再生控制装置、混合动力汽车及再生控制方法、以及程序的制作方法

文档序号:3847905阅读:90来源:国知局
专利名称:再生控制装置、混合动力汽车及再生控制方法、以及程序的制作方法
技术领域
本发明涉及再生控制装置、混合动力汽车及再生控制方法、以及程序。
背景技术
混合动力汽车设有发动机和电动机,并且,能够通过发动机或电动机进行行驶,或者,能够由发动机和电动机协作而进行行驶。在此,在混合动力汽车减速时,通过利用车轮的旋转力使电动机进行转动,从而能够使电动机作为发电机发挥作用并对混合动力汽车的蓄电池进行充电(将其称为“再生发电”)。这样在电动机进行再生发电时,在电动机中与电动机的再生电力成比例地产生再生转矩。该再生转矩在混合动力汽车减速时作为制动力发挥作用(例如参照专利文献I)。 此时,为了有效地进行由电动机实施的再生发电,而按照下述方式进行控制,即,将发动机和电动机断开,使发动机从混合动力汽车的行驶系统中分离,而使由发动机制动器产生的制动力消失,从而电动机能够以最大的再生转矩(即,最大的再生电力)进行再生发电。另一方面,蓄电池使用镍氢电池等,因此在电力的输入输出被频繁地进行的情况下,由于频繁地进行化学反应而导致蓄电池的温度上升。这样在蓄电池的温度高的情况下,需要进行使再生电力变少的再生发电。因此,在这种情况下进行如下控制,即,将发动机和电动机连接,并将由发动机制动器产生的制动力与由再生转矩产生的制动力之和作为混合动力汽车的制动力,从而将电动机的再生电力抑制为较低。现有技术文献专利文献专利文献I :日本公报、特开2007-223421号

发明内容
现有技术下,对蓄电池的温度预先规定一个阈值,当在减速时的再生中蓄电池的温度超过了该阈值时,进行将发动机和电动机连接从而将电动机的再生电力抑制为较低的控制。通过这样,使得蓄电池的温度上升被结束从而不会对蓄电池带来损伤。但是,由于对蓄电池的再生电力被抑制为较低,因此存在导致蓄电池的充电状态(以下称为“S0C”:Stateof Charge、荷电状态)降低的情况。本发明是在这样的背景下作成的,其目的在于提供一种能够在抑制蓄电池的SOC降低的同时抑制蓄电池的温度上升的再生控制装置、混合动力汽车及再生控制方法、以及程序。本发明的一个观点是作为再生控制装置的观点。本发明的再生控制装置是混合动力汽车的再生控制装置,其中,混合动力汽车设有发动机、电动机、以及对电动机提供电源的蓄电池,并能够通过发动机或电动机进行行驶,或者,能够由发动机和电动机协作而进行行驶,并且,至少在减速过程中能够由电动机进行用于对蓄电池充电的再生发电,在减速时的再生发电中能够将发动机和电动机断开;该再生控制装置设有温度检测部件和控制部件;温度检测部件检测蓄电池的温度;控制部件按照下述方式进行控制在温度检测部件检测出蓄电池的温度为规定温度以上或超过规定温度时,在减速时的再生发电中将发动机和电动机连接;并且,控制部件根据混合动力汽车减速时的齿轮级数来设定规定温度。进而,控制部件能够在温度检测部件检测出蓄电池的温度为规定温度以上或超过规定温度时,按照在减速时的再生发电中将发动机和电动机连接的方式进行控制之后,在温度检测部件检测出蓄电池的温度低于规定温度或为规定温度以下时,按照在减速时的再生发电中将发动机和电动机断开的方式进行控制。 另外,控制部件能够对齿轮比越大的齿轮级数设定越高温度的规定温度。另外,优选成为控制部件将发动机和电动机从被断开状态控制为连接状态时的阈值的规定温度与成为控制部件将发动机和电动机从被连接状态控制为断开状态时的阈值的规定温度,在同一齿轮级数中设定为不同的温度。本发明的另一观点是作为混合动力汽车的观点。本发明的混合动力汽车设有本发明的再生控制装置。本发明的又一观点是作为再生控制方法的观点。本发明的再生控制方法是混合动力汽车的再生控制装置的再生控制方法,其中,混合动力汽车设有发动机、电动机、以及对电动机提供电源的蓄电池,并能够通过发动机或电动机进行行驶,或者,能够由发动机和电动机协作而进行行驶,并且,至少在减速过程中能够由电动机进行用于对蓄电池充电的再生发电,在减速时的再生发电中能够将发动机和电动机断开;该再生控制方法包括温度检测步骤和控制步骤;在温度检测步骤中检测蓄电池的温度;在控制步骤中按照下述方式进行控制在通过温度检测步骤的处理而检测出蓄电池的温度为规定温度以上或超过规定温度时,在减速时的再生发电中将发动机和电动机连接;并且,控制步骤的处理中根据混合动力汽车减速时的齿轮级数来设定规定温度。本发明的又一其他观点是作为程序的观点。本发明的程序使信息处理装置实现本发明的再生控制装置的功能。(发明效果)根据本发明,能够在抑制蓄电池的SOC降低的同时抑制蓄电池的温度上升。


图I是表示本发明实施方式的混合动力汽车的构成例的框图。图2是表示在图I的混合动力ECU中所实现的功能的构成例的框图。图3是表示图2的再生控制部的处理的流程图。图4是表示图2的再生控制部的处理中所使用的上升阈值和下降阈值的图。(符号说明)I...混合动力汽车10...发动机11···发动机 ECU12···离合器13···电动机14···变换器15···蓄电池16···变速器17···电动机 ECU18···混合动力 ECU19. 车轮20温度传感器(温度检测部件)
30...再生控制部(控制部件)
具体实施例方式以下,参照图I 图4对本发明的实施方式的混合动力汽车进行说明。图I是表示混合动力汽车I的构成例的框图。混合动力汽车I是车辆的一例。混合动力汽车I经由半自动变速器的变速设备被发动机(内燃机)10和/或电动机13驱动,从而能够在减速时由电动机13进行再生发电。此时,通过由电动机13的再生发电产生的再生转矩,电动机13能够产生发动机10的发动机制动器那样的制动力。另外,所谓的“半自动变速器”,是指具有与手动变速器相同的构成但又能够自动进行变速操作的变速器(transmission)。混合动力汽车I构成为具有发动机10、发动机EQJ(ElectronicControl Unit、电 子控制单元)11、离合器12、电动机13、变换器(inverter) 14、蓄电池15、变速器16、电动机E⑶17、混合动力E⑶18、车轮19、温度传感器20、钥匙开关21、以及换挡部22。另外,变速器16具有上述的半自动变速器,并由具有前进档(drive range)(以下,记载为“D (Drive)档”)的换挡部22进行操作。当换挡部22处于D档时,半自动变速器的变速操作被自动化。发动机10是内燃机的一例,其由发动机E⑶11控制,发动机10通过使汽油、轻油、CNG(Compressed Natural Gas、压缩天然气)、LPG(Liquefied Petroleum Gas、液化石油气)、或者替代燃料等在其内部进行燃烧而产生使轴旋转的动力,并将所产生的动力传递至离合器12。发动机E⑶11是根据来自混合动力E⑶18的指示而与电动机E⑶17进行联合工作的计算机,其对发动机10的燃料喷射量或配气相位(valve timing)等进行控制。例如,发动机 ECU 11 由 CPU (CentralProcessing Unit、中央处理器)、ASIC (ApplicationSpecific IntegratedCircuit、专用集成电路)、微处理器(微型计算机)、DSP(DigitalSignalProcessor、数字信号处理器)等构成,且内部具有运算部、存储器、以及1/0(输入/输出)端口等。离合器12由混合动力E⑶18控制,并且离合器12将来自发动机10的轴输出功率经由电动机13和变速器16而传递至车轮19。即,离合器12在混合动力E⑶18的控制下,通过将发动机10的旋转轴与电动机13的旋转轴进行机械连接,从而使发动机10的轴输出功率传递至电动机13,或者,通过将发动机10的旋转轴与电动机13的旋转轴之间的机械连接切断,从而使发动机10的轴与电动机13的旋转轴能够以互不相同的转速进行旋转。例如,在混合动力汽车I通过发动机10的动力进行行驶并由此使电动机13发电时、通过电动机13的驱动力而协助发动机10时、以及通过电动机13使发动机10起动时等,离合器12将发动机10的旋转轴与电动机13的旋转轴进行机械连接。另外,例如在发动机10处于停止或怠速状态而混合动力汽车I通过电动机13的驱动力进行行驶时,以及,发动机10处于停止或怠速状态且混合动力汽车I正在减速或者正行驶于下坡路而电动机13正进行发电(进行电力再生)时,离合器12将发动机10的旋转轴与电动机13的旋转轴之间的机械连接切断。另外,离合器12不同于由驾驶员操作离合器踏板而进行动作的离合器,离合器12是根据混合动力E⑶18的控制而进行动作。
电动机13是所谓的电动发电机,其利用从变换器14供给的电力产生使轴旋转的动力,并将其轴输出功率供给至变速器16,或者,利用从变速器16供给的使轴旋转的动力而进行发电,并将其电力供给至变换器14。例如,在混合动力汽车I进行加速时或者以恒速进行行驶时,电动机13产生使轴旋转的动力,并将其轴输出功率供给至变速器16,从而与发动机10协作而使混合动力汽车I行驶。另外,例如在电动机13被发动机10驱动时、或者混合动力汽车I正在减速时或正行驶于下坡路时等,电动机13作为发电机进行工作,该情况下,电动机13利用从变速器16供给的使轴旋转的动力进行发电,并将电力供给至变换器14,从而对蓄电池15进行充电。此时,电动机13产生与再生电力相应大小的再生转矩。变换器14由电动机E⑶17控制,并将来自蓄电池15的直流电压变换为交流电压,或者,将来自电动机13的交流电压变换为直流电压。在电动机13产生动力的情况下,变换器14将蓄电池15的直流电压变换为交流电压并将电力供 给至电动机13。在电动机13进行发电的情况下,变换器14将来自电动机13的交流电压变换为直流电压。即,该情况下,变换器14发挥作为用于对蓄电池15提供直流电压的整流器以及电压调整装置的作用。蓄电池15是能够充放电的二次电池,在电动机13产生动力时蓄电池15经由变换器14向电动机13提供电力,或者,在电动机13进行发电时蓄电池15通过电动机13进行发电而产生的电力而被充电。对于蓄电池15规定适当的SOC(State of Charge、荷电状态)的范围,并按照SOC不脱离该范围的方式被进行管理。变速器16具有根据来自混合动力E⑶18的变速指示信号而选择多个齿轮比(变速比)中任意一个的半自动变速器(未图示),并且,变速器16对变速比进行切换并将变速后的发动机10的动力和/或电动机13的动力传递至车轮19。另外,在进行减速时或者行驶于下坡路时等,变速器16将来自车轮19的动力传递至电动机13。另外,半自动变速器也可以由驾驶员手动操作换挡部22而将齿轮位置变更至任意的齿轮级。电动机E⑶17是根据来自混合动力E⑶18的指示而与发动机E⑶11进行联合工作的计算机,且电动机ECU 17通过对变换器14进行控制而控制电动机13。例如,电动机E⑶17由CPU、ASIC、微处理器(微型计算机)、DSP等构成,且内部具有运算部、存储器、以及I/O端口等。混合动力E⑶18是计算机的一例,为了进行混合动力行驶,混合动力E⑶18获取加速器开度信息、制动器操作信息、车速信息、齿轮级数信息、发动机转速信息、以及荷电状态信息,并根据所获取的这些信息,混合动力ECU 18对离合器12进行控制,并且通过供给变速指示信号而对变速器16进行控制,对电动机ECU 17提供电动机13以及变换器14的控制指示,对发动机E⑶11提供发动机10的控制指示。这些控制指示中,还包含后述的再生控制指示。例如,混合动力E⑶18由CPU、ASIC、微处理器(微型计算机)、DSP等构成,且内部具有运算部、存储器、以及I/O端口等。另外,对于由混合动力E⑶18执行的程序,通过事先保存在混合动力E⑶18内部的非易失性存储器中,从而能够事先安装在作为计算机的混合动力ECU 18中。发动机E⑶11、电动机E⑶17、以及混合动力E⑶18,通过依照CAN (ControlArea Network、控域网络)等标准的总线等而被相互连接。车轮19是向路面传递驱动力的驱动轮。另外,在图I中仅图示了一个车轮19,但实际上,混合动力汽车I具有多个车轮19。温度传感器20是检测蓄电池15的温度的传感器。另外,蓄电池15例如是镍氢电池,蓄电池15的温度的上升是由于伴随着蓄电池15中电力的输入输出的化学反应而产生的。因此,温度传感器20是检测蓄电池15的内部温度的传感器,但是,也可以是通过检测蓄电池15的框体温度或蓄电池15的最为附近的环境温度从而间接地检测蓄电池15的内部温度的传感器。另外,温度传感器的种类可以是任意种类。钥匙开关21是在开始驾驶时由用户插入例如钥匙而变为起动/停止(0N/0FF)的开关,通过钥匙开关21变为起动状态,从而混合动力汽车I的各部起动,通过钥匙开关21变为停止状态,从而混合动力汽车I的各部停止。如已说明的那样,换挡部22向变速器16的半自动变速器提供来自驾驶员的指示,当换挡部22处于D档时,半自动变速器的变速操作被自动化。图2是表示在执行程序的混合动力ECU 18中实现的功能的构成例的框图。即,当·混合动力E⑶18执行程序时,再生控制部30的功能被实现。再生控制部30具有如下功能即,根据齿轮级数信息、蓄电池温度信息、荷电状态信息、加速器开度信息、制动器操作信息、以及车速信息,对发动机ECU 11、离合器12、以及电动机ECU 17提供再生控制的指示。再生控制部30例如根据齿轮级数信息来选择后述的上升阈值或下降阈值,根据蓄电池温度信息来进行离合器断开再生或离合器连接再生的切换控制,根据加速器开度信息、制动器操作信息以及车速信息来进行混合动力汽车I是否处于减速中的判断。接着,参照图3的流程图,对在执行程序的混合动力E⑶18中进行的再生控制的处理进行说明。另外,图3的步骤SI S7的流程为一个周期的处理,只要钥匙开关21为起动状态,便反复执行该处理。在图3的“开始”中,钥匙开关21为起动状态,是混合动力E⑶18执行程序且由混合动力E⑶18实现再生控制部30的功能的状态,程序进入步骤SI。在步骤SI中,再生控制部30对电动机13进行再生发电时的离合器12的断接(断开或连接)状态进行判断。当在步骤SI中判断为离合器12呈断开状态时,程序进入步骤S2。另一方面,当在步骤SI中判断为离合器12呈连接状态时,程序进入步骤S5。在步骤S2中,再生控制部30选择与当前的齿轮级数相对应的上升阈值,然后程序进入步骤S3。另外,关于上升阈值,之后参照图4进行叙述。在步骤S3中,再生控制部30判断蓄电池15的温度是否为上升阈值以上。当在步骤SI中判断为离合器12呈断开状态时,进行再生从而蓄电池15的温度上升。即,在这样蓄电池15的温度上升时,在步骤S2中作为蓄电池15的温度阈值而选择上升阈值,且在步骤S3中将蓄电池15的温度与该上升阈值进行比较。当在步骤S3中判断为蓄电池15的温度为上升阈值以上时,程序进入步骤S4。另一方面,当在步骤S3中判断为蓄电池15的温度低于上升阈值时,程序返回步骤SI。在步骤S4中,再生控制部30使离合器12成为连接状态后使电动机13进行再生发电,从而结束一个周期的处理(结束)。在步骤S5中,再生控制部30选择与当前的齿轮级数相对应的下降阈值,然后程序进入步骤S6。另外,关于下降阈值,之后参照图4进行叙述。
在步骤S6中,再生控制部30判断蓄电池15的温度是否为下降阈值以下。当在步骤S6中判断为蓄电池15的温度为下降阈值以下时,程序进入步骤S7。另一方面,当在步骤S6中判断为蓄电池15的温度超过下降阈值时,程序返回步骤SI。在步骤S7中,再生控制部30使离合器12成为断开状态后使电动机13进行再生发电,从而结束一个周期的处理(结束)。接下来,参照图4对上升阈值和下降阈值进行说明。如图4所示,在齿轮级数二档(2nd)上分别设定上升阈值u2、下降阈值d2。另外,在齿轮级数三档(3rd)上分别设定上升阈值u3、下降阈值d3。另外,在齿轮级数四档(4th)上分别设定上升阈值u4、下降阈值d4。另外,在齿轮级数五档(5th)上分别设定上升阈值u5、下降阈值d5。
关于这些上升阈值u2、u3、u4、u5以及下降阈值d2、d3、d4、d5的大小关系,第一大小关系是u5 < u4 < u3 < u2、d5 < d4 < d3 < d2 ;第二大小关系是d5 < u5、d4 < u4、d3 < u3、d2 < u2。即,在第一大小关系中,上升阈值u2、u3、u4、u5和下降阈值d2、d3、d4、d5双方均
为越是齿轮比大的齿轮级数,其数值越大。以下说明其理由。在混合动力汽车I减速时,对于从车轮19侧对电动机13赋予旋转时的摩擦力,例如在对齿轮比最大的二档和齿轮比最小的五档进行比较时,二档的摩擦力大于五档的摩擦力。这也可以由下述情况获知,即,二档上的发动机制动器的制动力大于五档上的发动机制动器的制动力。因此,在以二档进行减速时,混合动力汽车I的车速在短时间内降低,但是,在以五档进行减速时,混合动力汽车I的车速不会在短时间内降低。因此,越是齿轮比大的齿轮级数,混合动力汽车I减速时的电动机13的再生发电量越少。以蓄电池15的温度的上升率来观察该情况时,越是齿轮比大的齿轮级数,蓄电池15的温度的上升率越小。因此,由于在齿轮比大的齿轮级数上蓄电池15的温度不会急剧地上升,因此即使将上升阈值设定为接近蓄电池15的临界温度的值也没有问题,从而能够设定为比较高的上升阈值。另外,在第二大小关系中,在任意的齿轮级数上,上升阈值均大于下降阈值。该第二大小关系是用于使上升阈值和下降阈值不一致。假定上升阈值和下降阈值一致时,由于蓄电池15的温度在阈值上下的微小变动而发生离合器断开状态和离合器连接状态被频繁转换的被称作模式跳动(mode hunting)的现象,从而在控制方面陷入不理想状态。S卩,为了从离合器断开状态向离合器连接状态切换,需要使发动机10的转速与电动机13的转速同步的工序。此时,在转为离合器连接状态之前,需要将在离合器断开状态下为怠速状态的发动机10的转速提高至比怠速状态更高的转速,以与电动机13的转速同步。在该同步的工序中,导致燃料消耗量的增大。为了避免这样的模式跳动,优选上升阈值和下降阈值不一致。出于这样的考虑,在任意的齿轮级数上均设定为上升阈值大于下降阈值。(关于效果)根据齿轮级数对使离合器12为断开状态的再生和使离合器12为连接状态的再生进行切换时的蓄电池15的温度阈值进行改变,由此能够根据最适合各齿轮级数的蓄电池15的温度条件来实施离合器12的断接(断开或连接)控制。通过这样,能够消除冗长的离合器12的断接控制,从而能够抑制蓄电池15的荷电状态降低,并且能够抑制蓄电池15的
温度上升。另外,通过使离合器12从断开状态转为连接状态时的阈值(上升阈值)与离合器12从连接状态转为断开状态时的阈值(下降阈值)不同,能够避免上述模式跳动的发生。通过这样能够抑制发动机10的燃料消耗量,从而能够使燃料效率良好。(其他实施方式)在图3的流程图的说明中,也可以将“以上”设定为“超过”、“低于”设定为“以下”
等,对判断的边界值进行各种变更。
在图4的例子中,使阈值在所有的齿轮级数(二档 五档)中均不同,但是,图4是为了容易理解说明用的一例,并非将阈值的设定限定于此。即,只要所有的齿轮级数中的至少一级的阈值与其他齿轮级数的阈值不同即可。例如,阈值的设定也可能存在在五档(5th)和四档(4th)上设定为相同阈值等的情况。该情况下,优选将四档的阈值设定为与五档的阈值相同的阈值。即,由于齿轮级数越高(齿轮比越小)则发动机制动器的制动力越小,因此减速所需的时间长从而再生发电量也多。因此,对于蓄电池15的温度的上升率,相比四档而言五档时更高,因此将四档的阈值与五档对应而设定为较低的值是安全的。进而,在混合动力汽车I的货物为一定体积状态且总重量大的情况、以及混合动力汽车I的货物为空积状态且总重量小的情况下,以相同齿轮级数进行了比较时,总重量大的情况下减速需要时间。因此,如上所述,也可以在根据减速时的齿轮级数改变阈值的基础上,在混合动力汽车I的总重量大时将阈值变更为低的值。对发动机10为内燃机的情况进行了说明,但是,发动机10也可以是包括外燃机的热机。另外,对由混合动力E⑶18执行的程序事先被安装在混合动力E⑶18中的情况进行了说明,但是,通过将记录有程序(保存有程序)的可移动介质安装于未图示的驱动器等中,并将从可移动介质中读出的程序保存于混合动力ECU 18内部的非易失性存储器中,或者,通过利用未图示的通信部接收经由有线或无线的传输介质而发送来的程序并保存于混合动力ECU 18内部的非易失性存储器中,从而能够将程序安装于作为计算机的混合动力ECU 18中。另外,各E⑶可以由将这些各E⑶汇总为一个的E⑶来实现,或者,也可以重新设置将各E⑶的功能进一步细化的E⑶。另外,计算机所执行的程序,可以是按照本说明书中说明的顺序呈时序地进行处理的程序,也可以是并行地进行处理或者在进行调用时等必要时刻进行处理的程序。另外,本发明的实施方式并非限定于上述的实施方式,在不脱离本发明主旨的范围内能够进行各种变更。
权利要求
1.ー种再生控制装置,其是混合动カ汽车的再生控制装置,其中,所述混合动カ汽车设有发动机、电动机、以及对所述电动机提供电源的蓄电池,井能够通过所述发动机或所述电动机进行行驶,或者,能够由所述发动机和所述电动机协作而进行行驶,并且,至少在减速过程中能够由所述电动机进行用于对所述蓄电池充电的再生发电,在减速时的再生发电中能够将所述发动机和所述电动机断开, 所述再生控制装置的特征在于 设有温度检测部件和控制部件; 所述温度检测部件检测所述蓄电池的温度; 所述控制部件按照下述方式进行控制在所述温度检测部件检测出所述蓄电池的温度为规定温度以上或超过规定温度时,在减速时的再生发电中将所述发动机和所述电动机连接; 并且,所述控制部件根据所述混合动カ汽车减速时的齿轮级数来设定所述规定温度。
2.如权利要求I所述的再生控制装置,其特征在干, 所述控制部件在所述温度检测部件检测出所述蓄电池的温度为规定温度以上或超过规定温度时,按照在减速时的再生发电中将所述发动机和所述电动机连接的方式进行控制之后,在所述温度检测部件检测出所述蓄电池的温度低于规定温度或为规定温度以下吋,按照在减速时的再生发电中将所述发动机和所述电动机断开的方式进行控制。
3.如权利要求I或2所述的再生控制装置,其特征在于,所述控制部件对齿轮比越大的齿轮级数设定越高温度的所述规定温度。
4.如权利要求I 3中任意一项所述的再生控制装置,其特征在于,成为下述一种情况时的阈值的规定温度和成为下述另ー种情况时的阈值的规定温度,在同一齿轮级数中设定为不同的温度,其中, 所述ー种情况是所述控制部件将所述发动机和所述电动机从被断开状态控制为连接状态的情况; 所述另ー种情况是所述控制部件将所述发动机和所述电动机从被连接状态控制为断开状态的情況。
5.ー种混合动カ汽车,其特征在于设有权利要求I 4中任意一项所述的再生控制装置。
6.ー种再生控制方法,其是混合动カ汽车的再生控制装置的再生控制方法,其中,所述混合动カ汽车设有发动机、电动机、以及对所述电动机提供电源的蓄电池,并能够通过所述发动机或所述电动机进行行驶,或者,能够由所述发动机和所述电动机协作而进行行驶,并且,至少在减速过程中能够由所述电动机进行用于对所述蓄电池充电的再生发电,在減速时的再生发电中能够将所述发动机和所述电动机断开, 所述再生控制方法的特征在于 包括温度检测步骤和控制步骤; 在所述温度检测步骤中,检测所述蓄电池的温度; 在所述控制步骤中按照下述方式进行控制在通过所述温度检测步骤的处理而检测出所述蓄电池的温度为规定温度以上或超过规定温度时,在减速时的再生发电中将所述发动机和所述电动机连接;并且,所述控制步骤的处理中根据所述混合动カ汽车减速时的齿轮级数来设定所述规定温度。
7.ー种程序,其特征在干,使信息处理装置实现权利要求I 4中任意一项所述的再生控制装置的功能。
全文摘要
能够在抑制蓄电池的荷电状态降低的同时抑制蓄电池的温度上升;设有温度传感器(20)和混合动力ECU(18),温度传感器(20)检测蓄电池(15)的温度,混合动力ECU(18)按照下述方式进行控制在温度传感器(20)检测出蓄电池(15)的温度为规定温度以上或超过规定温度时,在减速时的再生发电中将发动机(10)和电动机(13)连接;并且,混合动力ECU(18)根据混合动力汽车(1)减速时的齿轮级数来设定规定温度。
文档编号B60W10/08GK102958776SQ20118003186
公开日2013年3月6日 申请日期2011年10月20日 优先权日2011年1月13日
发明者泽山昭 申请人:日野自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1