一体式直流车辆充电器的制作方法

文档序号:18013933发布日期:2019-06-26 00:35阅读:257来源:国知局
一体式直流车辆充电器的制作方法

本公开涉及汽车电驱动和充电系统。



背景技术:

混合动力电动车辆(hev)和电池电动车辆(bev)可以依靠牵引电池来为牵引马达提供动力用于推进,并且在其间的功率逆变器将直流(dc)功率转换成交流(ac)功率。典型的交流牵引马达是由三个正弦信号提供电力的三相马达,每一信号用120度相分离进行驱动,但是其他配置也是可能的。而且,许多电气化车辆可以包括直流-直流转换器,以将牵引电池的电压转换成牵引马达的操作电压水平。



技术实现要素:

一种车辆具有:牵引电池;电机,所述电机具有共用公共中性线的两组绕组;以及第一逆变器和第二逆变器。在推进期间,每一个逆变器利用来自所述牵引电池的电力为所述组绕组中的专门一个组供电,并且在充电期间,引导来自充电端口的充电电流依次通过所述第一逆变器、所述绕组和所述第二逆变器到达所述牵引电池。

一种车辆具有驱动系统,所述驱动系统包括电池、两个逆变器、电机和开关。所述车辆还具有控制器,所述控制器响应于充电模式操作所述开关以将所述逆变器中的一个联接到充电端口,并且操作所述逆变器中的至少一个,以使得来自所述充电端口的直流电流依次流动通过所述逆变器中的所述一个、所述电机以及所述逆变器中的另一个到达所述电池。

一种用于控制车辆动力系统的方法,包括:通过控制器,响应于充电模式,将一对逆变器中的一个联接到充电端口,以使得来自所述充电端口的直流电流依次流动通过所述一对逆变器中的所述一个、电机以及所述一对逆变器中的另一个到达牵引电池;以及响应于推进模式,使所述一对逆变器中的所述一个与所述充电端口分离并且将所述一对逆变器中的所述一个联接到所述牵引电池。

附图说明

图1是常规非车载直流车辆快速充电生态系统的示意图。

图2是电气化车辆动力传动系统的示意图。

图3是具有一体式直流充电功能的电气化车辆动力传动系统的示意图。

图4是电气化车辆的示意图。

具体实施方式

本文描述了本公开的各种实施例。然而,所公开的实施例仅仅是示例性的,并且其他实施例可以采用未明确示出或描述的各种形式和替换形式。附图不一定按比例绘制;一些特征可能会被夸大或最小化以示出特定部件的细节。因此,本文所公开的具体结构细节和功能细节不应被解释成是限制性的,而是仅仅作为教导本领域技术人员以不同方式采用本发明的代表性基础。如本领域普通技术人员将理解,参考附图中的任何一个示出和描述的各种特征可以与在一个或多个其他附图中示出的特征组合,以产生未明确示出或描述的实施例。所示出的特征的组合提供用于典型应用的代表性实施例。然而,与本公开的教示一致的特征的各种组合和修改可以是特定应用或实现方式所期望的。

尽管其架构存在差异,但是电动车辆(ev)的结构却具有相似之处。举例来说,电池、逆变器和电动马达是ev的典型构建块。为了使电池通电并且为马达供电,可以采用两种类型的充电器:车载充电器和非车载(独立)充电器。车载充电器可以灵活地在有电源插座的任何地方充电。然而,它可能会增加车辆的重量、体积和成本。因此,期望可以通过使用诸如逆变器和电动马达等可用硬件对电池充电来避免这些缺点。

考虑到在充电期间,车辆不被驱动,并且在驾驶期间,除了借助于再生制动否则电池不会被充电,整合车载充电器和牵引系统似乎是可行的选择。另外,直流快速充电器已经普及,并且许多人都专注于这种设计。充电时间的显著减少是使这些类型的充电器具有吸引力的原因。在这里,我们建议使用车辆的多相电机来实现直流充电器。在某些实例中,两个对称逆变器和马达绕组的组合形成全桥直流-直流转换器。逆变器中的一个的开关中的一些的启用和逆变器中的另一个的二极管的利用可以导致电池处的直流电源电压降低(降压模式)。在这种情况下,马达绕组充当滤波电感器。两个逆变器的开关的启用和逆变器中的另一个的二极管的利用可以导致电池处的直流电源电压升高(升压模式)。在这种情况下,马达绕组充当升压电感器。在两种情况下,如果不同时操作开关,则可以进行交错操作,这可以改善输出电压品质。

参看图1,用于车辆12的常规非车载直流快速充电生态系统10包括中等电压公用电网14、常规变压器16、建筑物电线18、非车载直流快速充电器20和充电线22。非车载直流快速充电器20包括交流/直流转换器24、电容器26和直流/直流转换器28。来自中等电压公用电网的交流电力经由常规变压器16传输到建筑物电线18。然后,通过非车载直流快速充电器20以通常的方式将交流电力转换成直流电力,以便经由充电线22输送到车辆12。

参看图2,牵引驱动系统30包括牵引电池32、对称逆变器34、36和电机38。逆变器34、36中的每一个照例包括开关元件和直流链路电容器。在其他布置中,逆变器34、36中的仅一个可以包括本领域已知的直流链路电容器。电机38包括:两组绕组40、42,每组三个绕组;以及公共中性线44。也就是说,电机38是六相电机。在推进期间,来自牵引电池32的直流电力由逆变器34、36转换成交流电力以便输送到电机38。在再生制动期间,来自电机38的交流电力由逆变器34、36转换成直流电力以便输送到牵引电池32。

参看图3,具有一体式快速充电功能的牵引驱动系统46包括牵引电池48、逆变器50、52和电机53。在该实例中,逆变器50包括开关-二极管对54、56、58、60、62、64和直流链路电容器66。并且,逆变器52包括开关-二极管对68、70、72、74、76、78和直流链路电容器80。电机53包括绕组82、84、86、88、90、92和公共中性线94。绕组82、84、86和88、90、92被布置成两组,每组三个。也就是说,电机53是六相电机。

在其他布置中,逆变器中的仅一个(例如,逆变器52)可以包括直流链路电容器。在此种布置中,直流链路功能可能需要与充电端口99相关联。而且,电机53可以包括额外组绕组,可能需要使用额外的逆变器等。还可以设想其他布置。

牵引驱动系统46还包括开关装置96和控制器98。开关装置96包括开关s1、s2,所述开关s1、s2选择性地将充电端口99与其电气联接。充电端口99被布置成从直流电源100接收电力。逆变器50、52、电机53和开关装置96与控制器98通信和/或受控制器98控制。

在推进期间,控制器98将开关s1置于位置x并且打开开关s2以将牵引电池48电气连接到逆变器50,并且将充电端口99与牵引驱动系统46分离。然后,来自牵引电池48的直流电力可以经由逆变器50、52转换成交流电力,以便输送到电机53。

在充电期间,控制器98将开关s1置于位置y并且关闭开关s2以将逆变器50电气连接到充电端口99,并且将牵引电池48与逆变器50分离。来自充电端口99的直流电力然后可以流动通过逆变器50、电机53、逆变器52并且到达牵引电池48。

如果来自充电端口99的电力既不升压也不降压,则控制器98可以接通开关-二极管对54、58、62的开关中的一个或多个,以使得电流流动通过电机53的相应绕组和中性线以及相应开关-二极管对68、72、76的二极管到达牵引电池48。

如果来自充电端口99的电力将会降压,则控制器98可以以某一占空比启用开关-二极管对54、58、62的开关中的一个或多个,以使得电流间歇地流动通过电机53的相应绕组和中性线以及相应开关-二极管对68、72、76的二极管到达牵引电池48。

如果来自充电端口99的电力将会升压,则控制器98可以以某一占空比启用开关-二极管对54、58、62的开关中的一个或多个以及开关-二极管对70、74、78的开关中的一个或多个,以使得电流间歇地流动通过电机53的相应绕组和中性线,并且间歇地流动通过相应开关-二极管对68、72、76的二极管以及相应开关-二极管对70、74、78的开关到达牵引电池48。

在该设计中,开关s1、s2用于将牵引电池48与逆变器50断开。因此,逆变器50、52和绕组82-92可以形成三路交错的全桥直流-直流转换器。因此,增加了直流-直流级,而不是与常规直流快速充电方法一样将牵引电池48直接连接到充电端口99。因为这是全桥直流-直流转换器,所以它能够如上所述使输入电压升压和降压。这可以使牵引驱动系统46与任何商用直流快速充电器兼容,而不管其输出电压水平如何。

一些布置可以提供某些益处。例如,因为直流-直流级被并入充电器中,所以可以简化电源的设计。所述系统与不同的直流电压水平(不同的品牌和产品)相兼容,因为在全桥直流-直流转换器的情况下,可以使电压调整到任何期望的值。与常规直流快速充电相比,除了两个可能的开关之外,不存在添加的部件。由于对输出电压水平的完全控制,涓流充电(tricklecharging)是可行的。如果由于任何原因电池电压低并且以常规功率充电可能会引起问题,则这可能是有用的。三路交错设计可以减少直流总线上的电流纹波,并且从而延长部件使用寿命。由于升压功能,可以降低充电器的输入电压。

本文设想的架构可以在多种车辆配置内实现。例如,图4示出电气化车辆102,所述电气化车辆102包括机械地联接到混合动力变速器106的一个或多个电机104。电机104可以作为马达或发电机运行。另外,混合动力变速器106机械地联接到发动机108和驱动轴110,该驱动轴110机械地联接到车轮112。

牵引电池或电池组114存储可以由电机104使用的能量。车辆电池组114可以提供高电压直流(dc)输出。牵引电池114可以电气联接到实现上面讨论的架构的一个或多个电力电子模块116。一个或多个接触器118可以当打开时进一步将牵引电池114与其他部件隔离,并且当闭合时将牵引电池114连接到其他部件。电力电子模块116还电气地联接到电机104,并且提供在牵引电池114与电机104之间双向传递能量的能力。例如,牵引电池114可以提供直流电压,而电机104可以用交流电(ac)操作以起作用。电力电子模块116可以将直流电压转换成交流电以操作电机104。在再生模式中,电力电子模块116可以将来自充当发电机的电机104的交流电转换成与牵引电池114相兼容的直流电压。

车辆102可以包括电气地联接在牵引电池114与电力电子模块116之间的可变电压转换器(vvc)(未示出)。vvc可以是直流/直流升压转换器,该直流/直流升压转换器被配置成增加或升高由牵引电池114提供的电压。通过增加电压,可以降低电流要求,从而引起电力电子模块116和电机104的接线尺寸减小。此外,电机104可以以更高的效率和更低的损耗运行。

除了提供用于推进的能量之外,牵引电池114还可以为其他车辆电气系统提供能量。车辆102可以包括直流/直流转换器模块120,该直流/直流转换器模块120将牵引电池114的高电压直流输出转换成与低电压车辆负载121相兼容的低电压直流电源。直流/直流转换器模块120的输出可以电气地联接到辅助电池122(例如,12v电池),以对辅助电池122充电。低电压系统可以电气地联接到辅助电池122。一个或多个电气负载124可以联接到高电压总线。电气负载124可以具有相关联的控制器,该相关联的控制器视需要操作和控制电气负载124。电气负载124的实例可以包括风扇、电加热元件和/或空调压缩机。

电气化车辆102可以被配置成从外部电源126对牵引电池114再充电。外部电源126可以是与电源插座的连接。外部电源126可以电气地联接到充电器或电动车辆供电装备(evse)128。外部电源126可以是由电力公司提供的配电网络或输电网。evse128可以提供电路和控件以调节和管理电源126与车辆102之间的能量传递。外部电源126可以向evse128提供直流或交流电力。evse128可以具有用于插入车辆102的充电端口132中的充电连接器130。充电端口132可以是被配置成将电力从evse128传输到车辆102的任何类型的端口。evse连接器130可以具有与充电端口132的相应凹槽配合的销。或者,被描述为电气联接或连接的各种部件可以使用无线电感耦合来传输电力。

在一些配置中,电气化车辆102可以被配置成向外部负载提供电力。例如,电气化车辆可以被配置成作为备用发电机或电源插座操作。在此种应用中,负载可以连接到evse连接器130或其他插座。电气化车辆102可以被配置成将电力返回到电源126。例如,电气化车辆102可以被配置成向电网提供交流(ac)电力。由电气化车辆供应的电压可以与电力线同步。

车辆102中的电子模块可以经由一个或多个车辆网络进行通信。车辆网络可以包括用于通信的多个信道。车辆网络的一个信道可以是串行总线,诸如控制器局域网(can)。车辆网络的信道中的一个可以包括由电气和电子工程师协会(ieee)802系列标准定义的以太网网络。车辆网络的额外信道可以包括模块之间的离散连接,并且可以包括来自辅助电池122的电力信号。可以在车辆网络的不同信道上传送不同的信号。例如,视频信号可以通过高速信道(例如,以太网)进行传送,而控制信号可以通过can或离散信号进行传送。车辆网络可以包括有助于在模块之间传送信号和数据的任何硬件和软件部件。未示出车辆网络,但是可以暗示车辆网络可以连接到车辆102中存在的任何电子模块。可以存在车辆系统控制器(vsc)134以协调各种部件的操作。

车辆102还包括直流/直流转换器模块120,用于将高电压总线的电压转换成适合于辅助电池122和低电压负载121(例如,大约12伏特)的电压水平。车辆102还可以包括额外的开关、接触器和电路,以选择性地选择牵引电池114与直流/直流转换器120之间的电力流。

所公开的过程、方法、逻辑或策略可以提供给处理装置、控制器或计算机和/或由所述处理装置、控制器或计算机实现,所述处理装置、控制器或计算机可以包括任何现有的可编程电子控制单元或专用电子控制单元。类似地,所述过程、方法、逻辑或策略可以存储为可由控制器或计算机以许多形式执行的数据和指令,包括但不限于:永久存储在各种类型的制品上的信息,所述各种类型的制品可以包括诸如rom装置等持久的不可写存储介质;以及可变地存储在可写入存储介质上的信息,所述可写入存储介质诸如软盘、磁带、cd、ram装置以及其他磁性和光学介质。所述过程、方法、逻辑或策略也可以软件可执行对象实现。或者,它们可以全部或部分使用合适的硬件部件来体现,所述合适的硬件部件诸如专用集成电路(asic)、现场可编程门阵列(fpga)、状态机、控制器或其他硬件部件或装置,或硬件、软件和固件部件的组合。

在说明书中使用的措词是描述用词而非限制用词,并且应当理解,可在不脱离公开内容和权利要求的精神和范围的情况下做出各种改变。如前所述,各种实施例的特征可以组合以形成可能未明确描述或示出的其他实施例。虽然各种实施例就一个或多个期望的特性而言可能已经被描述为提供胜于其他实施例或现有技术实现方式的优点或优于其他实施例或现有技术实现方式,但是本领域普通技术人员认识到可能会折衷一个或多个特征或特性以实现期望的整体系统属性,这取决于具体的应用和实现方式。这些属性可以包括但不限于成本、强度、耐久性、生命周期成本、可销售性、外观、包装、尺寸、可维护性、重量、可制造性、易组装性等。为此,就一个或多个特性而言被描述为不如其他实施例或现有技术实现方式理想的实施例也在本公开的范围内,并且对于特定应用可能是期望的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1