车辆的制作方法

文档序号:11227906阅读:871来源:国知局
车辆的制造方法与工艺

本发明涉及具备旋转电机(电动机、发电机及/或电动发电机)的车辆,例如涉及具备适合适用于电动机动车、混合动力机动车、燃料电池机动车等电动车辆的旋转电机的车辆。



背景技术:

在专利文献1中公开了一种混合动力车辆,其具备发动机、由该发动机驱动的发电用发电机、驱动用电动机及作为电能的积蓄机构的蓄电池(专利文献1的图1)。

在该专利文献1所公开的混合动力车辆中,除了进行基于制动踏板的操作量及来自车辆速度控制机构的减速要求指令来控制制动装置而使车辆减速的制动控制以外,还附加所述驱动用电动机的再生转矩作为制动力来进行再生协调制动。

在专利文献1所公开的混合动力车辆中,还在所述驱动用电动机的再生运转时,将通过所述驱动用电动机的再生运转而产生的再生能量作为电能蓄积于所述蓄电池。但是在根据所述蓄电池的充电状态而所述蓄电池无法吸收所述驱动用电动机的再生能量,从而无法得到所期望的减速度的情况下,以如下方式进行控制:将所述发电用电动机控制成q轴电流=0、d轴电流<0,使所述蓄电池未吸收完的所述驱动用电动机的再生能量成为所述发电用电动机的热损失来吸收剩余的电能,由此得到所期望的减速度{专利文献1的段落[0019]、图3(a)、图3(b)}。

在先技术文献

专利文献

专利文献1:日本特开2003-134602号公报

发明要解决的课题

在专利文献1中,通过控制发电用电动机的d轴电流(d轴电流<0)而能够增大多余的电力消耗,但发电用电动机及驱动该发电用电动机的驱动装置(电力转换装置)的温度相应地上升,例如在非常长的下坡道下坡的情况下,有时发电用电动机或驱动装置的温度达到限制温度。

在专利文献1中,对于发电用电动机的温度达到限制温度的情况的控制没有任何记载,存在改良的余地。

另外,在专利文献1中,由于控制成d轴电流<0,因此存在电枢磁通成为退磁方向的磁通且永久磁铁退磁这一课题。而且,当电枢磁通成为退磁方向的磁通时,转子的径向方向及转子的轴向方向的磁约束力降低,因此发电用电动机的nv(噪声和振动)特性恶化。



技术实现要素:

本发明考虑这样的课题而提出,其不使nv特性恶化,通过所述旋转电机就能够消耗该车辆中产生的多余的电力。另一方面,其目的在于提供一种车辆,在所述多余的电力的消耗中,在所述旋转电机的温度或驱动装置的温度超过了它们的阈值温度的情况下,能够抑制对车辆行为带来影响的情况,且能够防止所述旋转电机或所述驱动装置的过热。

用于解决课题的方案

本发明的具备旋转电机的车辆具备:蓄电装置;驱动装置,其能够向直流与交流的双方向进行转换;旋转电机,其与所述驱动装置的交流侧连接,并且输出轴与负载连接;电压转换器,其低压侧与所述蓄电装置连接且高压侧与所述驱动装置的直流侧连接,该电压转换器使所述蓄电装置的电压升压,并将该升压电压通过所述驱动装置向所述旋转电机施加;以及控制装置,其对所述驱动装置、所述旋转电机及所述电压转换器进行控制,所述车辆的特征在于,所述控制装置以与用于使所述旋转电机产生规定的驱动力的最小的电流值不同的第一电流值驱动该旋转电机,从而通过所述旋转电机消耗多余的电力,并且,在所述旋转电机的温度或所述驱动装置的温度超过阈值温度时,所述控制装置以比所述第一电流值小的第二电流值驱动所述旋转电机,来减小所述旋转电机消耗的电力。

根据本发明,在车辆内产生了多余的电力(剩余电力)时,在旋转电机的温度及驱动装置的温度为阈值以下的不高的温度的状况下,在非效率区域(成为与用于使旋转电机产生规定的驱动力的最小的电流值不同的电流值的区域)下扩大所述旋转电机的运转范围,由此能够通过所述旋转电机消耗在该车辆中产生的多余的电力。另一方面,在通过所述旋转电机消耗所述多余的电力的过程中,在所述旋转电机的温度或所述驱动装置的温度超过它们的阈值温度的情况下,减少所述旋转电机消耗的电力,由此能够防止所述旋转电机或所述驱动装置的过热。

在该情况下,也可以是,所述控制装置在将向旋转电机供给的相电流从所述第一电流值向所述第二电流值变更时,在等转矩线上使相电流减小。由于在所述等转矩线上使相电流减小,因此能够将旋转电机的轴端转矩(在输出轴上产生的转矩)保持为恒定,且使旋转电机的消耗电力可变。

另外,也可以是,所述控制装置通过所述电压转换器使所述蓄电装置的电压升压,从而扩大所述旋转电机的运转范围,在扩大后的所述运转范围内,以使向所述旋转电机供给的电流成为所述第一电流值的方式驱动所述旋转电机,并且,在所述旋转电机的温度或所述驱动装置的温度超过阈值温度时,所述控制装置降低所述升压电压而使所述运转范围缩小,在缩小后的所述运转范围内,以使向所述旋转电机供给的电流成为所述第一电流值的方式驱动所述旋转电机。

通过控制升压电压,能够对运转范围的扩大、缩小进行控制,因此在旋转电机的温度或驱动装置的温度超过阈值温度时降低升压电压,由此能够减小向旋转电机供给的相电流(即,能够使运转点转移,使得电流变小),因此能够抑制使运转点转移时的控制的复杂化。

需要说明的是,优选的是,在所述车辆中产生的多余的电力为制动用的再生电力且该再生电力无法由所述旋转电机全部消耗的情况下,所述控制装置通过机械制动器来分担由无法消耗的量的再生电力产生的制动力。这样,在本车辆产生的多余的电力为制动用的再生电力的情况下,由所述旋转电机的动力运转引起的电力消耗来担保由再生电力产生的制动力,且仍然不足的量由机械制动器弥补,因此制动力被确保。另外,由于在等转矩线上控制所述旋转电机,因此对车辆行为的影响被抑制。

另外,也可以是,所述旋转电机的温度为构成该旋转电机的励磁线圈的温度或对所述旋转电机进行冷却的冷却介质的温度,所述驱动装置的温度为构成该驱动装置的半导体开关元件的温度。能够简单且准确地反映旋转电机的温度或驱动装置的温度。

更具体而言,通过由增强励磁控制引起的动作来进行所述旋转电机的运转范围的扩大。由于采用d轴电流为正值的增强励磁控制(非效率控制),因此能够防止与旋转电机的温度上升相伴的永久磁铁的退磁。由于为增强励磁控制(非效率控制),因此即使磁铁成为高温,也不对磁铁施加去磁磁场而施加磁化的方向的磁场,因此磁铁退磁的耐性提高。另外,在增强励磁控制中,转子的磁铁与电枢的线圈之间的磁所引起的吸引力升高,因此能够抑制转子的旋转方向及轴向这双方向的移动,且旋转电机的nv特性、进而车辆的nv特性提高。

本发明优选适用于如下车辆:所述驱动装置为第一驱动装置,所述负载为内燃机,所述旋转电机为第一旋转电机,所述车辆还具备:第二旋转电机,其负载为车轮;以及第二驱动装置,其交流侧与所述第二旋转电机连接,且直流侧与所述电压转换器的高压侧连接,在所述车辆中产生的多余的电力为所述第二旋转电机产生的再生电力的一部分或全部

即、本发明能够适合适用于混合动力车辆。根据本发明,能够将机械制动器的介入抑制为最小限度,能够长期间使用机械制动器的摩擦件。若使用期间与通常相同即可的话,则能够减小机械制动器的摩擦件。

发明效果

根据本发明,在车辆内产生了多余的电力(剩余电力)时,在旋转电机的温度及驱动装置的温度为阈值以下的不高的温度的状况下,在非效率区域下扩大所述旋转电机的运转范围。由此,能够通过所述旋转电机消耗在该车辆中产生的多余的电力。

在该情况下,转子侧的磁铁与定子侧的电枢的磁吸引力增加,因此转子的轴的向轴向的移动被抑制,能够相应地提高nv特性。

另一方面,在通过所述旋转电机消耗所述多余的电力的过程中,在所述旋转电机的温度或所述驱动装置的温度超过它们的阈值温度的情况下,在非效率区域下减小所述升压电压而使所述旋转电机的运转范围缩小,来减少所述旋转电机消耗的电力,由此能够防止所述旋转电机或所述驱动装置的过热。

附图说明

图1是表示本实施方式的车辆的简要结构的框图。

图2是表示为了方便理解图1例的车辆而将一部分省略后的车辆的简要结构的框图。

图3是表示图1及图2中的vcu部分、第一逆变器及第二逆变器部分的结构例的简要电路图。

图4是实施方式的车辆中的基本的非效率控制的说明图。

图5是说明以往效率控制与非效率控制的id-iq俯视图。

图6是用于说明本实施方式的车辆的非效率控制的具体例的动作的流程图。

图7是表示蓄电池接受电力的特性图。

图8是表示图6的流程图中的步骤s7的处理的详细情况的流程图。

图9是用于说明要求相电流与升压后最大相电流相等的情况下的电压限制椭圆的放大的id-iq俯视图。

图10是用于说明要求相电流比升压后最大相电流大的情况下的电压限制椭圆的放大的id-iq俯视图。

图11是表示图8的流程图中的步骤s17的处理的详细情况的流程图。

图12是表示图11的流程图中的步骤s18的处理的详细情况的流程图。

图13是用于说明整体动作的id-iq俯视图。

图14是实施方式的作用说明图。

图15是表示变形例的车辆(电动机动车)的简要结构的框图。

符号说明:

10、10a…车辆(本车辆)11…驱动系统

12…vcu14…控制装置

eng…发动机esb…电动伺服制动器

inv1…第一逆变器inv2…第二逆变器

mg1…第一电动发电机mg2…第二电动发电机

具体实施方式

以下,例举优选的实施方式,并参照附图来详细说明本发明的车辆。

[结构]

图1是表示本实施方式的车辆(也称作本车辆。)10的简要结构的框图。

车辆10基本上具备发动机eng、驱动系统11、高压蓄电池bath、低压蓄电池bat1、作为电压转换器的vcu(voltagecontrollunit)12、第一逆变器inv1、第二逆变器inv2、电动伺服制动器esb(electronicservobrake)及控制装置14。

驱动系统11具备分别被进行矢量控制的三相的埋入磁铁结构的永久磁铁同步电动机(旋转电机)即第一电动发电机mg1及第二电动发电机mg2、发动机eng、驱动力传递状态切换部15及减速器d。

驱动力传递状态切换部15具备将发动机eng与减速器d直接连结的离合器(未图示)、及夹装于所述离合器与减速器d之间的变速器或固定排挡。

在图1中,粗的实线表示机械连结,双重实线表示电力配线,细的实线表示控制线(包括信号线。)。

在该车辆10中,驱动力传递状态切换部15和从该驱动力传递状态切换部15向两侧延伸的机械连结仅在以发动机eng为动力源而经由驱动力传递状态切换部15并通过减速器d来驱动车轮(驱动轮)w时使用。需要说明的是,在加速时也可以利用发动机eng和第二电动发电机mg2。

需要说明的是,本发明主要在通过驱动力传递状态切换部15将发动机eng的动力与车轮(驱动轮)w侧切离且第二电动发电机mg2驱动车轮(驱动轮)w的状态下被应用。

因此,如图2所示,为了避免繁杂及方便理解,以下,基于表示未描绘驱动力传递状态切换部15的车辆10的简要结构的框图,来对结构及动作进行说明。

发动机eng将第一电动发电机mg1作为发电机来驱动。在该情况下,第一电动发电机mg1由发动机eng的旋转动力驱动来产生电力。

另外,发动机eng也存在作为在车辆10的制动时由作为电动机进行动作的第一电动发电机mg1驱动而在空转状态下使曲轴旋转的机械的负载来发挥功能的情况。

车辆10的驱动用的第二电动发电机mg2通过来自高压蓄电池bath及第一电动发电机mg1中的至少一方的电力供给而作为电动机进行动作(动力运转),产生用于使车辆10行驶的转矩。由第二电动发电机mg2产生的转矩经由减速器d而作为驱动力向车轮w传递。另外,第二电动发电机mg2在车辆10制动时作为发电机进行动作。

高压蓄电池bath具有串联连接的多个蓄电单元,例如供给100-300[v]的高电压。所述蓄电单元例如是锂离子电池、镍氢电池的单元。高压蓄电池bath也可以为电容器。

转换器conv是将高压蓄电池bath的直流输出电压以保持直流的状态进行降压的dc/dc转换器。低压蓄电池bat1蓄积由转换器conv降压后的电压,将例如12[v]的定电压向辅机16所包含的灯等电气安装件18供给,并且被作为控制装置14等的直流电源。

vcu12将高压蓄电池bath的输出电压即v1电压升压成第二电动发电机mg2作为电动机进行动作时的第二电动发电机mg2用的输入电压即v2电压。

另外,vcu12将在车辆10的制动时第二电动发电机mg2作为发电机进行动作时的第二电动发电机mg2的输出电压即v2电压降压,使其成为v1电压。

而且,vcu12进行v2电压的升降压,该v2电压是在车辆10的制动时第二电动发电机mg2作为发电机进行动作而利用其发电电力通过第一逆变器inv1来驱动第一电动发电机mg1时的电压。

而且,vcu12将通过发动机eng的驱动使第一电动发电机mg1发电并转换为直流后的v2电压降压,使其成为v1电压。

即,vcu12作为高压蓄电池bath与第一电动发电机mg1及第二电动发电机mg2之间的升降压转换器(双方向电压转换器)来发挥功能。

由vcu12降压后的v1电压的电力作为辅机16所包含的电动空气压缩机20的驱动用电力和/或高压蓄电池bath的充电用电力而供给。

图3是表示高压蓄电池bath、vcu12、第一逆变器inv1、第二逆变器inv2、第一电动发电机mg1及第二电动发电机mg2的连接关系的简要电路图。

如图3所示,vcu12具备平滑电容器、电感器及上下臂的两个开关元件。vcu12将高压蓄电池bath输出的v1电压作为输入电压来使上下臂的两个开关元件进行接通断开切换动作,从而使输出侧的v2电压升压成比v1电压高的电压。另外,将第一逆变器inv1或第二逆变器inv2输出的v2电压作为输入电压而使上下臂的两个开关元件进行接通断开切换动作,从而使输出侧的v1电压降压成比v2电压低的电压。

需要说明的是,vcu12的两个开关元件不进行接通断开切换动作且上侧开关元件为接通状态、下侧开关元件为断开状态时的v2电压与v1电压相等。

而且,在图3中,第一逆变器inv1将通过发动机eng的驱动而使第一电动发电机mg1发出的交流电压转换为作为直流电压的v2电压。另外,第一逆变器inv1有时也将在车辆10的制动时由第二电动发电机mg2发出且由第二逆变器inv2转换后的v2电压转换为交流电压,并将三相电流向第一电动发电机mg1供给。第二逆变器inv2将v2电压转换为交流电压而将三相电流向第二电动发电机mg2供给(动力运转)。而且,第二逆变器inv2将在车辆10的制动时第二电动发电机mg2发出的交流电压转换为v2电压(再生)。

图1及图2所示的电动伺服制动器esb根据车辆10的驾驶员操作制动踏板30的操作量即踏入量bp,通过由未图示的电动机控制的液压系统来对车辆10进行制动。

控制装置14除了进行包括第一逆变器inv1、第一电动发电机mg1、第二逆变器inv2、第二电动发电机mg2及vcu12在内的矢量控制以外,还进行发动机eng、电动伺服制动器esb及辅机16的控制。

虽然对由控制装置14进行的控制的详细情况进行后述,但作为传感器的输出,控制装置14除了取入表示制动踏板30的操作量的来自踏入量传感器的制动器踏入量bp以外,还取入表示油门踏板32的操作量的来自油门开度传感器的油门开度ap、来自车速传感器34的车速vs、以及来自加速度传感器58的加速度a。

另外,作为传感器的输出,控制装置14取入来自soc(stateofcharge)传感器35的高压蓄电池bath的剩余容量soc、来自安装于开关元件附近的温度传感器36的第一逆变器inv1的温度ti1、来自安装于开关元件附近的温度传感器37的第二逆变器inv2的温度ti2、来自安装于定子的线圈附近的温度传感器38的第一电动发电机mg1的温度tcoil、来自安装于定子的线圈附近的温度传感器39的第二电动发电机mg2的温度tcoi2、以及来自安装于在驱动系统11内循环的冷却用油(冷却介质)的流路中的温度传感器40的冷却介质的温度tatf。需要说明的是,冷却用油将第一电动发电机mg1及第二电动发电机mg2包括在内地对驱动系统11内进行冷却。

而且,作为传感器的输出,控制装置14取入来自第一电动发电机mg1及第二电动发电机mg2的解析器等传感器(未图示)的转速、电流、旋转角度位置等。另外,控制装置14取入表示换挡杆42的位置的来自换挡位置传感器的换挡位置ps(例如、驱动d位置、驱动b位置等)。

[基本的非效率控制的说明]

在此,参照图4,来说明基本上如以上那样构成的车辆10的第一电动发电机mg1的非效率控制(如后述那样,主要是将正的d轴电流id向电动发电机施加的控制,也称作增强励磁控制。)的基本动作。

例如在车辆10的下坡行驶时,若油门踏板32被释放,则第二电动发电机mg2从动力运转状态向再生状态切换。在该情况下,第二电动发电机mg2作为发电机进行工作,对车辆10施加制动力(再生制动),且产生再生电力。该再生电力从第二电动发电机mg2通过第二逆变器lnv2及vcu12而在没有充电制约的情况下,向高压蓄电池bath充电,从而在车辆10上作用有作为再生制动的制动力。

但是,在高压蓄电池bath为充满电状态等存在充电制约等情况下,朝向该高压蓄电池bath的再生电力的接受被限制。

因此,在本实施方式中,在朝向高压蓄电池bat的第二电动发电机mg2的再生电力的接受(充电)被限制的情况下,换言之,在车辆10中产生了多余的电力的情况下,通过v2电压经由第一逆变器inv1将第一电动发电机mg1作为电动机进行驱动,使作为负载的发动机eng空转(也称作发动机eng被逆驱动。)。即,利用第二电动发电机mg2的再生电力,作为通过第一电动发电机mgl使发动机eng空转的能量。

图4是表示在车辆10的制动时通过第二电动发电机mg2产生的再生电力将第一电动发电机mg1作为电动机进行驱动并使发动机eng空转的情况下的能量的流动的说明图。

如图4所示,在使第一电动发电机mg1进行动力运转而对发动机eng进行逆驱动时,vcu12使v1电压升压而得到向第一电动发电机mg1施加的v2电压,并进行增强励磁控制,使得第一电动发电机mg1的d轴电流id增大成大致正的值(id>0),由此在非效率的动作点对第一电动发电机mg1进行驱动。

需要说明的是,在通常的励磁控制(图5中的以往效率控制、代表的控制)中,使无助于转矩的产生的d轴电流id为负的值(id<0),采用以相对于电流使产生转矩成为最大的方式进行矢量控制的最大转矩/电流(maximumtorqueperampere、mtpa)控制,但在本实施方式中,以成为与其最小的电流不同的电流值的方式进行升压,从而以使d轴电流id成为大致正值{更准确而言,图5中的超过动作点p0处的d轴电流id0的电流值,id0<id(id可取负值也可取正值。)}的方式对第一电动发电机mg1进行驱动。

在该情况下,通过使向第一电动发电机mg1施加的v2电压升压,从而第一电动发电机mg1的可运转范围扩大。另外,在进行了增强励磁控制的第一电动发电机mg1中,输出效率降低,主要由定子(电枢)线圈的铜损引起的发热量增加。通过该发热量来消耗第二电动发电机mg2的再生电力的剩余量(多余的电力)。

需要说明的是,在以下的说明中,将向进行动力运转{在第一电动发电机mg1的旋转方向上产生转矩(驱动转矩、动力运转转矩)}或进行再生运转{在第一电动发电机mg1的旋转方向的相反方向上产生转矩(制动转矩、再生转矩)}的第一电动发电机mg1施加的v2电压的升压和第一电动发电机mg1的增强励磁控制统称为“非效率控制”。

接着,也参照图5的id-iq俯视图,来说明以进行非效率控制的情况下的dq轴坐标(也称作id-iq平面。)上的第一电动发电机mg1为代表的电动发电机的动作点及向该电动发电机施加的电压。

电动发电机的动作点的范围由能够向该电动发电机供给的最大相电流ia和向电动发电机施加的v2电压(逆变器的直流端电压)制约。

电动发电机的电流(id、iq)的振幅由最大相电流ia制约,因此需要满足以下的(1)式(电流限制圆)。

id2+iq2≤ia2…(1)

其中,id:d轴电流,iq:q轴电流,ia:最大相电流。需要说明的是,ia是将电流矢量id与电流矢量iq矢量合成而得到的电流,因此也称作电流矢量ia。

另外,电动发电机的感应电压(vd、vq)由以下的(2)式表示。需要说明的是,通常(2)式由矩阵形式表示。

vd=0×id+(-ωlq)×iq+0

vq=(ωld)×id+0×iq+ωψa…(2)

其中,ω:电动发电机的角速度,lq:q轴电感,ld:d轴电感,ψa:交链磁通(磁铁磁通)。

根据(2)式,dq感应电压(在d轴电枢产生的感应电压vd和在q轴电枢产生的感应电压vq的矢量和的大小)vo由以下的(3)式表示。

vo=(vd2+vq2)1/2=ω{(ldid+ψa)2+(lqiq)2}1/2…(3)

在此,使图2所示的v2电压的限制电压为vom。限制电压vom由v2电压决定,使由vcu12的开关控制的调制方式决定的常数为k,从而关系式由以下的(4)式表示。

vom=kv2…(4)

如以下的(5)式所示,dq感应电压vo需要成为限制电压vom以下。

vo≤vom…(5)

即,根据(3)式和(5)式,电动发电机的动作点的范围存在由电压引起的制约,因此需要满足以下的(6)式(电压限制椭圆)。

(ldid+ψa)2+(lqiq)2≤(vom/ω)2…(6)

如上所述,由电动发电机的动作的电流引起的制约由(1)式表示。

图5示出了id-iq平面(dq坐标)。在该情况下,(1)式由图5所示的dq坐标上的电流限制圆(ia2=id2+iq2)的内部区域表示。

另外,由电动发电机的动作的电压引起的制约由(6)式表示,(6)式由图5所示的dq坐标上的电压限制椭圆{(ldid+ψa)2+(lqiq)2=(vom/ω)2}的内部区域表示。能够向电动发电机供给的电流的范围是满足(1)式及(6)式的范围,该范围在图5中由打剖面线的范围表示。

另一方面,电动发电机的转矩t由以下的(7)式表示。

t=pn{ψaiq+(ld-lq)idiq}…(7)

其中,pn:电动发电机的极对数。右边第一项是由永久磁铁产生的转矩,右边第二项是磁阻转矩。

表示将该(7)式对iq进行求解而得到的等转矩线(也称作等转矩曲线、定转矩线或定转矩曲线。)的式子由以下的(8)式表示。

iq=t/[pn{ψaiq+(ld-lq)id}]…(8)

该(8)式表示以id=ψa/(lq-ld)、iq=0为渐近线的双曲线(图5中的等转矩线t的动力运转侧和再生侧的曲线)。

然而,在不进行非效率控制的电动发电机的动作点的控制中,例如进行相对于电流的转矩成为最大的最大转矩/电流控制(动作点处的定转矩曲线的切线与电流矢量正交的控制)、使不仅考虑了铜损还考虑了铁损等的损失成为最小的最大效率控制(动作点大多比最大转矩控制提前的提前相位,即,使d轴电流id向负的方向移动。)。

在图5所示的例子中,在动作点(也称作交点。)p0等、代表的以往效率控制{最大转矩/电流(maximumtorqueperampere、mtpa)控制}的曲线(动作点)上驱动电动发电机。

与此相对,在本实施方式所进行的非效率控制中,如该图5所示,进行增强励磁控制,使得电动发电机的d轴电流id例如动作点(交点)p4的值那样变大成正的值。为了进行该增强励磁控制,需要提高向电动发电机施加的v2电压。通过提高向电动发电机施加的v2电压,从而电动发电机的电流ia(id、iq)的振幅增大,能够使电动发电机的动作点移动。电动发电机的负载即发动机eng的逆驱动所需的转矩由与油粘度等对应的摩擦决定,该油粘度伴随于发动机转速、温度等而变化,但定性地说,在该转矩小时,定转矩曲线接近渐近线,因此容易使d轴电流id向正的方向移动。

另外,在v2电压的限制电压vom大且电动发电机的角速度ω小时,(6)式的定电压椭圆的面积变大,因此容易使电动发电机的电流ia(id、iq)的振幅增大。

因此可知,若适当控制v2电压的限制电压vom及电动发电机的角速度ω,则能够有效地进行电动发电机的非效率控制。

在图5中,电动发电机的动力运转侧的非效率控制(id>id0、iq>0)下的v2电压的升压前最大相电流imax由电压限制椭圆与等转矩线的交点(动作点)p1限制。

需要说明的是,电动发电机的再生侧的非效率控制(id>id0、iq<0)中的v2电压的升压前最大相电流imax由电压限制椭圆与等转矩线的交点p1′限制。

[非效率控制的详细的动作说明]

接着,参照图6的流程图,来详细说明车辆10中的要求再生电力preg比高压蓄电池bath的可接受电力大的情况下的非效率控制(非效率运转)的具体例。

在步骤s1中,控制装置14算出第二电动发电机mg2的要求再生电力preg。要求再生电力preg如公知那样,基于道路的坡度(坡度检测传感器或能够推定)、换挡杆42的换挡位置ps(例如驱动d位置、驱动b位置等)、油门踏板32的开度ap(在此,开度ap=0(油门踏板32g释放状态))、车速传感器34的车速vs及制动踏板30的踏入量bp,来算出目标减速g,并基于该目标减速g来算出要求再生电力preg。

在此,以车速vs大致恒定的方式根据下坡坡度来算出要求再生电力preg。

接下来,在步骤s2中,算出高压蓄电池bath的可接受电力(蓄电池可接受电力)pbatin。

如图7的特性(映射)所示那样,对于蓄电池可接受电力pbatin而言,若由soc传感器35检测出的剩余容量soc为100[%],则pbatin=0[kw]。

若剩余容量soc小于100[%],则参照以剩余容量soc和蓄电池温度tbat(例如图示那样,-30[℃]左右至+50[℃]左右)为输入值的特性(映射)来取得。该特性被预先制作成,为在同一剩余容量soc下蓄电池温度tbat越高则蓄电池可接受电力pbatin越大的特性。同样,例如为在同一蓄电池温度tbat下剩余容量soc越低则蓄电池可接受电力pbatin越大的特性。

接着,在步骤s3中算出辅机消耗电力paux。辅机消耗电力paux通过电动空气压缩机20的消耗电力、转换器conv的消耗电力及电气安装件18的消耗电力之和来算出。

接下来,在步骤s4中判断是否需要实施非效率运转。在该情况下,若要求再生电力preg能够被蓄电池可接受电力pbatin和辅机消耗电力paux消耗(preg≤pbatin+paux),则即使不进行非效率运转也能够由车辆10消耗(包括充电。),因此将非效率运转标志fi复位(fi←0)。另一方面,在要求再生电力preg比可接受电力pbatin与辅机消耗电力paux的合成消耗电力大(preg>pbatin+paux)的情况下,判断为需要进行非效率运转,将非效率运转标志fi置位(fi←1)。

接着,在步骤s5中,判断非效率运转标志fi是被置位(fi=1)还是未被置位(fi=0)。

在非效率运转标志fi未被置位(fi=0)的情况下(步骤s5:否),无需在第一电动发电机mg1(在此也简称作电动机。)的非效率区域消耗第二电动发电机mg2的要求再生电力preg。因此,在步骤s6中使电动机非效率区域消耗电力pine为零(pine←0),并返回步骤s1。

在非效率运转标志fi被置位(fi=1)的情况下(步骤s5:是),在步骤s7中,算出电动机非效率区域消耗电力pine,并且算出电动伺服制动器分担电力pesv。

图8是步骤s7的详细流程图。

在步骤s7a中,使根据要求再生电力preg算出的必要相电流值为要求相电流ireq。

如图5所示,要求相电流ireq比升压前最大相电流imax(=ia)大,因此在步骤s7b中,为了能够确保要求相电流ireq,通过vcu12使v2电压的限制电压vom向限制电压v′om升压,将电压限制椭圆扩大为以下的(6′)式所示那样。

(ldid+ψa)2+(lqiq)2≤(v′om/ω)2…(6′)

接下来,在步骤s7c中使升压后电动机非效率区域的极限消耗电力为电动机非效率区域消耗电力pine。

接着,在步骤s7d中,比较要求相电流ireq与电流限制圆的升压后相电流(也称作电流限制圆相电流。)i′max的大小(绝对值),判断是否为|ireq|>|i′max|。

在要求相电流ireq的大小比电流限制圆相电流i′max的大小小(步骤s7d:否)的情况(包括相等的情况)下,不需要电动伺服制动器esb的分担电力,因此在步骤s7e中设定为电动伺服制动器分担电力1←0。

在该情况下,如图9所示,为了能够确保要求相电流ireq=i′max而使vcu12升压(使v2电压升压,使得限制电压vom成为限制电压v′om),从而将(6)式所示的电压限制椭圆扩大成(6′)式所示的vcu升压后电压限制椭圆。

此时,为了能够通过第一电动发电机mg1的非效率控制将要求再生电力preg作为热量而消耗,将升压前最大相电流imax的交点p1在等转矩线上进一步向增强励磁方向(使正的d轴电流的值进一步增大的方向)变更到升压后最大相电流i′max的交点p2(=p4)。

另一方面,在步骤s7d的判断中,在要求相电流ireq的大小比电流限制圆相电流i′max的大小大(步骤s7d:是)的情况下,需要电动伺服制动器esb的分担电力。因此,在步骤s7f中将电动伺服制动器分担电力1设定为ra(ireq2-i′max2)。

在该情况下,如图10所示,(6′)式所示的vcu升压后电压限制椭圆被扩大到vcu12的能力极限即与电流限制圆交叉的范围。此时,为了能够通过第一电动发电机mg1的非效率控制将要求再生电力preg作为热量而消耗,将升压前最大相电流imax的交点p1在等转矩线上进一步向增强励磁方向(使正的d轴电流的值进一步增大的方向)变更到升压后最大相电流i′max的交点p2(=p4)。在此,使从交点p2到点p4的要求电力量ra(ireq2-i′max2)为电动伺服制动器分担电力1,由电动伺服制动器esb消耗。其结果是,相对于第二电动发电机mg2的再生制动力,加上由电动伺服制动器esb产生的制动力。

接着,在步骤s17中,在进行将电压限制椭圆扩大后的电动机非效率运转时,或者作为进行了该电动机非效率运转的结果,将是否达到了第一电动发电机mg1的限制温度作为热损伤条件而进行处理判断。

图11是步骤s17的详细流程图。

在步骤s17a中,通过第一电动发电机mg1的电枢线圈所具备的热敏电阻等温度传感器38(图2)来取得电动机线圈温度tcoil。

而且,在步骤s17b中,从温度传感器40取得对第一电动发电机mg1进行冷却的油的温度即冷却介质温度tatf。

接下来,在步骤s17c中,判断是否电动机线圈温度tcoil比作为管理温度的阈值温度th1小(tcoil<tth1)且冷却介质温度tatf比作为管理温度的阈值温度th2小(tatf<th2)。

在步骤s17c的判断为肯定(tcoil<th1且tatf<th2)(步骤s17c:是)的情况下,判断为第一电动发电机mg1没有面临热损伤,在步骤s17d中将热损伤标志fheat复位(fheat←0)并返回步骤s1。

另一方面,在步骤s17c的温度的判断中,在至少一方的温度的判断为否定而使步骤s17c的判断为否定(步骤s17c:否)的情况下,需要保护第一电动发电机mg1,以免其受到热损伤,因此首先在步骤s17e中将热损伤标志fheat置位(fheat←1)。

接下来,在步骤s17f中进行电压限制椭圆的热损伤条件vom的条件变更,在步骤s18中进一步算出电动伺服制动器esb的总分担电力。

参照图13,来说明步骤s17f及步骤s18的处理。

在fheat=1即热损伤条件成立的情况下,如以下的(5″)式所示那样,使v′om返回到vheatom、即使v2电压降低,从而将电动机非效率区域缩小到即使在高温时也能够运转的电压限制椭圆。在该情况下,一边追踪电动机轴端要求转矩特性上的等转矩线,一边将相电流imax缩小到交点p5。

(ldid+ψa)2+(lqiq)2≤(vheatom/ω)2…(5″)

在该情况下,在步骤s18中算出电动伺服制动器esb的总分担电力pesball。

图12是步骤s18的详细流程图。

在步骤s18a中,通过在步骤s17c中所说明的内容再次判断热损伤标志fheat是否为fheat=1(或fheat=0),在热损伤标志fheat为fheat=0时热损伤条件被清除,因此使相电流iheatmax在等转矩线上返回到相电流i′max,使动作点(交点)p5成为动作点(交点)p3。由此,如步骤s18b所示,能够使电动伺服制动器esb的总分担电力pesball(称作电动伺服制动器分担电力all。)返回到在步骤s7f中算出的电动伺服制动器esb的分担电力1。

另一方面,在步骤s18a的判断中热损伤标志fheat为fheat=1时,热损伤条件未被清除,因此在相电流iheatmax的动作点(交点)p5处,由电动伺服制动器esb分担并消耗电动伺服制动器esb的总分担电力pesball,即分担从动作点(交点)p3到动作点(交点)p4之间的量即在步骤s7f中算出的电动伺服制动器分担电力1=ra(ireqmax2-i′max2)与从动作点(交点)p3到动作点(交点)p5的电动伺服制动器分担电力=ra(i′max2-iheatmax2)的合成电力。

这样,能够保护第一电动发电机mg1,以免其受到热损伤。

需要说明的是,在上述的步骤17中,在热损伤条件成立的情况下使电压限制椭圆缩小,从而使电动机的运转点从p3转移到p5,但也可以不使电压限制椭圆缩小地、即不使v2电压(升压电压)降低地使电动机的运转点从p3转移到p5。

[实施方式的总结及变形例]

本实施方式的车辆10具备:作为蓄电装置的高压蓄电池bath;作为驱动装置的第一及第二逆变器inv1、inv2,其能够向直流与交流的双方向进行转换;作为旋转电机的第一电动发电机mg1及/或第二电动发电机mg2,其与作为所述驱动装置的第一逆变器inv1及第二逆变器inv2的交流侧连接,并且输出轴与负载(作为第一逆变器inv1的负载的发动机eng及/或作为第二逆变器inv的负载的车轮w)连接;作为电压转换器的vcu12,其低压侧(v1电压侧)与高压蓄电池bath连接且高压(v2电压)侧与第一逆变器inv1及第二逆变器inv2的直流侧连接,使高压蓄电池bath的v1电压升压而成为v2电压,将该升压电压即v2电压通过所述第一逆变器inv1及第二逆变器inv2分别向第一电动发电机mg1及第二电动发电机mg2施加;以及控制装置14,其对所述第一逆变器inv1及第二逆变器inv2、所述第一电动发电机mg1及第二电动发电机mg2、以及所述vcu12进行控制。

上述的图13是用于说明整体动作的id-iq俯视图。

在该车辆10中产生了多余的电力的情况下,例如在第二电动发电机mg2的再生电力preg的一部分或全部成为剩余而即使通过辅机16进行消耗,也无法进一步向剩余容量soc为100[%]的高压蓄电池bath充电的情况下,控制装置14使通过vcu12得到的所述升压电压即v2电压(限制电压vom)升压(例如限制电压v′om,图13中的交点p3),使得成为与用于使第一电动发电机mg1产生规定的驱动力的最小的电流值(图13的“以往效率控制”中的动作点p0处的电流值)不同的电流值{比图13中的动作点p0处的d轴电流值(称作d轴阈值电流值。)id0大的电流值(id>id0)},由此扩大第一电动发电机mg1的运转范围。

并且,通过在扩大后的所述运转范围内驱动该第一电动发电机mg1,从而能够由第一电动发电机mg1消耗所述多余的电力、例如第二电动发电机mg2的再生电力preg的一部分或全部。

在该消耗中,在第一电动发电机mg1的温度、这里为因铜损而温度上升的线圈温度tcoil或第一逆变器inv1的温度til或者冷却介质的温度tatf超过与它们分别对应而预先设定的阈值温度tth时,减小所述升压电压即v2电压而使第一电动发电机mg1的运转范围缩小,且减小第一电动发电机mg1消耗的电力{例如限制电压vheatom、图13中的动作点(交点)p5}。

通过这样控制,能够消耗在车辆10内产生且无法由辅机16、高压蓄电池bath消耗乃至充电的多余的电力,能够防止第一电动发电机mg1或第一逆变器inv1的过热。

需要说明的是,在通过使v2电压升压来扩大第一电动发电机mg1的运转范围时,在等转矩线上增大d轴电流id,在减小所述升压电压即v2电压时,在所述等转矩线上减小d轴电流id,因此能够将第一电动发电机mg1的轴端转矩(在输出轴上产生的转矩)保持为恒定,且使第一电动发电机mg1的消耗电力可变。

尤其是,在d轴电流id成为正值的增强励磁控制(非效率控制)的情况下,实现了能够防止与第一电动发电机mg1的温度上升相伴的永久磁铁的退磁这一派生的效果。即,由于为增强励磁控制(非效率控制),因此即使永久磁铁成为高温,也不向永久磁铁施加去磁磁场而施加磁化的方向的磁场,因此磁铁退磁的耐性提高。

此外,由于为增强励磁控制(非效率控制),因此未图示的转子的永久磁铁与定子的电枢的吸引力(磁约束力)升高,其结果是,转子的旋转方向及转子的轴向的磁约束力升高,还起到使第一电动发电机mg1的nv特性提高这一派生的效果。

在该情况下,在本车辆10产生的多余的电力是制动用的再生电力preg的情况下,通过由第一电动发电机mg1的动力运转引起的电力消耗来担保由再生电力preg产生的制动力,仍然不足的量由机械制动器、在本实施方式中由电动伺服制动器esb来弥补,因此制动力被确保。另外,由于在等转矩线上进行控制,因此车辆行为的变化被抑制。

车辆10是混合动力车辆,根据本实施方式,能够将机械制动器的介入抑制为最小限度,能够长期间使用机械制动器的摩擦件。若使用期间与通常相同即可的话,则能够减小机械制动器的摩擦件。

参照图14,容易理解地说明本实施方式的作用。

在能够进行高压蓄电池bath的充电的情况下,对车轮w的制动力由第二电动发电机mg2的再生电力及电动伺服制动器esb的热产生(电动伺服制动器分担电力1)担保,再生电力向高压蓄电池bath充入。通过发动机eng进行旋转的第一电动发电机mg1的发电电力也向高压蓄电池bath充入(图14中的最上段的图)。

在高压蓄电池bath的充电被制约时(高压蓄电池bath充满电)且第一电动发电机mg1等的非热损伤时,通过第二电动发电机mg2的再生电力preg使第一电动发电机mg1在非效率区域的等转矩线上进行动力运转,从而使发动机eng空转,并且使再生电力preg在第一电动发电机mg1的非效率区域转换为热量(图13的交点p2=p3)。在该情况下,电动伺服制动器esb的热产生不变化(图14中的中段的图)。

另一方面,在高压蓄电池bath的充电被制约时(高压蓄电池bath充满电)且第一电动发电机mg1等的热损伤时,如上述实施方式中说明的那样,通过再生电力preg使第一电动发电机mg1在非效率区域的等转矩线上进行动力运转,从而使发动机eng空转,并且使再生电力preg在第一电动发电机mg1的非效率区域转换为热量,但如剖面线区域所示,使非效率区域的消耗电力减少(图13的交点p5)。电动伺服制动器esb的分担量相应地增大,因此电动伺服制动器esb中的热产生变大(图14中的下段的图)。

这样,根据上述的实施方式,在判断为构成第二电动发电机mg2或第二逆变器inv2的要素(组件)的温度成为了管理温度以上的情况下,降低vcu12的升压电压即v2电压,减小电动发电机mg2的非效率区域的运转区域上限。

通过这样构成,不追加新的设备(没有结构的变更),仅通过控制的变更(不增加成本)就能够将由过度升温引起的第二电动发电机mg2及第二逆变器inv2的故障防患于未然。而且,能够抑制对车辆10的行为带来的影响。

[变形例]

图15是表示变形例的车辆10a的简要结构的框图。

该变形例的车辆10a是所谓的电动机动车。在该车辆10a中,例如在长的下坡道上行驶中(下坡中)第二电动发电机mg2的再生电力preg剩余而产生了多余的电力的情况下,使第二电动发电机mg2在图5所示的再生侧(id>0、iq<0)的等转矩线(再生)上的非效率区域(id>id0、尤其是id>0)进行动作,由此能够与实施方式中说明的同样,消耗所述多余的电力。

需要说明的是,也可以是,在再生侧也使v2电压升压,在扩大后的运转范围内进行第二电动发电机mg2的再生时的非效率控制。

需要说明的是,本发明不限于上述的实施方式,当然能够基于该说明书的记载内容而采用各种结构。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1