通路45b内的制动油的压力,并将表示所检测的值的信号提供给制动ECU 70。各传感器 71 73的检测值每隔预定时间被依次提供给制动ECU 70,在制动ECU 70的预定的存储区域(缓存)保存预定量而进行保持。在连通阀60被打开而主通路45的第1通路4 和第2通路45b彼此进行连通的情况下,控制压传感器73的输出值表示增压线性控制阀66的低压侧的液压并表示减压线性控制阀67的高压侧的液压,因此能够将该输出值利用在增压线性控制阀66以及减压线性控制阀67的控制上。另外,在增压线性控制阀66以及减压线性控制阀67被关闭、并且连通阀60处于非通电状态而主通路45的第1通路4 和第2通路45b彼此分离的情况下, 控制压传感器73的输出值表示主缸压。并且,在连通阀60被打开而主通路45的第1通路 45a和第2通路4 彼此连通、各增压保持阀51 M被打开另一方面各减压控制阀56 59被关闭的情况下,控制压传感器的73的输出值表示各盘式制动单元21FR 21RL的制动压(轮缸压)。并且,与制动E⑶70连接的传感器还包括上述的制动行程传感器25。制动行程传感器25检测制动踏板M的操作量,并将表示所检测的值的信号提供给制动ECU 70。制动行程传感器25的检测值也每隔预定时间被依次提供给制动ECU 70,在制动ECU 70的预定的存储区域(缓存)保存预定量而被保持。此外,除了制动行程传感器25之外,检测制动踏板M的操作状态的踏板踏力传感器、检测制动踏板M被踩入的制动开关也可以与制动 ECU 70连接。
8
如上所述构成的制动控制装置能够执行制动再生协调控制。液压制动单元20接受制动要求并开始制动。制动要求例如在驾驶员操作了制动踏板M的情况等应对车辆施加制动力时发生。接受制动要求,制动ECU 70计算要求制动力,通过从要求制动力减去基于再生的制动力能够计算作为应通过液压制动单元20产生的制动力的要求液压制动力。 这里,基于再生的制动力被从混合动力ECU供应给制动控制装置。并且,制动ECU 70基于所计算出的要求液压制动力来计算各盘式制动单元21FR 21RL的目标液压。制动ECU 70 为了轮缸压成为目标液压而通过反馈控制规则来决定供应给增压线性控制阀66和减压线性控制阀67的控制电流的值。其结果是,在液压制动单元20中,制动流体从动力液压源30经由增压线性控制阀 66被供应给各盘式制动单元21的轮缸,而对车轮施加制动力。另外,制动流体根据需要从各轮缸经由减压线性控制阀67被排出,从而能够调整被施加给车轮的制动力。在本实施方式中,包含动力液压源30、增压线性控制阀66以及减压线性控制阀67等构成了轮缸压控制系统。通过轮缸压控制系统进行所谓的制动线控方式的制动力控制。轮缸压控制系统在从主缸单元27向盘式制动单元21的轮缸的制动流体的供应路径上并列地设置。此时,制动E⑶70将调节器压截止阀65设置为关闭状态,使得从调节器33送出的制动流体不能供应给轮缸。并且,制动ECU 70将主压截止阀64设置为关闭状态并将模拟器截止阀68设置为打开状态。这是因为,伴随驾驶员对制动踏板M的操作而从主缸32 送出的制动流体不是被供应给盘式制动单元21的轮缸而是被供应给行程模拟器69。制动再生协调控制中在调节器压截止阀65以及主压截止阀64的上下游间作用与再生制动力的大小对应的差压。但是,上述的混合动力车辆的蓄电池具有当冬季因车辆长时间放置等而导致蓄电池的温度降低时电能的输入输出量大大下降的特性。其结果是,由于在蓄电池温度上升为止的期间基于马达的驱动力辅助和能量回收量变少,燃油经济性下降,因此优选使蓄电池温度迅速地上升。因此,在本实施方式中,判定蓄电池是否是低温,在蓄电池低温状态长时间持续的情况等下,实施迅速地使蓄电池温度上升而确保再生能量的回收性能的控制。图3是示出图2的制动E⑶70中与本实施方式涉及的蓄电池低温时的温度上升控制有关的部分的构成的功能框图。这里所示的各框在硬件上能够由以计算机的CPU和存储器为主的元件和机械装置实现,在软件上能够通过计算机程序等实现,这里,作为通过它们的协作而实现的功能块来进行描述。因此,这些功能块能够通过硬件、软件的组合而以各种各样的形式实现,这对本领域技术人员来说是能够理解的。低温判定部120在蓄电池12的温度低于预定的温度范围时将蓄电池低温标识设定为ON。预定的温度范围例如是在再生制动时将再生能量的回收持续一定时间以上的能够发挥蓄电池性能的温度范围,通过实验或者基于蓄电池的规格来决定。蓄电池12的低温温度判定可以通过设置在蓄电池附近的温度传感器的检测值来进行,但是在本实施方式中, 通过储能器压测定部122基于储能器35的压力变化来进行低温判定。一般情况下,储能器采用滑阀。该滑阀由于在长时间的压力保持上较弱,因此当不使车辆运动而长时间放置时,会产生储能器压下降到OMPa附近的现象(以下,称为“零下降”)。当发生该零下降时,能够估计为车辆被放置到蓄电池温度和具有储能器的动力液压
9源30成为相同程度的温度。利用此,储能器压测定部122在储能器压低于OMPa附近的预定压Pl时进行蓄电池的低温判定。
储能器压测定部122计测在车辆的起动后开始对储能器的蓄压、储能器压从Pl到达第二预定压P2(例如,驱动泵36的马达36a停止的19. 88MPa)为止的时间t。在该蓄压时间t大于预定时间Tl的情况下,判定为蓄电池是低温。这是利用了以下情况在储能器与蓄电池同样是低温的情况下,由于储能器内的氮的压力低并且工作液的粘度高,泵的吸取能力下降,因此,在储能器压到达预定压P2之前的时间与储能器处于通常温度范围(例如,蓄电池正常动作的预定的温度范围)的情况相比更需要时间。
此外,可以通过代替低温判定部120而采用能够管理蓄电池自身的充放电状态的智能蓄电池,而不依赖温度来判定蓄电池是否具有希望的性能。
低温判定解除部130在符合预定的条件的情况下将蓄电池低温标识设定为OFF。 低温判定解除部130包括室温监视部132和加减速监视部134。
室温监视部132获取测定图1所示的车厢内温度的室温传感器82的测定值 X(0C)0并且,当测定值X是预定温度Xl以上的状态持续了预定时间T2以上时,将蓄电池低温标识设定为OFF。
一般情况下,混合动力车的蓄电池搭载在后部座席的下方,通过排热槽与车厢内联系。因此,如果车厢内温度长时间保持常温,则能够判断为蓄电池温度也上升。因此,上述预定温度Xl被设定为常温例如20°c,预定时间T2通过实验求出在车厢内温度是Xl时估计蓄电池上升到上述预定的温度范围的时间而设定。
加减速监视部134基于车辆的加减速次数而将蓄电池低温标识设定为OFF。加减速监视部134包含加减速计数部136和计数判定部138。
加减速计数部136对经历车辆加速到预定速度Sl (km/h)以上和减速到预定速度 S2(km/h)以下(S2 < Si)的次数进行计数。
计数判定部138在基于加减速计数部136的计数值达到了第一阈值m时,将蓄电池低温标识设定为OFF。这是利用了以下情况当车辆进行加减速时,由于蓄电池12反复进行为了马达驱动而释放能量、或者为了再生制动而回收能量,因此蓄电池温度上升。预定速度Si、S2以及阈值m优选考虑蓄电池上升到预定的温度范围所需要的能量的放出量以及回收量而通过实验或者仿真来确定。
计数判定部138也可以基于来自混合动力E⑶7的信息来判定再生制动单元的工作/不工作,当再生制动单元不工作的情况下,当基于加减速计数部136的计数值到达第二阈值N2(N2<N1)时,计数判定部138将蓄电池低温标识设定为OFF来进行动作。这是因为在执行制动的再生协调控制的情况下,由于蓄电池12要与协调控制未实施时相比回收更多的能量来动作,因此可以认为以更少的加减速次数使蓄电池上升到预定的温度范围。 阈值N2也优选通过实验或者仿真来确定。此外,可以不判定再生协调控制的实施而总是基于第一阈值W来进行上述判定。
蓄电池温度上升部140当蓄电池低温标识为ON的状态从车辆启动时持续了预定时间T3以上时、或者判断为是极低温时,在车辆的加速过程中通过液压制动单元20产生摩擦制动力而使马达的负载增大。由此,产生从蓄电池到马达的放电,蓄电池的温度上升。
图4是基于低温判定部120的蓄电池的低温判定处理的流程图。
首先,储能器压测定部122判定从车辆的起动后例如从制动ECU 70的起动后是否在预定时间TO以内(SlO)。在为TO以内的情况下(S10的是),判定储能器压是否是OMPa 附近的预定压Pl以下(S12)。在储能器压大于Pl的情况下(S12的否),由于无法进行基于储能器压的低温判定,因此将蓄电池低温标识设为0FF(S24)。在储能器压为Pl以下的情况下(S12的是),开始计时器的计时(S14)。计测时间直至储能器压到达预定马达停止压 P2,如果到达了 P2 (S16的是),则停止计时器的计时(S18)。储能器压测定部122判定计时器的时间t是否大于预定时间Tl (S20)。在大于Tl的情况下(S20的是),基于储能器的升压时间比通常时长,将蓄电池低温标识设定为0N(S22)。在为Tl以下的情况下(S20的N), 将蓄电池低温标识设定为OFF。根据图4的处理,即使不具有检测蓄电池温度的传感器,也能够基于储能器压进行蓄电池的低温判定。另外,由于是仅通过制动ECU内的通信就能完成的处理,因此可以不经由CAN (Car Area Network,汽车局域网),能够削减制动ECU的ROM或RAM。图5关于解除蓄电池低温标识的处理进行说明。该处理在车辆的行驶中以预定的间隔反复实施。室温监视部132判定蓄电池低温标识是否为ON (S30)。在标识是ON的情况下,基于室温传感器82的测定值,判定车厢内温度是Xl以上的状态是否持续了预定时间T2以上 (S32)。如果持续了预定时间T2以上(S32的是),则估计为蓄电池的温度已上升,将蓄电池低温标识设定为OFF。由于车辆中的蓄电池和储能器的搭载位置分离,因此在图4所示的低温判定处理中无法进行正确的判定,实际存在蓄电池不是低温的情况。因此,通过图5的处理,当基于室温的监视而估计为蓄电池温度已上升时,能够将蓄电池低温标识设为OFF。图6是解除蓄电池低温标识的其他的处理的流程图。该处理在车辆的行驶中以预定的间隔被反复实施。加减速监视部134判定蓄电池低温标识是否为0N(S40)。如果标识为0N(S40的是),则基于来自混合动力ECU 7的信息,判定再生制动单元是否是工作中、即是否是再生协调的实施中(S42)。如果没有实施再生协调(S42的否),则进入到S44。如果是再生协调的实施中(S42的是),则将再生中标识设定为0N(S60)。接着,加减速监视部134基于车速传感器81的测定值判定车速是否是预定速度Sl 以上(S44)。如果是Sl以上(S44的是),则将加减速经历标识设定为0N(S62)。如果小于 Sl (S44的否),则判定加减速经历标识是否为0N(S46)。如果标识为0N(S46的是),则进一步判定车速是否是预定速度S2以下(S48)。如果是S2以下(S48的是),则将加减速经历标识设定为0FF(S50)。通过在此之前的处理,加减速经历标识从ON切换到OFF。S卩,表示车辆一次次反复Sl以上的加速和S2以下的减速。因此,加减速监视部134对加减速计数器以1来增加(S52)。计数判定部138判定再生中标识是否为ON(SM)。如果标识是OFF (SM的否),则判定加减速计数器的值是否是阈值m以上(S56)。如果计数器是m以上(S56的是),则判断为经历了蓄电池温度上升到预定的温度范围所需的足够次数的加减速,将蓄电池低温标识设定为0FF(S58)。如果在S54中标识是ON (SM的是),则判定加减速计数器的值是否是阈值N2以上(N2 < Ni) (S64)。在制动的再生协调控制被实施的情况下,由于蓄电池12要比协调控制未实施时回收更多的能量来进行动作,因此可以认为以更少的加减速次数使蓄电池上升到预定的温度范围,因此如果计数器是N2以上(S64的是),则将蓄电池低温标识设定为0FF(S58)。
图7是使蓄电池温度上升的处理的流程图。该处理在车辆的行驶中以预定的间隔反复地被执行。
蓄电池温度上升部140判定蓄电池低温标识为ON的状态是否持续了预定时间T3 以上(S82)。在持续了 T3以上的情况下(S82的是),根据车辆的加减速和车厢内温度判断为蓄电池温度没有上升到预定的温度范围,而进入到使以下的蓄电池强制地升温的控制。 作为其他方法,也可以在车辆处于极低的环境下的情况下进入到以下的控制。
蓄电池温度上升部140基于车速传感器81的测定值判定车辆是否是加速过程中 (S84)。在不是加速过程中的情况下(S84的否),不执行以下的处理。在是加速过程中的情况下(S84的是),对液压制动单元20指示主压截止阀64以及调节器压截止阀65关闭 (S86)。然后,通过增压线性控制阀66对盘式制动单元的轮缸进行增压(S88)。由此,尽管车辆是加速过程中,但制动块产生拖曳,马达的旋转负载增大。
蓄电池温度上升部140对计数器进行增加计数(S90)。并且,判定计数器是否是阈值N3以上(S92)。在小于N3的情况下(S92的否),结束该例程。在计数器是N3以上的情况下(S92的是),由于基于拖曳的马达负载的增大,判断为来自蓄电池的放电量增大并且蓄电池温度上升,对液压制动单元20进行指示,使主压截止阀64以及调节器压截止阀65打开(S94),并停止基于增压线性控制阀的增压。并且,将蓄电池低温标识设定为OFF(S96)。 由此,蓄电池的能量回收性能恢复,燃油经济性提高,并且由于制动块的温度上升,制动感觉也被改善。
此外,在图7的处理中,由于在车辆的加速过程中发生拖曳,因此有可能无法得到希望的加速度。因此,在执行图7的处理时,可以预料因拖曳而导致的下降的量来使车辆的驱动力的指令增大若干量。
在图7中,叙述了通过液压制动单元20产生摩擦制动力由此对马达提供负载来使蓄电池温度上升。该控制可以一直进行,但是如果在车辆被马达驱动时进行更有效果。因此,蓄电池温度上升部140也可以在图7的S82之前实施判定车辆是被马达驱动还是被发动机驱动的步骤。在车辆仅使用马达、或者使用发动机和马达这两者来进行驱动的情况下, 实施S82以下的处理。在车辆仅被发动机驱动的情况下,由再生制动单元产生再生制动力, 对蓄电池施加再生能量,由此使蓄电池的温度上升。
如以上说明的那样,根据本实施方式,当蓄电池是低温时,在车辆的加速过程中产生摩擦制动力,由此使马达的负载增大。其结果是,从蓄电池对马达释放出比没有摩擦制动力的情况更大的电能,因此能够迅速地使蓄电池的温度上升。
以上,以几个实施方式对本发明进行了说明。这些实施方式只不过是例示,实施方式之间的任意的组合、实施方式的各构成要素和各处理过程的的任意的组合等变形例也处于本发明的范围,这对本领域技术人员来说是能够理解的。
本发明并不限于上述的各实施方式,也能够基于本领域技术人员的知识施加各种设计改变等的变形。各图所示的构成用于说明一个例子,因此如果是能够实现同样功能的构成,能够适当进行改变。
符号的说明2发动机,7混合动力E⑶,12蓄电池,20液压制动单元,21盘式制动单元,35储能器,64主压截止阀,65调节器压截止阀,66增压线性控制阀,72储能器压传感器,81车速传感器,82室温传感器,100车辆,120低温判定部,122储能器压测定部,130低温判定解除部, 132室温监视部,134加减速监视部,136加减速计数部,138计数判定部,140蓄电池温度上升部。
权利要求
1.一种制动控制装置,其特征在于,包括 发动机,所述发动机驱动车轮;摩擦制动单元,所述摩擦制动单元对分别设置在车辆的各车轮上的轮缸供应工作液而将摩擦部件压在车轮上,由此来产生摩擦制动力;再生制动单元,所述再生制动单元通过对驱动车轮的旋转电机的电力再生来产生再生制动力;再生协调控制单元,所述再生协调控制单元根据来自驾驶员的制动要求来控制所述摩擦制动单元和所述再生制动单元所产生的制动力的分配比率; 蓄电池,所述蓄电池回收来自所述旋转电机的电力;低温判定单元,所述低温判定单元当所述蓄电池的温度低于预定的温度范围时判定为蓄电池温度低;以及蓄电池温度上升单元,所述蓄电池温度上升单元当通过所述低温判定单元判定为蓄电池温度低时,在通过所述旋转电机或者所述发动机对车辆的加速过程中,通过所述摩擦制动单元以及所述再生制动单元中的至少一者使车辆产生制动力而增大所述旋转电机的负载。
2.如权利要求1所述的制动控制装置,其特征在于,所述摩擦制动单元包括储能器,所述储能器通过泵驱动而对被供应给所述轮缸的工作液进行升压;以及储能器压测定单元,所述储能器压测定单元测定所述储能器的压力,在所述储能器通过所述泵被升压到预定压所需的时间比该储能器处于所述预定的温度范围时的升压时间长的情况下,所述低温判定单元判定为蓄电池温度低。
3.如权利要求1或2所述的制动控制装置,其特征在于,还包括低温判定解除单元,所述低温判定解除单元解除所述低温判定单元进行的蓄电池温度低的判定,所述低温判定解除单元包括加减速计数单元,所述加减速计数单元对车辆经历了加速以及减速的次数进行计数;以及计数判定单元,所述计数判定单元在所述再生制动单元未工作时,当计数值达到了第一阈值时解除蓄电池温度低的判定,在所述再生制动单元工作时,当所述计数值达到了比所述第一阈值小的第二阈值时解除蓄电池温度低的判定。
4.如权利要求1至3中任一项所述的制动控制装置,其特征在于,还包括低温判定解除单元,所述低温判定解除单元解除所述低温判定单元进行的蓄电池温度低的判定,所述低温判定解除单元具有温度测定单元,所述温度测定单元测定车厢内温度;以及室温监视单元,所述室温监视单元在所述车厢内温度为预定值以上的状态持续了预定时间以上时解除蓄电池温度低的判定,所述预定时间是被估计为所述蓄电池上升到所述预定的温度范围的时间。
全文摘要
在混合动力车辆中,当蓄电池温度低时,使蓄电池温度迅速地上升到适当温度并使基于蓄电池的再生能量回收量增大。液压制动单元(20)对分别设置在车辆的各车轮上的轮缸供应工作液而将制动块压在车轮上,由此来产生摩擦制动力。再生制动单元通过对驱动车轮的马达的电力再生来产生再生制动力。蓄电池回收来自马达的电力。低温判定部(120)当蓄电池的温度低于预定的温度范围时判定为蓄电池温度低。蓄电池温度上升部(140)当被判定为蓄电池温度低时,在通过马达或者发动机对车辆的加速过程中通过液压制动单元(20)以及再生制动单元中的至少一者来使车辆产生制动力而使马达的负载增大。其结果是,马达的温度上升。
文档编号B60K6/445GK102481913SQ20098016126
公开日2012年5月30日 申请日期2009年9月3日 优先权日2009年9月3日
发明者中田大辅 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1