驱动力传递装置的制作方法

文档序号:3847689阅读:184来源:国知局
专利名称:驱动力传递装置的制作方法
技术领域
本发明涉及一种应用于电动车辆的驱动系统且在电动机的内侧配置有干式离合器的驱动力传递装置。
背景技术
以往,作为混合驱动力传递装置,例如,如日本国特开2006-137406号公报所示,公知有将发动机、电动机离合器单元及变速器单元连结而成的混合驱动力传递装置。其中的电动机离合器单元在电动机的内侧配置有干式多片离合器。即,电动机离合器单元包括离合器毂,其与发动机的输出轴连结;离合器罩,其用于固定电动机的转子,并且与变速器的输入轴连结;干式多片离合器,其夹设在上述离合器毂与上述离合器罩之间。但是,在以往的混合驱动力传递装置中,在干式多片离合器与电动机之间没有密 封结构。因此,由于使用齿轮、离合器等而产生的磨损粉末等粉尘会进入到电动机的转子、定子侧。并且,在干式离合器的情况下,离合器的接合会使离合器产生较多的磨损粉末,对此,在以往装置中,没有应对来自干式离合器的磨损粉末的结构。因此,存在磨损粉末等粉尘堆积在离合器周边这样的问题。

发明内容
本发明是着眼于上述问题而做成的,其目的在于提供一种能够防止来自离合器室的粉尘进入电动机室并且能够防止粉尘在离合器室内堆积的驱动力传递装置。为了实现上述目的,采用了以下方法在本发明的驱动力传递装置中包括电动机、干式离合器、壳体、粉尘密封构件以及粉尘收集结构。上述电动机以转子轴为中心进行旋转。上述干式离合器配置于上述电动机的内侧位置,用于连接或隔断驱动力传递。上述壳体以覆盖上述电动机和上述干式离合器的方式设置,在内部空间中,将转子轴侧空间作为用于容纳上述干式离合器的摩擦元件的离合器室,将该离合器室的外侧空间作为用于容纳上述电动机的转子和定子的电动机室。上述粉尘密封构件配置于比上述摩擦元件的外周侧交界面、即离合器室分离面靠径向外侧的位置,用于将上述转子与上述壳体的内壁之间密封。上述粉尘收集结构在上述粉尘密封构件的密封面与上述离合器室分离面之间的径向区域中形成有粉尘收集空间。如上所述,将对转子与壳体的内壁之间进行密封的粉尘密封构件配置于比摩擦元件的外周侧交界面、即离合器室分离面靠径向外侧的位置。因此,由来自干式离合器的摩擦元件的磨损粉末等构成的粉尘向用于容纳电动机的转子和定子的电动机室进入被粉尘密封构件阻止。因此,能够防止由于磨损粉末等粉尘进入电动机室侧而导致的摩擦增加、电动机磨损、电动机性能劣化等。
另一方面,设有在粉尘密封构件的密封面与离合器室分离面之间的径向区域中形成粉尘收集空间的粉尘收集结构。受到粉尘密封构件阻挡的粉尘会停留且被收集到密封面与离合器室分离面之间的粉尘收集空间中。由此,能够抑制来自离合器室的粉尘向原离合器室返回,从而能够抑制磨损粉末等粉尘在离合器室内堆积。因此,能够防止由于磨损粉末等粉尘在离合器室侧堆积而导致的制动转矩的增力口、助长花键磨损等。


图I是表示实施例的混合驱动力传递装置(驱动力传递装置的一个例子)的整体概略图。图2是表示实施例的混合驱动力传递装置的电动机离合器单元的多片离合器的结构的主要部分的剖视图。 图3是表示实施例的干式多片离合器的活塞臂的立体图。图4是表示实施例的干式多片离合器的活塞臂的图3的A-A剖视图。图5是表示比较例的混合驱动力传递装置的基本结构的概略说明图。图6是表示实施例的混合驱动力传递装置的基本结构的概略说明图。图7是表示实施例的混合驱动力传递装置的粉尘密封作用和粉尘收集作用的作用说明图。
具体实施例方式下面,根据附图所示的实施例说明用于实现本发明的驱动力传递装置的实施方式。实施例首先,说明结构。图I是表示实施例的混合驱动力传递装置(驱动力传递装置的一个例子)的整体概略图。下面,根据图I说明装置的整体结构。如图I所示,实施例的混合驱动力传递装置包括发动机En、电动机离合器单元MC、变速器单兀T、发动机输出轴I、离合器毂轴2、离合器毂3、离合器罩轴4、变速器输入轴5、离合器罩6、干式多片离合器7、从动缸8以及电动发电机9。另外,用于对干式多片离合器7的接合 分离进行液压控制的从动缸8通常被称为“CSC (Concentric Slave Cylinder 同心从动缸的缩写)”。实施例的混合驱动力传递装置在常开型的干式多片离合器7分离时借助离合器罩6和离合器罩轴4将电动发电机9与变速器输入轴5连结,设为“电动汽车行驶模式”。并且,在利用从动缸8将干式多片离合器7液压接合时,借助减震器21将发动机En与电动发电机9以及发动机输出轴I与离合器毂轴2连结。而且,借助接合起来的干式多片离合器7将离合器毂3与离合器罩6连结,设为“混合动力车行驶模式”。上述电动机离合器单元MC (图I的用剖面线表示的区域)具有干式多片离合器7、从动缸8以及电动发电机9。干式多片离合器7与发动机En以连结的方式连接,连接或隔断来自发动机En的驱动力传递。从动缸8对干式多片离合器7的接合·分离进行液压控制。电动发电机9配置于干式多片离合器7的离合器罩6的外周位置,在电动发电机9与变速器输入轴5之间进行动力的传递。在该电动机离合器单元MC上以利用O型圈10保持密封性的状态设有具有通向从动缸8的第I离合器压力油路85的缸壳体81。上述电动发电机9为同步型交流电动机,具有与离合器罩6设为一体的转子支承架91、支承固定于转子支承架91且嵌入有永磁体的转子92。而且,具有与转子92隔着空气间隙93配置且固定于缸壳体81的定子94和卷绕于定子94的定子线圈95。另外,在缸壳体81上形成有供冷却水流通的水套96。上述变速器单元T与电动机离合器单元MC以连结的方式连接,具有变速器壳体41、V型带式无级变速器机构42、油泵0P。V型带式无级变速器机构42内置于变速器壳体41中,在两个带轮之间架设V型带,通过使带接触直径发生变化来得到无级变速比。油泵OP是用于向需要部位生成液压的液压源,以油泵压作为初压,将用于对通向带轮室的变速液压、离合器液压·制动器液压等进行调压的、来自未图示的控制阀的液压向需要部位引导。在该变速器单元T上还设有前进后退转换机构43、滤油器44、端盖(end plate)45、离合器 单兀箱体46。离合器单兀箱体46与变速器壳体41固定为一体。端盖45具有第2离合器压力油路47。上述油泵OP经由链驱动机构传递变速器输入轴5的旋转驱动转矩而利用泵进行驱动。链驱动机构包括驱动侧链轮51,其伴随变速器输入轴5的旋转驱动而旋转;被动侧链轮52,其驱动泵轴57而使泵轴57旋转;链53,其架设于两链轮51、52。驱动侧链轮51夹设在变速器输入轴5与端盖45之间,借助轴衬55相对于固定于变速器壳体41的定子轴54能够旋转地支承于该定子轴54。而且,经由第I接合器56来传递来自变速器输入轴5的旋转驱动转矩,该第I接合器56花键嵌合于变速器输入轴5,并且利用爪嵌合于驱动侧链轮51。图2是表示实施例的混合驱动力传递装置的电动机离合器单元的多片离合器的结构的主要部分的剖视图。图3是表示干式多片离合器的活塞臂的立体图,图4是表示活塞臂的图3的A-A剖视图。下面,根据图2 图4说明电动机离合器单元MC的干式多片离合器7的结构。上述离合器毂3与发动机En的发动机输出轴I连结。如图2所示,在该离合器毂3上,利用花键结合保持有干式多片离合器7的驱动板71。上述离合器罩6与变速器单元T的变速器输入轴5连结。如图2所示,在该离合器罩6上,利用花键结合保持有干式多片离合器7的从动板72。上述干式多片离合器7通过将多张驱动板71和多张从动板72交替排列在离合器毂3与离合器罩6之间而夹设在离合器毂3与离合器罩6之间。即,通过将干式多片离合器7接合,能够在离合器毂3与离合器罩6之间传递转矩,通过使多片式离合器7分离来隔断离合器毂3与离合器罩6之间的转矩传递。上述从动缸8是控制干式多片离合器7的接合·分离的液压致动器,配置于变速器单元T侧与离合器罩6之间的位置。如图2所示,该从动缸8包括活塞82,其能够滑动地设在缸壳体81的缸孔80中;第I离合器压力油路85,其形成于缸壳体81,对由变速器单元T生成的离合器压力进行引导;缸油室86,其与第I离合器压力油路85连通。在活塞82与干式多片离合器7之间,除活塞臂83以外,如图2所示,还夹设有滚针轴承87、复位弹簧84、推压板88。上述活塞臂83利用来自从动缸8的推压力产生干式多片离合器7的压紧力,能够滑动地设在形成于离合器罩6的通孔61中。复位弹簧84夹设在活塞臂83与离合器罩6之间,由多个蝶形弹簧的组合构成。滚针轴承87夹设在活塞82与活塞臂83之间,用于抑制活塞82伴随着活塞臂83的旋转而连动旋转。推压板88与弹性支承板89设为一体,被离合器罩6弹性支承。由该推压板88和弹性支承板89构成分隔弹性构件,该分隔弹性构件用于对来自活塞臂83的滑动部的泄漏油向干式多片离合器7的流入进行隔断。S卩,该分隔弹性构件具有下述的分隔功能利用被密封固定于离合器罩6的活塞臂安装位置的推压板88和弹性支承板89对配置有从动缸8的湿空间和配置有干式多片离合器7的干空间进行分隔。如图3和图4所示,上述活塞臂83由形成为环状的臂体83a、突出设置于该臂体83a的多个臂销83b及用于将臂销83b固定于上述臂体83a的弹性挡环83c构成。在组装该活塞臂83时,向形成于臂体83a的多个销孔83d中插入臂销83b的销脚83e,使形成于销 脚83e的环状嵌合槽83f成为朝向臂体83a的中心位置的状态。然后,在对弹性挡环83c施加力而使其缩径的状态下,从内表面侧插入,解除施加在弹性挡环83c上的力,利用弹性恢复力使其扩径。由此,使弹性挡环83c嵌合于环状嵌合槽83f,同时将全部的臂销83b固定于臂体83a。如图2所示,实施例的泄漏油回收油路包括第I轴承12、12、第I密封构件31、泄漏油路32、第I回收油路33以及第2回收油路34。即,实施例的泄漏油回收油路是使来自活塞82的滑动部的泄漏油经过被第I密封构件31密封的第I回收油路33及第2回收油路34而返回至变速器单元T的回路。除此以外,实施例的泄漏油回收油路还是使来自活塞臂83的滑动部的泄漏油经过被分隔弹性构件(推压板88、弹性支承板89)密封的泄漏油路32、被第I密封构件31密封的第I回收油路33及第2回收油路34而返回至变速器单元T的回路。上述第I轴承12、12将离合器罩6以能够旋转的方式支承于缸壳体81,为了防止离合器罩6的轴倾斜而设定有一对第I轴承12、12。而且,为了防止离合器罩6相对于缸壳体81发生轴心错位,在缸壳体81与离合器罩6之间不安装除第I轴承12、12以外的夹设件。如图2所示,上述第I密封构件31配置于比分隔弹性构件(推压板88、弹性支承板89)靠泄漏油的流动方向的下游的位置,用于将缸壳体81 (静止构件)与离合器罩6 (旋转构件)的相对面之间密封。该第I密封构件31是利用密封弹性力发挥密封性能的唇形密封结构,利用第I轴承12、12抑制离合器罩6的轴心错位,由此确保稳定的密封性能。如图2所示,上述泄漏油路32形成为贯穿离合器罩6并将由分隔弹性构件(推压板88、弹性支承板89)构成的密封隔断空间与第I回收油路33连通。如图2所示,上述第I回收油路33由缸壳体81与离合器罩6相对的间隙形成。而且,将第I密封构件31和第2回收油路34配置于比活塞82和活塞臂83的滑动部靠外周侧的位置。由此,第2回收油路34成为从活塞82和活塞臂83的滑动部向外周方向延伸的油路。如图2所示,上述第2回收油路34以较短的油路形成于比缸壳体81的第I密封构件31靠下游侧的位置。而且,比第I密封构件31靠上游侧的较长的油路成为由缸壳体81与离合器罩6相对的间隙构成的第I回收油路33。如图2所示,实施例的轴承润滑油路包括滚针轴承20、第2密封构件14、第I轴心油路19、第2轴心油路18以及润滑油路16。该轴承润滑油路利用下述路径进行轴承润滑,即,该路径为使来自变速器单元T的轴承润滑油通过滚针轴承20、将离合器罩6以能够旋转的方式支承于缸壳体81的第I轴承12、12、夹设在活塞82与活塞臂83之间的滚针轴承87并返回至变速器单元T。如图2所示,上述滚针轴承20设定在离合器毂3与离合器罩6在轴向上相对的相对面之间。利用该滚针轴承20来抑制离合器毂3与离合器罩6在轴向上的往复运动并容许离合器毂3与离合器罩6相对旋转。如图2所示,上述第2密封构件14夹设在离合器毂3与离合器罩6之间。利用该第2密封构件14来对轴承润滑油从配置有从动缸8的湿空间向配置有干式多片离合器7 的干空间的流入进行密封。上述第I轴心油路19形成于变速器输入轴5的轴心线位置。上述第2轴心油路18形成于离合器罩6,并与第I轴心油路19连通。上述润滑油路16形成于离合器罩6,经由离合器罩6与离合器毂3之间的间隙17和滚针轴承20与第2轴心油路18连通。接着,根据图2说明对来自电动机离合器单元MC的干式多片离合器7的粉尘进行密封的粉尘密封结构和对来自干式多片离合器7的粉尘进行收集的粉尘收集结构。如图2所示,实施例的粉尘应对结构包括电动发电机9 (电动机)、干式多片离合器7 (干式离合器)、壳体罩60 (壳体)、粉尘密封构件62以及粉尘收集结构63。上述电动发电机9包括转子92,其固定在离合器罩6上,以转子轴CL为中心进行旋转;定子93,其固定于缸壳体81,卷绕有定子线圈95 ;空气间隙93,其是转子92与定子93之间的径向间隙。另外,转子92以两侧的轴向端面被转子支承架91、91夹持的状态固定于离合器罩6的外周面。上述干式多片离合器7配置于电动发电机9的内侧位置,用于连接或隔断来自发动机En的驱动力传递。如图2所示,在与离合器毂轴2连结的离合器毂3上,利用花键结合保持有干式多片离合器7的驱动板71 (摩擦元件)。如图2所示,在固定于离合器罩轴4的离合器罩6上,利用花键结合保持有干式多片离合器7的从动板72 (摩擦元件)。S卩,上述干式多片离合器7是通过在离合器毂3与离合器罩6之间交替排列多张驱动板71与多张从动板72而构成的。上述壳体罩60是壳体构件,其与缸壳体81固定为一体,且用于覆盖电动发电机9和干式多片离合器7 (参照图I)。在通过覆盖该壳体罩60和缸壳体81而形成的内部空间中,将转子轴CL侧空间作为用于容纳干式多片离合器7的离合器室64,将离合器室64的外侧空间作为用于容纳电动发电机9的电动机室65。并且,离合器室64和电动机室65是隔断了油的进入而成的干空间。另外,缸壳体81是被第I轴承12、12支承于离合器罩轴4的静止构件,壳体罩60是被第2轴承13支承于离合器毂轴2的静止构件。上述粉尘密封构件62配置于比驱动板71的外周侧与从动板72的外周侧之间的交界面、即离合器室分离面66靠径向外侧的位置,用于将转子92与壳体罩60的内壁60a之间密封。该粉尘密封构件62安装于被压入到离合器罩6的外周面6a中的环构件67,成为通过弹性材料变形来施加接触压力的唇形密封结构。上述粉尘收集结构63是在粉尘密封构件62的密封面68与离合器室分离面66之间的径向区域B中形成有粉尘收集空间69的结构。基本上,该粉尘收集结构63通过将粉尘密封构件62配置于比离合器罩6靠径向外侧的位置来形成由离合器罩6的外周面6a、粉尘密封构件62以及壳体罩61的内壁61a围成的粉尘收集空间69。实施例的情况下,首先,在壳体罩60上形成有供离合器罩6的轴向顶端部进入的内壁凹部60b,并且在比内壁凹部60b靠径向外侧的位置形成有内壁突起部60c。并且,如图2所示,实施例的粉尘收集结构63利用粉尘密封构件62对位于比内壁凹部60b靠径向外侧的位置进行密封、即、对离合器罩6的外周面6a与壳体罩60的内壁突起部60c之间进行密封。由此,形成了由离合器罩6的外周面6a、环构件67的侧面、粉尘密封构件62、壳体罩60的内壁突起部60c以及内壁凹部60b围成的粉尘收集空间69。 接着,说明作用。首先,进行“比较例的问题”的说明。然后,将实施例的混合驱动力传递装置的作用分为“离合器压力与泄漏油回收的油路设定作用”、“针对来自干式多片离合器的粉尘的粉尘密封作用和粉尘收集作用”、“由从动缸进行的离合器控制作用”、“来自从动缸的泄漏油的回收作用”以及“轴承润滑作用”来进行说明。比较例的问是页图5是表示比较例的混合驱动力传递装置的基本结构的概略说明图。下面,说明比较例的问题。如图5所示,比较例的混合驱动力传递装置包括离合器毂CH,其与发动机En的输出轴连结;离合器罩Ce,其用于固定电动机的转子,并且与变速器T的输入轴连结;干式多片离合器C,其夹设在离合器毂CH与离合器罩CC之间;从动缸SC,其对该干式多片离合器的接合·分离进行控制。比较例的从动缸SC包括活塞P,其能够滑动地设于缸壳体CYH ;分离轴承LB,其设置在该活塞P的顶端部,在分离轴承LB与干式多片离合器C之间设有膜片弹簧DS和压板PP。并且,在控制干式多片离合器C的接合·分离时,利用膜片弹簧DS的施力使干式多片离合器C成为接合状态,利用从动缸SC的液压力使干式多片离合器C成为分离状态。但是,比较例的混合驱动力传递装置是在离合器毂CH与发动机En之间的位置配置从动缸SC的结构、即、按发动机En —从动缸SC —离合器毂CH —干式多片离合器C —离合器罩CC —变速器T的顺序排列的结构。因此,成为在从动缸SC与变速器T之间夹设有离合器毂CH、干式多片离合器C及离合器罩CC且使从动缸SC与变速器T在轴向上分开的布局。因而,即使欲设定用于回收来自从动缸SC的活塞滑动部分的泄漏油并使其返回至变速器T的泄漏油回收油路,在布局上也是困难的。即,在使用高压工作油的从动缸SC的情况下,在构造上,无法完全防止工作油的泄漏。另外,在从动缸SC与变速器T之间的位置形成有不希望来自外部的工作油进入的、用于配置干式多片离合器C、未图示的电动机的干空间。因此,为了从变速器T向从动缸SC供给离合器液压,需要将使用了管等的较长的离合器压力油路101避开干空间102而从壳体的外周绕过。同样,为了使从动缸SC的泄漏油返回至变速器T,需要将使用了管等的较长的回收油路102避开干空间而从壳体的外周绕过。于是,成为从动缸SC与变速器单元T在轴向上分开的布局,将电动机离合器单元用的液压源与变速器单元的液压源彼此独立地设置,从而需要电动机离合器单元专用的液压源。
_7] 离合器压力与泄漏油回收的油路设定作用图6是表示实施例的混合驱动力传递装置的基本结构的概略说明图。下面,说明实施例的离合器压力油路与泄漏油回收油路的设定作用。如图6所示,实施例的电动机离合器单元MC包括离合器毂3,其与发动机En的发动机输出轴I连结;离合器罩6,其与变速器单兀T的变速器输入轴5连结;干式多片离合器7,其夹设在离合器毂3与离合器罩6之间;从动缸8,其用于对该干式多片离合器7的 接合·分离进行控制。并且,在实施例中,从动缸8构成为具有活塞82,其能够滑动地设于缸壳体81 ;活塞臂83,其以贯穿离合器罩6的方式设置。由此,实现了将从动缸8配置在变速器单兀T与离合器罩6之间的位置的布局。这样,通过在变速器单元T与离合器罩6之间的位置配置从动缸8,如图6所示,成为按发动机En —离合器毂3 —干式多片离合器7 —离合器罩6 —从动缸8 —变速器单兀T的顺序排列、并使从动缸8与变速器单元T相邻的结构。因此,为了从变速器单元T向从动缸8供给离合器液压,仅在缸壳体81上形成较短的油路长度的离合器压力油路85即可。同样,能够简单地构成使泄漏油、轴承润滑油返回至变速器单元T的泄漏油回收油路、轴承润滑油路。即,只要采用下述结构即可为了不使泄漏油、轴承润滑油流入干空间中,利用第I密封构件31和第2密封构件14进行阻挡并利用油路、间隙使泄漏油、轴承润滑油返回至变速器单元T。其结果,不必如比较例那样使泄漏油回收油路、轴承润滑油路较长地绕弯,能够容易地设定泄漏油回收油路、轴承润滑油路。针对来自干式多片离合器的粉尘的粉尘密封作用和粉尘收集作用图7是表示实施例的混合驱动力传递装置的粉尘密封作用和粉尘收集作用的作用说明图。下面,根据图7说明针对来自干式多片离合器7的粉尘的粉尘密封作用和粉尘收集作用。在实施例中,如图7所不,将用于对电动发电机9的转子92与壳体罩60的内壁60a之间进行密封的粉尘密封构件62配置于比驱动板71的外周侧与从动板72的外周侧之间的交界面、即离合器室分离面66靠径向外侧的位置,该驱动板71和从动板72作为干式多片离合器7的摩擦元件。因此,当由于干式多片离合器7的驱动板71与从动板72的彼此压接而产生由磨损粉末等构成的粉尘时,受到转子旋转所产生的离心力作用的粉尘会如图7的箭头C所示那样向外径方向移动。但是,向外径方向移动的粉尘如箭头D所示那样进入用于容纳电动发电机9的转子92和定子94等的电动机室65被配置于比离合器室分离面66靠径向外侧的位置的粉尘密封构件62阻止。因此,能够防止由于在离合器室64侧产生的磨损粉末等粉尘进入电动机室65侧而导致的电动发电机9的摩擦增加、磨损、性能劣化等。特别是,在离合器磨损粉末所含有的金属粉末进入了电动机室65中的情况下,对漏电、磁体的影响会变大。另一方面,设有用于在粉尘密封构件62的密封面68与离合器室分离面66之间的径向区域B中形成粉尘收集空间69的粉尘收集结构63。因而,受到粉尘密封构件62阻挡的粉尘会如图7的箭头E所示那样停留且被收集到密封面68与离合器室分离面66之间的粉尘收集空间69中。由此,抑制来自离合器室64的粉尘如图7的箭头F所示那样由于离心力的解除而在重力的作用下向原离合器室64返回,从而抑制磨损粉末等粉尘在离合器室64内堆积。因此,能够防止由于磨损粉末等粉尘堆积到离合器室64侧而引起干式多片离合器7的制动转矩(拖滞转矩)增加、助长驱动板71与从动板72的花键嵌合部的花键磨损等。在实施例中,作为粉尘收集结构63,采用了以下结构将粉尘密封构件62配置于比固定有转子92的离合器罩6靠径向外侧的位置。因此,能够使由磨损粉末等构成的粉尘进入到包含离合器罩6的外周面6a在内的粉尘收集空间69中,并使进入到粉尘收集空间69中的由磨损粉末等构成的粉尘难以返回到离合器室64中。另外,在实施例中,作为粉尘收集结构63,采用了以下结构在壳体罩60上形成有 供离合器罩6的轴向顶端部进入的内壁凹部60b,并且将粉尘密封构件62配置于比内壁凹部60b的位置靠径向外侧的位置。因此,成为借助形成在离合器罩6的轴向顶端部与壳体罩60的内壁凹部60b之间的蔓延间隙空间而成的粉尘的迂回返回结构,从而使进入后的由磨损粉末等构成的粉尘难以返回到离合器室64中。并且,在实施例中,作为粉尘收集结构63,采用了以下结构在比壳体罩60的内壁凹部60b靠径向外侧的位置形成有内壁突起部60c,利用粉尘密封构件62将离合器罩6的外周面6a与壳体罩60的内壁突起部60c之间密封。因此,成为借助形成在离合器罩6的轴向的顶端部、壳体罩60的内壁凹部60b及内壁突起部60c这三者之间的迷宫式的蔓延间隙空间而成的粉尘的迂回返回结构。利用内壁突起部60c与离合器罩6的外周面6a之间的粉尘密封构件62使粉尘密封构件62的密封面68的轴向位置与离合器罩6的外周面6a的轴向位置相对应。其结果,不仅使进入后的由磨损粉末等构成的粉尘更难以返回到离合器室64中,还能够利用内壁突起部60c和粉尘密封构件62来充分地确保用于收集磨损粉末等粉尘的粉尘收集空间69。
_2] 由从动缸进行的离合器控制作用下面,使用图2说明利用从动缸8使干式多片离合器7接合·分离的离合器控制作用。在利用从动缸8将干式多片离合器7接合时,经过形成于缸壳体81上的第I离合器压力油路85向缸油室86供给由变速器单元T生成的离合器液压。由此,将液压和受压面积相乘而得到的液压力作用于活塞82,使活塞82克服被安装在活塞臂83与离合器罩6之间的复位弹簧84的施力而向图2的右方向移动行程。然后,由液压力与施力之差产生的接合力向活塞82 —滚针轴承87 —活塞臂83 —推压板88传递,将驱动板71与从动片72压紧,使干式多片离合器7接合。在使接合状态的干式多片离合器7分离时,若使供给到缸油室86中的工作油经过离合器压力油路85向变速器单元T排出,并使作用于活塞82的液压力降低,则复位弹簧84的施力超过液压力,使活塞臂83向图2的左方向移动行程。由此解除向推压板88传递的接合力,使干式多片离合器7分离。来自从动缸的泄漏油的回收作用如上所述,通过将高压的离合器液压向从动缸8的缸油室86供给,接合干式多片离合器7。因此,由于活塞密封的变形等,不能避免工作油从活塞82的滑动部、活塞臂83的滑动部泄漏。因而,需要使从活塞82的滑动部泄漏出的工作油返回至原变速器单元T而进行回收的泄漏油回收油路、使从活塞臂83的滑动部泄漏出的工作油返回至原变速器单元T而进行回收的泄漏油回收油路。下面,根据图2说明从活塞82的滑动部泄漏出的工作油的泄漏油回收作用和从活塞臂83的滑动部泄漏出的工作油的泄漏油回收作用。首先,说明从活塞82的滑动部泄漏出的工作油的泄漏油回收作用。在行驶时等,离合器罩6旋转时,若工作油自从动缸8的活塞82的滑动部泄漏,则会对泄漏油作用离心力。由于该离心力,如图2的虚线箭头所示,泄漏油在由缸壳体81与离合器罩6的间隙形成的第I回收油路33中向外径方向移动。但是,向外径方向移动的泄漏油被安装在缸壳体81与离合器罩6之间的第I密封部件31密封,防止泄漏油进入配置有电动发电机9、干式多片离合器7的干空间。而且,外径方向的泄漏油经过形成于缸壳体 81的第2回收油路34朝向内径方向之后返回至变速器单元T。来自从动缸8的活塞82的滑动部的泄漏工作油中的、离心力的作用较小而朝向内径方向的一部分泄漏油经过复位弹簧84和第I轴承12、12返回至变速器单元T。因而,能够一边防止来自活塞82的滑动部的泄漏油进入配置有干式多片离合器
7、电动发电机9的干空间,一边将来自活塞82的滑动部的泄漏油回收到变速器单元T。接着,说明从活塞臂83的滑动部泄漏出的工作油的泄漏油回收作用。工作油的一部分进入到活塞臂83的滑动部,工作油向由分隔弹性构件(推压板88、弹性支承板89)分隔而成的密封隔断空间内泄漏。当离心力作用于朝向该密封隔断空间内泄漏的泄漏油时,泄漏油经过贯穿离合器罩6的泄漏油路32,流入由缸壳体81与离合器罩6的间隙形成的第I回收油路33。而且,在离心力的作用下,泄漏油在第I回收油路33中向外径方向移动,经过形成于缸壳体81的第2回收油路34返回至变速器单元T。因而,能够一边防止来自活塞臂83的滑动部的泄漏油进入配置有干式多片离合器7、电动发电机9的干空间,一边将来自活塞臂83的滑动部的泄漏油回收到变速器单元T。轴承润滑作用在实施例的混合驱动力传递装置的情况下,作为轴承,设定有滚针轴承20、第I轴承12、12、滚针轴承87。由于在反复进行干式多片离合器7的接合·分离的行驶过程中向上述轴承作用较大的力,因此需要抑制摩擦热的产生,为了发挥顺畅的支承作用而需要进行轴承润滑。下面,说明对设定在混合驱动力传递装置的湿空间中的各轴承20、12、12、87进行润滑的轴承润滑作用。在行驶时等,若由变速器单元T产生轴承润滑油,则如图2的实线箭头所示,轴承润滑油经过第I轴心油路19 —第2轴心油路18 —间隙17 —滚针轴承20。而且,从被第2密封部件14密封的间隙经过润滑油路16,在润滑油路16的出口位置,流动的路径分支为两条,一条路径经过第I轴承12、12而返回至变速器单元T,另一条路径经过滚针轴承87 —被第I密封部件13密封的形成在缸壳体81与离合器罩6之间的第I回收油路33 —形成于缸壳体81中的第2回收油路34而返回至变速器单元T。因而,能够一边防止由变速器单元T产生的轴承润滑油进入配置有干式多片离合器7、电动发电机9的干空间,一边对滚针轴承20、第I轴承12、12及滚针轴承87进行润滑。而且,在使轴承润滑油返回至变速器单元T时,采用利用了泄漏油回收油路的结构。因此,不仅能够简单地构成轴承润滑结构,还能够将来自活塞82的滑动部的泄漏油与轴承润滑油一起迅速地回收至变速器单元T。以下,说明效果。在实施例的混合驱动力传递装置中,能够获得下述列举的效果。(I)驱动力传递装置包括电动机(电动发电机9),其以转子轴CL为中心进行旋转;干式离合器(干式多片离合器7),其配置于上述电动机(电动发电机9)的内侧位置,用于连接或隔断驱动力传递;壳体(壳体罩60),其以覆盖上述电动机(电动发电机9)和上述干式离合器(干式多片离合器7)的方式设置,在内部空间中,将转子轴侧空间作为用于容纳上述干式离合器(干式多片离合器7)的摩擦元件(驱动板71、从动板72)的离合器室64,将该离合器室64的外侧空间作为用于容纳上述电动机(电动发电机9)的转子92和定子94 的电动机室65 ;粉尘密封构件62,其配置于比上述摩擦元件(驱动板71、从动板72)的外周侧交界面、即离合器室分离面66靠径向外侧的位置,用于将上述转子92与上述壳体(壳体罩60)的内壁60a之间密封;粉尘收集结构63,其用于在上述粉尘密封构件62的密封面68与上述离合器室分离面66之间的径向区域中形成粉尘收集空间69。因此,能够防止来自离合器室64的粉尘向电动机室65进入,并且能够防止粉尘在离合器室64内堆积。(2)上述粉尘收集结构63通过将上述粉尘密封构件62配置于比固定有上述转子92的上述离合器罩6靠径向外侧的位置而形成了由上述离合器罩6的外周面6a、上述粉尘密封构件62以及上述壳体(壳体罩60)的内壁60a围成的粉尘收集空间69。因此,除了上述(I)的效果之外,使进入到粉尘收集空间69的由磨损粉末等构成的粉尘难以返回到离合器室54,从而能够抑制粉尘向离合器室64内堆积。(3)在上述粉尘收集结构63中,在上述壳体(壳体罩60)上形成有供上述离合器罩6的轴向顶端部进入的内壁凹部60b,并且在比上述内壁凹部60b的位置靠径向外侧的位置配置有上述粉尘密封构件62。由此,形成了由上述离合器罩6的外周面6a、上述粉尘密封构件62、上述壳体(壳体罩60)的内壁凹部60b围成的粉尘收集空间69。因此,除了上述(2)的效果之外,使进入到粉尘收集空间69中的由磨损粉末等构成的粉尘更难以返回到离合器室54中,能够有效地抑制粉尘向离合器室64内堆积。(4)在上述粉尘收集结构63中,在比上述壳体(壳体罩60)的上述内壁凹部60b靠径向外侧的位置形成有内壁突起部60c,利用上述粉尘密封构件62对上述离合器罩6的外周面6a与上述壳体(壳体罩60)的内壁突起部60c之间进行密封。由此,形成了由上述离合器罩6的外周面6a、上述粉尘密封构件62、上述壳体(壳体罩60)的内壁突起部60c及内壁凹部60b围成的粉尘收集空间69。因此,除了上述(3)的效果之外,使进入到粉尘收集空间69中的由磨损粉末等构成的粉尘更难以返回到离合器室54中。并且,作为用于收集磨损粉末等粉尘的空间,能够确保由充分的空间构成的粉尘收集空间69。以上,基于实施例说明了本发明的驱动力传递装置,但是,具体结构并不限于该实施例,只要不脱离权利要求书中的各权利要求的发明主旨,就容许设计的变更、追加等。
在实施例中,作为干式离合器,示出了使用干式多片离合器的例子,但是,也可以是使用干式单片离合器等的例子。在实施例中,示出了常开型的干式离合器的例子。但是,也可以是使用膜片弹簧等的常闭型的干式离合器的例子。在实施例中,作为粉尘收集结构63,示出了利用已有的壳体罩60、离合器罩6来形成粉尘收集空间69的例子。但是,例如,也可以形成为通过在已有的壳体罩60、离合器罩6上追加新的零件来形成粉尘收集空间那样的粉尘收集结构。在实施例中,示出了将本发明应用于搭载有发动机和电动发电机且将干式离合器作为行驶模式转换离合器的混合驱动力传递装置的应用例。但是,也可以将本发明应用于如电动汽车、燃料电池车等那样仅搭载有电动发电机来作为驱动源且将干式离合器作为起动离合器的电动机驱动力传递装置。总之,只要是具有在电动机的内侧配置有干式离合器而成的驱动系统的驱动力传递装置,就能够应用本发明。
产业h的可利用件采用本发明的驱动力传递装置,能够防止来自离合器室的粉尘进入电动机室,并且还能够防止粉尘在离合器室内堆积。
权利要求
1.一种驱动力传递装置,其中, 该驱动力传递装置包括 电动机,其以转子轴为中心进行旋转; 干式离合器,其配置于上述电动机的内侧位置,用于连接或隔断驱动力传递; 壳体,其以覆盖上述电动机和上述干式离合器的方式设置,在内部空间中,将转子轴侧空间作为用于容纳上述干式离合器的摩擦元件的离合器室,将该离合器室的外侧空间作为用于容纳上述电动机的转子和定子的电动机室; 粉尘密封构件,其配置于比上述摩擦元件的外周侧交界面、即离合器室分离面靠径向外侧的位置,用于将上述转子与上述壳体的内壁之间密封; 粉尘收集结构,其用于在上述粉尘密封构件的密封面与上述离合器室分离面之间的径向区域中形成粉尘收集空间。
2.根据权利要求I所述的驱动力传递装置,其中, 上述粉尘收集结构通过将上述粉尘密封构件配置于比固定有上述转子的上述离合器罩靠径向外侧的位置而形成了由上述离合器罩的外周面、上述粉尘密封构件以及上述壳体的内壁围成的粉尘收集空间。
3.根据权利要求2所述的驱动力传递装置,其中, 在上述粉尘收集结构中,在上述壳体上形成有供上述离合器罩的轴向顶端部进入的内壁凹部,并且将上述粉尘密封构件配置于比上述内壁凹部的位置靠径向外侧的位置,从而形成了由上述离合器罩的外周面、上述粉尘密封构件以及上述壳体的内壁凹部围成的粉尘收集空间。
4.根据权利要求3所述的驱动力传递装置,其中, 在上述粉尘收集结构中,在比上述壳体的上述内壁凹部靠径向外侧的位置形成有内壁突起部,并且利用上述粉尘密封构件对上述离合器罩的外周面与上述壳体的内壁突起部之间进行密封,从而形成了由上述离合器罩的外周面、上述粉尘密封构件、上述壳体的内壁突起部及内壁凹部围成的粉尘收集空间。
全文摘要
本发明提供一种驱动力传递装置。混合驱动力传递装置包括电动发电机(9)、干式多片离合器(7)、壳体罩(60)、粉尘密封构件(62)以及粉尘收集结构(63)。干式多片离合器(7)配置于电动发电机(9)的内侧位置。壳体罩(60)以覆盖电动发电机(9)和干式多片离合器(7)的方式设置,将内部空间分为离合器室(64)和电动机室(65)。粉尘密封构件(62)配置于比离合器室分离面(66)靠径向外侧的位置,用于将转子(92)与壳体罩(60)的内壁(60a)之间密封。粉尘收集结构(63)用于在粉尘密封构件(62)的密封面(68)与离合器室分离面(66)之间的径向区域中形成有粉尘收集空间(69)。
文档编号B60K6/405GK102906970SQ201180025239
公开日2013年1月30日 申请日期2011年5月17日 优先权日2010年5月21日
发明者桑原卓, 藤井友晴, 石井繁, 大曾根竜也, 西村邦彦 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1