油电混合动力汽车及其动力电池温控系统的制作方法

文档序号:3978051阅读:254来源:国知局
专利名称:油电混合动力汽车及其动力电池温控系统的制作方法
技术领域
本实用新型涉及新能源汽车技术领域,特别涉及一种油电混合动力汽车及其动力电池温控系统。
背景技术
目前,动力电池作为汽车主要的储能部件,更是新能源汽车的关键部件,动力电池的好坏决定着新能源汽车的成本及使用性能。车用动力电池在充、放电过程中产生大量的热量,可能引起电池模块内部的单体电池出现热失控现象,并使各单体或模块之间产生非常严重的不均衡现象,从而造成各单体间性能的不匹配,进一步导致电池模块过早失效。因此,需要采取一定的温控措施保证电池系统工作在适宜的温度。·[0004]现有技术中车用动力电池的冷却主要采用自然冷却、风冷和液冷;电池系统的预热主要利用专门的电热加热装置通过导热片将热量传递给电池模块或单体。风冷主要是采用电动风扇在外部对电池包整体或在电池箱体内对密封的整体模块进行吹风,将环境空气和电池箱内的空气进行流通,对电池降温。液冷主要在电池包内部各模块间安装液体冷却片和冷却管道,并加装冷却液驱动设备,利用循环流动的冷却液对电池模块降温。综上所述,现有技术对动力电池的冷却和预热都需要增加额外的相应设备,如力口装风扇、体积较大的通风管道、泵等以驱动冷却介质循环流动;加装电热器以对循环介质加热;加装散热器对冷却液散热。这样,相应增加了系统的结构复杂性,在整车安装空间有限的条件下,需要重新设计安装位置。并且,增加额外的设备需要消耗额外的能量进行驱动,增加整车系统的能量消耗。因此,如何提供一种动力电池温控系统,该装置占据整车空间比较小,且工作能量消耗比较低,是本领域内技术人员亟待解决的技术问题。

实用新型内容本实用新型的目的是提供一种用于油电混合动力汽车的动力电池温控系统。该装置占据整车空间比较小,且工作能量消耗比较低此外,本实用新型还提供了一种包括上述动力电池温控系统的油电混合动力汽车。为解决上述技术问题,本实用新型提供了一种用于油电混合动力汽车的动力电池温控系统,包括内置有电子组件的电池箱,所述电池箱上设有进气口和出气口,外界气体经用于给所述汽车的发动机提供气体的增压系统和设置于车体上的空气压缩系统两者之一后,可连通所述电池箱的进气口。优选地,所述增压系统包括发动机涡轮增压器、空气滤清器和中冷器,当电池箱处于预热状态时,所述增压器的第一进气口连通所述空气滤清器的出气口,所述空气滤清器的进气口连接外界空气;所述增压器的第一出气口连通中冷器的进气口,所述中冷器的出气口连接所述电池箱的进气口。[0011]优选地,所述空气压缩系统包括空气压缩机和储气罐,当所述电池箱处于降温状态时,所述储气罐的出气口连通所述电池箱的进气口。优选地,所述储气罐、所述中冷器、所述电池箱三者连通管道上设置有三通电控阀;当所述电池箱处于预热状态时,所述中冷器的出气口与所述电池箱的进气口通过所述三通电控阀连通,所述储气罐与所述电池箱的连通管路断开;当所述电池箱处于降温状态时,所述储气罐的出气口与所述电池箱的进气口通过所述三通电控阀连通,所述中冷器与所述电池箱的连通管路断开。优选地,还包括检测所述中冷器的出口气体温度T2和压强P2、空气压缩机的出口气体温度T3和压强P3、电子组件的平均温度Tm、外界大气压力Pa各信号的检测模块和控制模块;所述控制模块根据各所述信号,发送控制指令于所述三通电控阀,以控制所述三通电控阀的相应阀口的开启或关闭。优选地,所述控制模块包括电池管理系统BMS、发动机电子控制单元E⑶和整车控制器HCU ;三者之间通过CAN总线实现数据传输。 优选地,靠近所述电池箱的进气口管路上设置有空气干燥器,对进入电池箱的空气进行干燥和过滤。优选地,所述电池箱的出气口与外界连通管道上还设置有单向阀,以便气体由所述出气口流向外界,并防止外界空气直接回流至电池箱中。本实用新型中利用汽车整机自身所具有的增压系统或/和空气压缩系统为电池箱中的电子组件提供预热或冷却所需的高温或低温气体,与现有技术设置风扇、冷却液管道等部件相比,本实用新型所提供的动力电池温控系统中用于换热的气体经增压系统或/和空气压缩系统后,气体的压力均高于大气压力,也就是说通入电池箱的进气口的气体为高压气体,因此电池箱进气口和出气口之间存在一定的气体压力差,在该压力差的作用下,气体自动由进气口流向出气口,气体在流动过程中完成与电池组内部的电子组件的热量传递,从而对电子组件充分起到热交换的作用。本实用新型的动力电池温控系统充分利用了整车自身的配套设备为电池箱提供具有一定压力的换热气体,能够减小对整车空间的占据,减轻整车整体重量,符合整车设计原则,并且,利用高压气体的压力驱动气体在电池箱内自动流动,无需设置额外的换热气体驱动设备,可以减少能量的消耗。另外,本实用新型中的动力电池温控系统可以完全利用空气对电子组件进行加热和冷却,可以完全避免现有技术中的冷却液泄漏问题。在上述动力电池温控系统的基础上,本实用新型还提供了一种油电混合动力汽车,包括车架以及设置于所述车架上的动力电池温控系统,所述动力电池温控系统为上述任一项所述的动力电池温控系统。由于,本实用新型提供的油电混合动力汽车具有上述技术效果的动力电池温控系统,故该汽车也应具有上述动力电池温控系统的上述技术效果。

图I为本实用新型所提供的一种具体实施例中动力电池温控系统的结构示意图;图2为本实用新型所提供的一种具体方式中动力电池温控系统的控制模块的框图。其中,图I中附件名称与标号之间的--对应关系如下所示空气滤清器I、增压器2、中冷器3、发动机4、空气压缩机5、空气干燥器6、储气罐
7、三通电控阀8、空气干燥器9、电池箱10、单向阀11、电子组件12。
具体实施方式
本实用新型的核心为提供一种动力电池温控系统,该装置占据整车空间比较小,且工作能量消耗比较低。此外,本实用新型还提供了一种用于上述动力电池温控系统的油电混合动力汽车。为了使本领域的技术人员更好地理解本实用新型的技术方案,
以下结合附图和具体实施例对本实用新型作进一步的详细说明。
·[0028]请参考图1,图I为本实用新型所提供的一种具体实施例中动力电池温控系统的结构示意图。本实用新型提供了一种混合动力汽车用动力电池温控系统,包括内置有电子组件12的电池箱10,本文中所述的电子组件12主要与參是指车用动力电池单体、模块和相关电子元件,电池箱10上设有进气口和出气口,外界气体经用于给所述汽车的发动机4提供气体的增压系统和设置于车体上的空气压缩系统两者之一后,可连通所述电池箱10的进气口 ;一般地,进入发动机4的增压系统和空气压缩系统中的气体均为经过过滤的比较清洁的气体。本实用新型中利用汽车整机自身所具有的增压系统或/和空气压缩系统为电池箱10中的电子组件12提供预热或冷却所需的高温或低温气体,与现有技术设置风扇、冷却液管道等部件相比,本实用新型所提供的动力电池温控系统中用于换热的气体经增压系统或/和空气压缩系统后,气体的压力均高于大气压力,也就是说通入电池箱10的进气口的气体为高压气体,因此电池箱10进气口和出气口之间存在一定的气体压力差,在该压力差的作用下,气体自动由进气口流向出气口,气体在流动过程中完成与电池组内部的电子组件12的热量传递,从而对电子组件12充分起到热交换的作用。 本实用新型的动力电池温控系统充分利用了整车自身的配套设备为电池箱10提供具有一定压力的换热气体,能够减小对整车空间的占据,减轻整车整体重量,符合整车设计原则,并且,利用高压气体的压力驱动气体在电池箱10内自动流动,无需设置额外的换热气体驱动设备,可以减少能量的消耗。另外,本实用新型中的动力电池温控系统可以完全利用空气对电子组件12进行加热和冷却,可以完全避免现有技术中的冷却液泄漏问题。一般地,增压系统包括空气滤清器I、增压器2、中冷器3等部件,常使用的增压器为涡轮增压器2,外界气体经空气滤清器I过滤后,成为清洁的气体,可以有效避免对涡轮增压器2以及发动机4内部的污染,该气体经过涡轮增压器2增压以后,气体压力增加近I倍,且温度升高,成为高温、高压气体,一般情况下,-io°c的气体经过增压器增压以后可以接近100°C。高温高压的气体经增压器2与中冷器3之间的连通管道进入中冷器3,经过中冷器3冷却以后,气体的温度可以保持在10°C至40°C之间,且其压力大约为I. 5MPa到2MPa,这样的气体适合用于给电池箱10内部的电子组件12进行预热和保温。在第一种具体实施方式
中,当所述电池箱10处于预热状态时,所述增压器的第一进气口连通空气滤清器I的出气口,空气滤清器I的进气口连通外界空气;增压器2的出气口连通中冷器3的进气口,所述中冷器3的出气口连接所述电池箱10的进气口。也就是说,当检测到电池箱10内部的电子组件12温度比较低时,可以连通中冷器3和电池箱10的进气口,利用中冷器3中的温暖的高压气体对电池箱10内部的电子组件12进行预热或保温,使电子组件12在达到适宜温度后再进行工作。在该实施方式中经中冷器3的气体可以对电子组件12的温控起到良好的效果,换热效率比较高,并且该系统中几乎无需增加其他部件,对现有产品的改造成本比较小。在环境温度适宜的情况下,如40°C以下,电池组件可以正常进行工作,但是在使用过程中需要经常进行大功率充电和放电脖,这时电池组件12会产生发热,因此为了保证电子组件12的正常工作,就需要对其进行冷却降温,在第一种具体实施方式
的基础上,下面 给出了动力电池温控系统的两种实现电子组件12冷却降温的具体实施方式
。在第二种具体实施方式
中,动力电池温控系统还可以包括第一换热器,当所述电池箱10处于冷却状态时,所述增压器2的第一出气口连通所述第一换热器的第一工作口,所述第一换热器的第二工作口连接所述电池箱10的进气口,且所述第一换热器的第三工作口、第四工作口分别连接冷源出口、冷源回路;冷源可以来自于给发动机4降温处理的水源。该实施方式只需增加第一换热器即可实现增压器气体对电池箱10内部电子组件12的降温处理。在第三种具体实施方式
中,空气压缩系统包括空气压缩机5和储气罐7,一般地,该系统中进入压缩机5的温度相对低的气体是预先经过空气滤清器I过滤的清洁气体,气体经压缩机5压缩后,其压力可以达到6至8倍的大气压,压缩气体暂存储于储气罐7中。当电池箱10处于冷却状态时,储气罐7的出气口连通电池箱10的进气口 ;低温压缩空气在自身高压驱动下,快速流向电池箱10内部,对电子组件12进行冷却降温,使电子组件12的温度保持在安全范围内。在第三种具体实施方式
的基础上,动力电池温控系统还可以在储气罐7、中冷器
3、电池箱10三者连通管道上设置三通电控阀8 ;当电池箱10处于预热状态时,中冷器3的出气口与电池箱10的进气口通过三通电控阀8连通,储气罐7与电池箱10的连通管路断开;当电池箱10处于冷却状态时,所述储气罐7的出气口与所述电池箱10的进气口通过所述三通电控阀8连通,中冷器3与电池箱10的连通管路断开。该方式可以简化管路设计,通过三通电控阀8可以简单实现各状态下管路的连通和断开以及通过控制阀门开度调节气体的流量,并且易于实现系统的自动化控制。在第四种优选的实施方式中,动力电池温控系统还可以包括第二换热器,所述空气压缩系统包括空气压缩机5和储气罐7,当电池箱10处于冷却状态时,所述储气罐7的出口连通电池箱10的进气口 ;当所述电池箱10处于预热状态时,储气罐7的第一出气口连通所述第二换热器的第一工作口,所述第二换热器的第二工作口连接所述电池箱10的进气口,且所述第二换热器的第三工作口、第四工作口分别连接热源出口、热源回路。上述第二换热器可以根据具体使用情况进行选择换热参数,且上述热源可以为汽车发动机4系统的热水源或发动机4的高温尾气。请参考图2,图2为本实用新型提供了一种混合动力汽车用动力电池温控系统,包括内置有电子组件12的电池箱10,本文中所述的电子组件12主要是指车用动力电池单体、模块和相关电子元件,电池箱10上设有进气口和出气口,外界气体经用于给所述汽车的发动机4提供气体的增压系统和设置于车体上的空气压缩系统两者之一后,可连通所述电池箱10的进气口 ;一般地,进入发动机4的增压系统和空气压缩系统中的气体均为经过过滤的比较清洁的气体。本实用新型中利用汽车整机自身所具有的增压系统或/和空气压缩系统为电池箱10中的电子组件12提供预热或冷却所需的高温或低温气体,与现有技术设置风扇、冷却液管道等部件相比,本实用新型所提供的动力电池温控系统中用于换热的气体经增压系统或/和空气压缩系统后,气体的压力均高于大气压力,也就是说通入电池箱10的进气口的气体为高压气体,因此电池箱10进气口和出气口之间存在一定的气体压力差,在该压力差的作用下,气体自动由进气口流向出气口,气体在流动过程中完成与电池组内部的电子组 件12的热量传递,从而对电子组件12充分起到热交换的作用。本实用新型的动力电池温控系统充分利用了整车自身的配套设备为电池箱10提供具有一定压力的换热气体,能够减小对整车空间的占据,减轻整车整体重量,符合整车设计原则,并且,利用高压气体的压力驱动气体在电池箱10内自动流动,无需设置额外的换热气体驱动设备,可以减少能量的消耗。另外,本实用新型中的动力电池温控系统可以完全利用空气对电子组件12进行加热和冷却,可以完全避免现有技术中的冷却液泄漏问题。一般地,增压系统包括空气滤清器I、增压器2、中冷器3等部件,常使用的增压器为涡轮增压器2,外界气体经空气滤清器I过滤后,成为清洁的气体,可以有效避免对涡轮增压器2以及发动机4内部的污染,该气体经过涡轮增压器2增压以后,气体压力增加近I倍,且温度升高,成为高温、高压气体,一般情况下,-io°c的气体经过增压器增压以后可以接近100°C。高温高压的气体经增压器2与中冷器3之间的连通管道进入中冷器3,经过中冷器3冷却以后,气体的温度可以保持在10°C至40°C之间,且其压力大约为I. 5MPa到2MPa,这样的气体适合用于给电池箱10内部的电子组件12进行预热和保温。在第一种具体实施方式
中,当所述电池箱10处于预热状态时,所述增压器的第一进气口连通空气滤清器I的出气口,空气滤清器I的进气口连通外界空气;增压器2的出气口连通中冷器3的进气口,所述中冷器3的出气口连接所述电池箱10的进气口。也就是说,当检测到电池箱10内部的电子组件12温度比较低时,可以连通中冷器3和电池箱10的进气口,利用中冷器3中的温暖的高压气体对电池箱10内部的电子组件12进行预热或保温,使电子组件12在达到适宜温度后再进行工作。在该实施方式中经中冷器3的气体可以对电子组件12的温控起到良好的效果,换热效率比较高,并且该系统中几乎无需增加其他部件,对现有产品的改造成本比较小。在环境温度适宜的情况下,如40°C以下,电池组件可以正常进行工作,但是在使用过程中需要经常进行大功率充电和放电,这时电池组件12会产生发热,因此为了保证电子组件12的正常工作,就需要对其进行冷却降温,在第一种具体实施方式
的基础上,下面给出了动力电池温控系统的两种实现电子组件12冷却降温的具体实施方式
。在第二种具体实施方式
中,动力电池温控系统还可以包括第一换热器,当所述电池箱10处于冷却状态时,所述增压器2的第一出气口连通所述第一换热器的第一工作口,所述第一换热器的第二工作口连接所述电池箱10的进气口,且所述第一换热器的第三工作口、第四工作口分别连接冷源出口、冷源回路;冷源可以来自于给发动机4降温处理的水源。该实施方式只需增加第一换热器即可实现增压器气体对电池箱10内部电子组件12的降温处理。在第三种具体实施方式
中,空气压缩系统包括空气压缩机5和储气罐7,一 般地,该系统中进入压缩机5的温度相对低的气体是预先经过空气滤清器I过滤的清洁气体,气体经压缩机5压缩后,其压力可以达到6至8倍的大气压,压缩气体暂存储于储气罐7中。当电池箱10处于冷却状态时,储气罐7的出气口连通电池箱10的进气口 ;低温压缩空气在自身高压驱动下,快速流向电池箱10内部,对电子组件12进行冷却降温,使电子组件12的温度保持在安全范围内。在第三种具体实施方式
的基础上,动力电池温控系统还可以在储气罐7、中冷器
3、电池箱10三者连通管道上设置三通电控阀8 ;当电池箱10处于预热状态时,中冷器3的出气口与电池箱10的进气口通过三通电控阀8连通,储气罐7与电池箱10的连通管路断开;当电池箱10处于冷却状态时,所述储气罐7的出气口与所述电池箱10的进气口通过所述三通电控阀8连通,中冷器3与电池箱10的连通管路断开。该方式可以简化管路设计,通过三通电控阀8可以简单实现各状态下管路的连通和断开以及通过控制阀门开度调节气体的流量,并且易于实现系统的自动化控制。在第四种优选的实施方式中,动力电池温控系统还可以包括第二换热器,所述空气压缩系统包括空气压缩机5和储气罐7,当电池箱10处于冷却状态时,所述储气罐7的出口连通电池箱10的进气口 ;当所述电池箱10处于预热状态时,储气罐7的第一出气口连通所述第二换热器的第一工作口,所述第二换热器的第二工作口连接所述电池箱10的进气口,且所述第二换热器的第三工作口、第四工作口分别连接热源出口、热源回路。上述第二换热器可以根据具体使用情况进行选择换热参数,且上述热源可以为汽车发动机4系统的热水源或发动机4的高温尾气。请参考图2,图2为本实用新型所提供的一种具体方式中动力电池温控系统的控制模块的框图。在第三种具体实施方式
的基础上,动力电池温控系统还可以包括检测中冷器3的出口气体温度T2和压强P2、空气压缩机5的出口气体温度T3和压强P3、电子组件的平均温度Tm、外界大气压力Pa各信号的检测模块和控制模块;控制模块根据各所述信号,发送控制指令于所述三通电控阀8,以控制所述三通电控阀8的相应阀口的开启或关闭;为了描述技术方案的方便,请结合图1,三通电控阀8包括a、b、c三个阀口,分别通过管路连接储藏罐7的出气口、电池箱10的进气口以及中冷器3的出气口,控制模块根据上述温度和压力参数分别可以发送控制指令K1、K2、K3控制各阀门之间的连通和断开,例如,当控制模块发送控制指令Kl时,阀门a和b接通,两者与c断开;当发送控制指令K2时,阀门b和c接通,a关闭;当发送控制指令K3时,阀门a、b、c均关闭;该设置方式有利于实现系统的自动化控制。具体地,控制模块包括电池管理系统BMS、发动机电子控制单元E⑶和整车控制器HCU,三者之间通过CAN总线实现数据传输;其中,E⑶可以采集并接收中冷器3的出口气体温度T2、压强P2以及大气压力Pa ;HCU可以采集并接收空气压缩机5的出口气体温度T3和压强P3 ;各电子组件的温度以及电池箱内的气体压力Ps由BMS采集;该设置方式中数据传输效率比较高。上述各实施例中,靠近所述电池箱10的进气口管路上设置有空气干燥器9,空气干燥器9可以进一步干燥进入电池箱10中的高压气体,可以使进入电池箱10内部的气体直接接触各电子组件12的表面,对电池模块或单体以及内部部件进行热交换,有利于提高气体与电子组件12两者之间的热交换效率。当然,还可以在空气压缩机5和储气罐7之间设置第一空气干燥器6,用于进一步 干燥系统内的气体。进一步地,上述各实施例中电池箱10的出气口与外界连通管道上还设置有单向阀11,以便气体由出气口流向外界;该设置方式中,当电池箱10内部的气体压力大于出气口处大气压力时,单向阀11的阀门开启;单向阀11 一般处于常闭状态,只有当电池箱10内部气体压力减小至大气压力时,单向阀11的阀门关闭,从而避免了出气口外部的气体和灰尘进入电池箱10内部,防止对电池箱10内部的污染和腐蚀实用新型所提供的一种具体方式中动力电池温控系统的控制模块的框图。在第三种具体实施方式
的基础上,动力电池温控系统还可以包括检测中冷器3的出口气体温度T2和压强P2、空气压缩机5的出口气体温度T3和压强P3、电子组件的平均温度Tm、外界大气压力Pa各信号的检测模块和控制模块;控制模块根据各所述信号,发送控制指令于所述三通电控阀8,以控制所述三通电控阀8的相应阀口的开启或关闭;为了描述技术方案的方便,请结合图1,三通电控阀8包括a、b、c三个阀口,分别通过管路连接储藏罐7的出气口、电池箱10的进气口以及中冷器3的出气口,控制模块根据上述温度和压力参数分别可以发送控制指令K1、K2、K3控制各阀门之间的连通和断开,例如,当控制模块发送控制指令Kl时,阀门a和b接通,两者与c断开;当发送控制指令K2时,阀门b和c接通,a关闭;当发送控制指令K3时,阀门a、b、c均关闭;该设置方式有利于实现系统的自动化控制。具体地,控制模块包括电池管理系统BMS、发动机电子控制单元E⑶和整车控制器HCU,三者之间通过CAN总线实现数据传输;其中,E⑶可以采集并接收中冷器3的出口气体温度T2、压强P2以及大气压力Pa ;HCU可以采集并接收空气压缩机5的出口气体温度T3和压强P3 ;各电子组件的温度以及电池箱内的气体压力Ps由BMS采集;该设置方式中数据传输效率比较高。上述各实施例中,靠近所述电池箱10的进气口管路上设置有空气干燥器9,空气干燥器9可以进一步干燥进入电池箱10中的高压气体,可以使进入电池箱10内部的气体直接接触各电子组件12的表面,对电池模块或单体以及内部部件进行热交换,有利于提高气体与电子组件12两者之间的热交换效率。当然,还可以在空气压缩机5和储气罐7之间设置第一空气干燥器6,用于进一步干燥系统内的气体。[0071]进一步地,上述各实施例中电池箱10的出气口与外界连通管道上还设置有单向阀11,以便气体由出气口流向外界;该设置方式中,当电池箱10内部的气体压力大于出气口处大气压力时,单向阀11的阀门开启;单向阀11 一般处于常闭状态,只有当电池箱10内部气体压力减小至大气压力时,单向阀11的阀门关闭,从而避免了出气口外部的气体和灰尘进入电池箱10内部,防止对电池箱10内部的污染和腐蚀。在上述动力电池温控系统的基础上,本文还提供了本实用新型还提供了一种油电混合动力汽车,包括车架以及设置于所述车架上的动力电池温控系统,所述动力电池温控系统为上述任一实施例所述的动力电池温控系统。由于,本实用新型提供的油电混合动力汽车具有上述技术效果的动力电池温控系统,故该油电混合动力汽车也应具有上述油电混合动力电池温控系统的上述技术效果。以上对本实用新型所提供的一种油电混合动力汽车及动力电池温控系统进行了详细介绍。本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以对本实用新型进行若干改进和修饰,这些改进和修饰也落入本实用新型权利要求的保护范围内。
权利要求1.一种用于油电混合动力汽车的动力电池温控系统,包括内置有电子组件(12)的电池箱(10),其特征在于,所述电池箱(10)上设有进气口和出气口,外界气体经用于给所述汽车的发动机(4)提供气体的增压系统和设置于车体上的空气压缩系统两者之一后,可连通所述电池箱(10)的进气口。
2.根据权利要求I所述的动力电池温控系统,其特征在于,所述增压系统包括发动机涡轮增压器(2)、空气滤清器(I)和中冷器(3),当电池箱(10)处于预热状态时,所述增压器(2)的第一进气口连通所述空气滤清器(I)的出气口,所述空气滤清器(I)的进气口连接外界空气;所述增压器(2)的第一出气口连通中冷器(3)的进气口,所述中冷器(3)的出气口连接所述电池箱(10)的进气口。
3.根据权利要求2所述的动力电池温控系统,其特征在于,所述空气压缩系统包括空气压缩机(5)和储气罐(7),当所述电池箱(10)处于降温状态时,所述储气罐(7)的出气口连通所述电池箱(10)的进气口。
4.根据权利要求3所述的动力电池温控系统,其特征在于,所述储气罐(7)、所述中冷器(3)、所述电池箱(10)三者连通管道上设置有三通电控阀(8);当所述电池箱(10)处于预热状态时,所述中冷器(3)的出气口与所述电池箱(10)的进气口通过所述三通电控阀(8)连通,所述储气罐(7)与所述电池箱(10)的连通管路断开;当所述电池箱(10)处于降温状态时,所述储气罐(7)的出气口与所述电池箱(10)的进气口通过所述三通电控阀(8)连通,所述中冷器(3)与所述电池箱(10)的连通管路断开。
5.根据权利要求4所述的动力电池温控系统,其特征在于,还包括检测所述中冷器的出口气体温度T2和压强P2、空气压缩机的出口气体温度T3和压强P3、电子组件的平均温度Tm、外界大气压力Pa各信号的检测模块和控制模块;所述控制模块根据各所述信号,发送控制指令于所述三通电控阀(8),以控制所述三通电控阀(8)的相应阀口的开启或关闭。
6.根据权利要求5所述的动力电池温控系统,其特征在于,所述控制模块包括电池管理系统BMS、发动机电子控制单元E⑶和整车控制器HCU ;三者之间通过CAN总线实现数据传输。
7.根据权利要求I所述的动力电池温控系统,其特征在于,靠近所述电池箱(10)的进气口管路上设置有空气干燥器(9),对进入电池箱的空气进行干燥和过滤。
8.根据权利要求I至7任一项所述的动力电池温控系统,其特征在于,所述电池箱(10)的出气口与外界连通管道上还设置有单向阀(11),以便气体由所述出气口流向外界,并防止外界空气直接回流至电池箱中。
9.一种油电混合动力汽车,包括车架以及设置于所述车架上的动力电池温控系统,其特征在于,所述动力电池温控系统为权利要求I至8任一项所述的动力电池温控系统。
专利摘要本实用新型提出了一种油电混合动力汽车及其动力电池温控系统。该温控系统包括内置有电子组件(12)的电池箱(10),电池箱(10)上设有进气口和出气口,外界气体经用于给汽车的发动机(4)提供气体的增压系统和设置于车体上的空气压缩系统两者之一后,可连通所述电池箱(10)的进气口;本实用新型的动力电池温控系统充分利用了整车自身的配套设备为电池箱提供加热和冷却气源,能够省去电池系统必需的专用加热和冷却设备,减小对整车空间的占据,符合整车设计原则,并且,利用高压气体的压力驱动气体在电池箱内自动流动,无需设置额外的换热动力部件,可以减少能量的消耗,降低汽车的使用成本。
文档编号B60W20/00GK202686356SQ201220410460
公开日2013年1月23日 申请日期2012年7月27日 优先权日2012年7月27日
发明者韩尔樑, 张守中, 刘信奎, 潘凤文, 张芳 申请人:潍柴动力股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1