混合动力车辆的起动和发电系统的制作方法

文档序号:11809952阅读:217来源:国知局
混合动力车辆的起动和发电系统的制作方法与工艺

本发明涉及混合动力车辆的起动和发电系统。更具体地,本发明涉及混合动力车辆的起动和发电系统,其可满足大容量电动机的需要,并且解决使用单个大容量电动机时关于布局方面的限制和由于施加到发动机轴的负荷增大而对大容量电动机的应用造成限制的问题。



背景技术:

通常,混合动力车辆使用发动机和电动机作为驱动源来行驶,是同时使用由矿物燃料产生的能和电能来行驶的环保车辆,因而减少废气并提高燃料效率。

图1为示出根据现有技术的混合动力车辆的动力系配置的图,其示出装有驱动电动机和变速器的安装变速器的电动设备(transmission-mounted-electric-device,TMED)型的动力系的配置。如图1所示,混合动力车辆的动力系的配置包括:串联布置作为驱动车辆的驱动源的发动机1和驱动电动机3;发动机离合器2,其插入发动机1和驱动电动机3之间以在发动机1和驱动电动机3之间传递或阻断动力;改变来自发动机1和驱动电动机3的动力并传递动力至驱动轴5的变速器4;以及与发动机1连接以传递动力的起动-发电机(starter-generator,例如集成式起动发电机(ISG)或混合起动发电机(HSG))6。

具体地,发动机离合器2被配置成当接合(锁定)或分离(打开)时,在发动机1和驱动电动机3之间传递或阻断动力。作为车辆的动力源(例如,电动力源)运转的电池8通过逆变器7连接至驱动电动机3和起动-发电机6进行充电和放电,并且逆变器7被配置成将来自电池8的直流电(DC)转化为三相交流电(AC)然后施加三相交流电至驱动电动机和起动-发电机以使驱动电动机3和起动-发电机6运转。

不像具有内燃发动机的普通车辆,其中起动电动机和发电机独立 安装,在混合动力车辆中起动-发电机6为执行起动电动机(起动机)和发电机(交流发电机)集成功能的设备。起动-发电机6被配置成运转时通过皮带9传递动力至发动机1来起动发动机1,或使用从发动机传递的旋转力产生电力,并且用产生电力运转所产生的电能对电池8充电。换言之,当模式从电动车辆(EV)模式变为混合动力电动车辆(HEV)模式时,发动机需要被起动,其中所述电动车辆模式为混合动力车辆通过使用驱动电动机3的动力行驶的纯电动车辆模式,所述混合动力电动车辆模式中混合动力车辆使用发动机1的动力和驱动电动机3的动力两者行驶,在这种情况下,使用起动-发电机6。

由于起动-发电机6的滑轮6A通过皮带9与曲轴皮带轮1A连接以传递动力,所述曲轴皮带轮1A安装到发动机1的曲轴(C/S),起动-发电机6作为电动机运转并且被配置成通过皮带9传递旋转力至曲轴,以起动发动机。当发动机运转时,起动-发电机6被配置成通过皮带9接收发动机1的旋转力,即曲轴的旋转力,并且作为发电机被操作以产生电能并对电池8充电。

当车辆停止时(例如,车辆制动器接合),起动-发电机6作为发电机运转并且使用通过皮带9从发动机1传递的旋转力产生电能,并且因此,进行用于对电池8充电的能量再生。电能,其储存在如上所述的电池8中,用于使驱动电动机3被操作以驱动车辆。

在本说明书下文中,包括混合动力车辆的起动-发电机和动力传递机构(power transmission mechanism)的配置,称为混合动力车辆的起动和发电系统,其中动力传递机构连接起动-发电机与发动机以在起动-发电机和发动机之间传递动力。同时,现有技术中的起动和发电系统使用包括如上所述的皮带和滑轮的动力传递机构,并且采用以皮带连接发动机和起动-发电机的动力传递方法。

然而,皮带传递方法在可控制性方面有缺点,并且在用于管理电池充电状态水平的电池充电过程中,由于皮带的拉紧或打滑(例如滑动等的发生)而造成的传递效率的恶化会造成车辆整体效率的恶化。具体地,由于随着起动-发电机的功能增加到不仅仅是用于起动发动机的起动电动机的功能,而且还增加到串联模式的功能,其中起动-发电机使发动机运转并且使用发动机动力产生电力以使用电力使驱动电动 机运转,起动-发电机的运转范围变宽,所以需要用大容量电动机作为起动-发电机。

在大型车辆(例如,卡车)的情况下,需要起动-发电机尺寸的增大和电动机容量的增大,但由于因施加到发动机各种类型轴的横向负荷的增大而造成的限制以及发动机皮带系统布局方面的限制,使用尺寸增大的单个电动机以及满足大型车辆的需要存在难度。

在本部分公开的上述信息仅用于加强对本发明背景的理解,因此可包含不形成本领域技术人员已知的现有技术的信息。



技术实现要素:

本发明提供一种混合动力车辆的起动和发电系统,其可改善对预定模式,如发动机起动模式、串联驱动模式和普通行驶模式的可控制性,有效满足对大容量电动机的需求,并且解决当使用单个大容量电动机时关于布局方面的限制或由于施加到发动机轴的负荷增大而对大容量电动机的应用造成限制的问题。

一方面,本发明提供一种混合动力车辆的起动和发电系统,其被配置成在混合动力车辆中起动发动机并通过接收发动机的旋转力而产生电力,所述混合动力车辆包括发动机、驱动电动机和被布置用以在发动机和驱动电动机之间传递或阻断动力的发动机离合器。具体地,起动和发电系统可包括:起动-发电机,其被配置成,当起动-发电机作为电动机运转时,传递旋转力至发动机以起动发动机,并且可通过接收发动机的旋转力作为发电机运转;通过接收发动机的旋转力作为发电机运转的电动-发电机(motor-generator);行星齿轮机构,其连接发动机、起动-发电机和电动-发电机以在发动机、起动-发电机和电动-发电机之间传递旋转力;第一制动器和第二制动器,其被配置成选择性地使行星齿轮机构的旋转组件之中连接至起动-发电机和电动-发电机的旋转组件作为固定组件运转;以及被配置成操纵起动-发电机、电动-发电机、第一制动器和第二制动器的控制器。

在示例性实施例中,在行星齿轮机构的旋转组件之中,太阳齿轮可连接至起动-发电机的旋转轴,环形齿轮可连接至电动-发电机的旋转轴,而整体耦接并支撑小齿轮的支座可连接至发动机的旋转轴。当 发动机起动时,控制器可被配置成,输出用于使连接至环形齿轮的第二制动器耦接的控制信号以使环形齿轮作为固定组件运转,并且输出用于使连接至太阳齿轮的第一制动器分离的控制信号以将起动-发电机的旋转力传递至发动机。控制器还可被配置成,当发动机停止并且发动机离合器分离时,输出用于使第一制动器和第二制动器两者均分离的控制信号。

另外,当发动机运转并且发动机离合器接合时,车辆通过使用发动机和驱动电动机的旋转力运转时,控制器可被配置成,输出用于使连接至太阳齿轮的第一制动器耦接的控制信号以使太阳齿轮作为固定组件运转,并且输出用于使连接至环形齿轮的第二制动器分离的控制信号以通过发动机的旋转力使电动-发电机在无负荷状态下旋转。

此外,控制器可被配置成执行串联驱动模式控制,所述串联驱动模式控制操纵发动机,以使得基于发动机转速而选择的起动-发电机和电动-发电机中的一个或两者使用发动机的旋转力作为发电机运转,并且使用所产生的电力使驱动电动机运转。控制器可被配置成,当发动机转速为预定参考速度或更低时使起动-发电机作为发电机运转,并且当发动机转速大于参考速度时,使起动-发电机和电动-发电机均作为发电机运转。

另外,控制器可被配置成输出用于使第一制动器和第二制动器运转的控制信号,从而当发动机转速为预定参考速度或更小时,行星齿轮机构的旋转组件之中连接至起动-发电机的旋转组件旋转,并且连接至电动-发电机的旋转组件作为固定组件运转。控制器还可被配置成输出用于使第一制动器和第二制动器运转的控制信号,从而当发动机转速超过参考速度时,连接至起动-发电机和电动-发电机的旋转组件均旋转。

附图说明

现在将参考在附图中示出的具体示例性实施例详细地描述本发明的上述内容和其他特征,附图仅以举例说明的方式给出,因此不是对本发明的限制,其中:

图1为示出根据现有技术的混合动力车辆的动力系配置的图;

图2为示出根据本发明示例性实施例的包括起动和发电系统的混合动力车辆的动力系配置的图;

图3至图7为用于说明根据本发明示例性实施例的起动和发电系统的控制模式的图;

图8和图9为用于说明根据本发明示例性实施例的起动和发电系统的效果的图。

附图中所示的参考下文进一步讨论的下列组件的附图标记包括:

1:发动机

2:发动机离合器

3:驱动电动机

4:变速器

5:驱动轴

7:逆变器

8:电池

10:行星齿轮机构

11:太阳齿轮

12:环形齿轮

13:支座

14:第一制动器

15:第二制动器

21:起动-发电机

22:电动-发电机

应当理解,附图不一定按比例绘制,其表示说明本发明基本原理的各种示例性特征的某种程度上的简化表达。在此公开的本发明的具体设计特征,例如包括具体的尺寸、方向、位置和形状,将部分地由特定的预期应用和使用环境确定。在所有附图中,相同的附图标记指代本发明的相同或等同部件。

具体实施方式

应当理解,在此使用的术语“车辆”或“车辆的”或其他相似的术语总体上包括机动交通工具在内,例如乘用车,包括运动型多用途车 (SUV)、公共车辆、卡车、各类商用车,包括各种各样船只和轮船的水运工具,飞机等,还包括混合动力车辆、电动车辆、插电式混合动力电动车辆、氢动力车辆和其他替代燃料车辆(如非石油资源衍生的燃料)。在此提及的混合动力车辆是具有两种或更多动力源的车辆,例如既有汽油动力又有电动力的车辆。

尽管示例性实施例被描述为采用多个单元执行示例性方法,但应当理解,示例性方法还可通过一个或多个模块执行。另外,应当理解,术语控制器/控制单元指包括存储器和处理器的硬件设备。存储器被配置成存储模块,而处理器被具体地配置成执行所述的模块以进行下面进一步描述的一种或更多方法。

在此使用的术语仅用于描述具体的实施例的目的,并不是希望限制本发明。除非上下文另外清楚地表明,在此使用的单数形式“一种/个(a/an)”、以及“该”也包括复数形式。应当进一步理解,当在本说明书中使用时,术语“包含”和/或“包括”限定了所述特征、整数、步骤、操作、要素、和/或部件的存在,但不排除一个或更多个其他特征、整数、步骤、操作、要素、部件和/或其集合的存在或添加。在此使用的术语“和/或”包括了一个或更多个相关所列术语的任何和所有组合。

以下将详细参照在附图中示出并在下文描述的本发明的各种实施例。尽管将结合示例性实施例描述本发明,但应当理解,本说明书并非希望将本发明限制于那些示例性实施例中。相反地,本发明不仅希望包括示例性实施例,而且还包括各种替代、修改、等同物和其他实施例,其可包括在权利要求所限定的本发明的精神和范围内。

以下将参考附图详细描述本发明的示例性实施例,从而使本发明所属领域的技术人员可以容易地实施示例性实施例。

图2为示出根据本发明示例性实施例的混合动力车辆的起动和发电系统以及动力系的配置的图。如图所示,在根据本发明的起动和发电系统中,行星齿轮机构10可代替如现有技术中所使用的皮带传递机构,用作发动机1和电动机21及22之间的动力传递机构,用于起动发动机和产生电力。

根据本发明的起动和发电系统可包括起动-发电机21和电动-发电 机22,作为被配置成起动发动机和产生电力的小容量电动机,其与发动机1连接以使用行星齿轮机构10传递动力。具体地,两个小容量电动机均可被配置成代替单个大容量电动机执行起动电动机和发电机的集成功能。换言之,不同于现有技术中使用的用以满足大容量需求的大容量起动-发电机(例如,大容量电动机),提供并使用可充当起动电动机和发电机的所述两个小容量电动机。在材料成本、生产成本和包装配置方面,使用两个小容量电动机来起动发动机和产生电力比使用一个容量与所述两个组合电动机相同的大容量电动机(例如,现有技术中的大容量起动-发电机)更有利。

当描述配置时,在根据本发明的起动和发电系统中,行星齿轮机构10,像典型配置一样,可包括,太阳齿轮11、外部与太阳齿轮11接合的小齿轮(未示出)、内部与小齿轮接合的环形齿轮12以及整体耦接并支撑小齿轮的支座13。具体地,行星齿轮机构10的旋转组件为太阳齿轮11、环形齿轮12和支座13。旋转组件之中,太阳齿轮11和环形齿轮12可通过制动器14和15分别与车辆内的固定结构连接,以充当选择性固定的组件。

以下在本说明书中,插入太阳齿轮11和车辆内的固定结构之间的制动器14被称为第一制动器,而插入环形齿轮12和车辆内的固定结构之间的制动器15被称为第二制动器。支座13可连接至发动机1的旋转轴以在支座13和发动机1之间传递旋转力,而太阳齿轮11可连接至起动-发电机21的旋转轴以在太阳齿轮11和起动-发电机21之间传递旋转力。

环形齿轮12可连接至电动-发电机22的旋转轴以在环形齿轮12和电动-发电机22之间传递旋转力。起动-发电机21和电动-发电机22可通过逆变器7连接至车辆中的电池8进行充电和放电,并且当起动-发电机21和电动-发电机22通过行星齿轮机构10接收发动机动力而作为发电机运转时,由发电产生的电能可通过逆变器7传送至电池8并且然后可储存在电池8中(电池充电),或可用于使驱动电动机3运转。

当来自电池8的直流电(DC)转化为三相交流电(AC),并且然后三相交流电施加到起动-发电机21(电池放电)时,起动-发电机21 可被操作以通过行星齿轮机构10传递动力至发动机1,从而起动发动机1。具体地,如下文将描述,两个电动机中的一个,即,起动-发电机21可用于起动发动机1。在图2所示的动力系配置中,由于驱动电动机3、发动机1之间的发动机离合器2和变速器4以及驱动电动机3与现有技术中的那些并无差异,所以将省略其描述。

上文已经对根据本发明示例性实施例的起动和发电系统的配置进行了描述。如上所述,根据示例性实施例的起动和发电系统可包括起动-发电机21和电动-发电机22、设置在发动机1、起动-发电机21和电动-发电机22之间用以在其间传递动力的行星齿轮机构10、以及设置在行星齿轮机构10和固定结构之间并且充当摩擦构件的第一制动器14和第二制动器15。

在起动和发电系统的配置中,可基于来自控制器(未示出)的控制信号,执行起动-发电机21和电动-发电机22的运转以及第一制动器14和第二制动器15的运转。具体地,控制器可以是单个集成控制组件,但也可基于预定控制模式通过来自多个控制器的协同控制执行起动和发电系统的各个组件。

起动和发电系统的控制模式可包括停止模式、发动机起动模式、串联驱动模式(series driving mode)和普通行驶模式。首先,停止模式可以是当车辆停止时的模式,其为发动机停止、进行再生制动或车辆滑行的状态,并且可以是当发动机1与其他驱动系统(例如,驱动电动机和变速器)分离,即,发动机离合器2分离时所执行的模式。如图3所示,在停止模式中,发动机1、起动-发电机21和电动-发电机22可被操作以处于停止状态,而第一制动器14和第二制动器15可被操作处以于分离状态。

此外,图4为说明发动机起动模式、即用于起动发动机的控制模式的图。第二制动器15和第一制动器14可分别处于耦接状态和分离状态,以起动发动机,并且起动-发电机21可被操作以起动发动机1。在发动机起动模式中,由于第二制动器15耦接(例如处于耦接状态),连接至第二制动器15的环形齿轮12变为固定组件,太阳齿轮11变为输入组件,而支座13变为输出组件。

因此,当起动-发电机21运转时,驱动动力可通过太阳齿轮11、 小齿轮和支座13传递至发动机1,从而起动发动机。具体地,可基于下列等式通过行星齿轮机构确定提供至发动机的转矩和速度。

转矩:提供至发动机的转矩=(1+R)×起动-发电机转矩

速度:发动机转速=1/(1+R)×起动-发电机速度

其中,R表示环形齿轮和太阳齿轮的传动比(减速比),即,环形齿轮的齿数/太阳齿轮的齿数。

此外,图5为说明串联驱动模式的图,其中起动-发电机被操作以为串联驱动目的产生电力。具体地,串联驱动可以是这样一种模式,其中发动机1被操作以通过行星齿轮机构10传递发动机动力至起动-发电机和电动-发电机,以使起动-发电机和电动-发电机运转来产生电力,并且与此同时,驱动电动机3可被起动-发电机和电动-发电机产生的电力驱动。

在本发明中,串联驱动模式可包括两种模式,即,第一串联驱动模式和第二串联驱动模式,并且图5示出第一串联驱动模式。第一串联驱动模式为当在起动-发电机21的运转速度范围内的区域中执行串联驱动时所执行的控制模式。在发动机1起动并且然后运转的状态中,第二制动器15可被操作以处于耦接状态,第一制动器14可被操作以处于分离状态,起动-发电机21可被操作以产生电力,而电动-发电机22可被操作以处于停止状态。

在第一串联驱动模式中,由于第二制动器15耦接(例如处于耦接状态),连接至第二制动器15的环形齿轮12变为固定组件,支座13变为输入组件,而太阳齿轮11变为输出组件。因此,在发动机1运转的状态中,发动机动力可通过支座13、小齿轮和太阳齿轮11传递至起动-发电机21,并且被配置成接收发动机动力的起动-发电机21产生电力以产生电能,因此,可对电池8充电或可通过由起动-发电机21产生的电力使驱动电动机3运转。具体地,可基于下列等式通过行星齿轮机构确定用于产生电力的发动机转矩和发动机转速。

转矩:用于产生电力的发动机转矩=(1+R)×起动-发电机转矩

速度:发动机转速=1/(1+R)×起动-发电机速度

此外,图6示出第二串联驱动模式,即,其中起动-发电机可被操作以为串联驱动的目的产生电力的串联驱动模式。当发动机转速为预定参 考速度或更低时可执行第一串联驱动模式,而当发动机转速超过参考速度时,可执行第二串联驱动模式。

第二串联驱动模式为当需要输出等于或大于起动-发电机21的输出量时所执行的控制模式。当发动机1起动并且然后运转时,第一制动器14和第二制动器15可分离,并且起动-发电机21和电动-发电机22均可被配置成产生电力。在第二串联驱动模式中,当第一制动器14和第二制动器15分离时,支座13变为输入组件,而太阳齿轮11和环形齿轮12变为输出组件。

因此,当发动机1运转时,发动机动力可通过支座13、小齿轮、太阳齿轮11和环形齿轮12同时传递至起动-发电机21和电动-发电机22,并且被配置成接收发动机动力的起动-发电机21和电动-发电机22均产生电动力以产生电能,因此,可对电池8充电或可通过由起动-发电机21和电动-发电机22产生的电力使驱动电动机3运转。具体地,可基于下列等式通过行星齿轮机构确定用于产生电力的发动机转矩和发动机转速。

转矩:用于产生电力的发动机转矩=起动-发电机转矩+电动-发电机转矩

速度:发动机转速=R/(1+R)×电动-发电机速度+1/(1+R)×起动-发电机速度

如上所述,在发动机起动模式中提供驱动转矩以起动发动机的电动机可以是起动-发电机,并且在串联驱动模式中,用于产生电力的输出可主要用起动-发电机来满足(例如,第一串联驱动模式),并且当用于产生电力的输出不足时,可附加使用电动-发电机(例如,第二串联驱动模式)。

图7为说明普通行驶模式的图。普通行驶模式为其中当发动机不是通过起动-发电机21和电动-发电机22运转时,可使用发动机1和驱动电动机3的驱动动力使车辆运转的模式。在普通行驶模式中,当发动机1运转并且发动机离合器2接合时,第一制动器14可被操作以处于耦接状态,而第二制动器15可被操作以处于分离状态。具体地,由于第一制动器14耦接(例如处于耦接状态),太阳齿轮11变为固定组件。连接至太阳齿轮11的起动-发电机21处于停止状态,并且电动- 发电机22不包括在发动机控制之中。换言之,由于第二制动器15处于分离状态,当发动机动力通过支座13、小齿轮和环形齿轮12传递至电动-发电机22时,电动-发电机22可被配置成在行星齿轮机构10对速度的限制之下在无负荷状态保持空转。具体地,发动机转速和电动-发电机速度间的关系可基于下列等式。

速度:(1+R)×发动机转速=R×电动-发电机速度

如上所述,根据本发明的混合动力车辆的起动和发电系统可基于选自如下的模式不同地运转:停止模式、发动机起动模式、串联驱动模式和普通行驶模式。

根据本发明的起动和发电系统可使用两个小容量电动机用于起动发动机和产生电力,并且此,能够更有效满足对大容量电动机的需求并且解决当使用单个大容量电动机时关于布局方面的限制或由于施加到发动机轴的负荷增大而对大容量电动机的应用造成限制的问题。

图8为说明根据本发明的系统的效果的图。当用于起动发动机和产生电力的电动机的规格(specification)增大时,电动机的尺寸增大,并且可难以配置发动机皮带系统的布局,但通过使用如本发明所述的具有相对小容量的两个电动机可以解决这些问题。

例如,在现有技术中,当用于起动发动机和产生电力的电动机的容量需要增大时,如图8所示电动机的尺寸也增大,因此,由于皮带的布局,可能难以或不可能安装电动机。然而,在本发明中,由于提供了具有同样容量的两个较小尺寸的电动机,并且行星齿轮机构可代替皮带用作传递动力至发动机的动力传递机构,上述问题可得到解决,并且当使用皮带传递机构的其他部件安装到发动机而需要所述皮带时,能够更容易地配置皮带的布局。

图9为说明根据本发明的系统的效果的另一个图。在现有技术中,当确定用于起动发动机和产生电力的电动机的规格时,需要用单个电动机同时满足起动发动机所需要的规格和串联驱动所需要的规格两者,因此,存在这样的问题,即,即使只增大所述两种规格需求中的一者,电动机的规格整体上仍会被过度增大。

然而,在本发明中,通过使用如图8所示的具有相同规格的两个电动机(例如,起动-发电机和电动-发电机),基于行星传动比能够独 立地满足高转矩区和高速度区,因此,能够降低由于使用大容量电动机带来的材料成本和生产成本。具体地,已被开发用于小型车辆的电动机可用于大型车辆,从而降低开发成本和材料成本。

如图8所示,由于用于起动发动机和产生电力的电动机需要满足关于如下的共四种规格:起动发动机所需要的速度1-1、起动发动机所需要的转矩1-2、串联驱动所需要的输出2-1和串联驱动所需要的速度2-2,所以电动机的规格可被过度增大。

然而,在本发明中,由于当起动-发电机21只满足电动机所需要的规格之中关于转矩的规格时是可接受的,所以关于速度的规格可显著降低,并且由于当电动-发电机22满足关于速度和输出的规格时是可接受的,所以关于转矩的规格可显著降低。

如上所述,根据本发明,能够在使用行星齿轮机构的同时,通过具有同样规格的两个电动机满足对大容量电动机的规格需要。因此,根据本发明的混合动力车辆的起动和发电系统使用两个小容量电动机,其中所述小容量电动机可基于选自停止模式、发动机起动模式、串联驱动模式和普通行驶模式的模式不同地运转,并且可起动发动机以及产生电力,因此,能够有效满足对大容量电动机的需要并且解决应用单个大容量电动机时关于布局方面的限制或由于施加到发动机轴的负荷增大而对大容量电动机的应用造成限制的问题。

已参考示例性实施例详细地描述了本发明。然而,本领域技术人员应当理解,可在不偏离本发明的原理和精神、权利要求和它们的等同物所限定的范围的情况下对这些实施例做出改变。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1