一种高升阻比可变尾翼的赛车空气动力学套件的制作方法

文档序号:12382660阅读:347来源:国知局
一种高升阻比可变尾翼的赛车空气动力学套件的制作方法与工艺

本发明属于空气动力学研究领域,尤其涉及一种高升阻比可变尾翼的赛车空气动力学套件,满足高负升力低阻力性能的赛车需求。



背景技术:

随着赛车的运动速度越来越快,空气动力学从最初的不被重视逐渐成为了一项重要的设计元素,空气带来的力量一下子就为赛车的表现带来了戏剧性的变化,几乎所有的赛车都会在设计上引入空气动力学的成果。对于大学生方程式赛车大赛,想要提高成绩,缩短单圈时间,在动力输出一定的情况下,就要考虑在弯道中提升通过时的速度。而当轮胎配方相同时,它与地面的附着系数就一定,那么侧向加速度的大小就与正压力成正相关,而设计合理的空气动力学套件就能有效地解决这个问题,在不增加质量的情况下,能够产生可观的侧向加速度。然而大学生方程式赛车的速度远远低于一般性的竞技赛车比赛,由此带来的后果是一般的空气动力学套件对赛车性能提高的贡献大大减少,在带来下压力的同时也给赛车增加了不少空气阻力,使赛车的速度下降。对于每个车队来说,都希望使用升力系数大且升阻比也大的翼型,但是对于每种翼型的气动性数据是没有任何一家机构公布的,必须自己仿真得到。公告号为CN105480311A的中国发明专利公开了“一种提高赛车操纵稳定性的空气动力学套件及其设计方法”,一定程度上增加了赛车的下压力,但整个套件的升阻比不高,也给赛车带来了不少阻力,在不同车况下攻角固定,在权衡下压力和阻力的大小取舍时不是很理想。



技术实现要素:

本发明的目的是为了解决空气动力学套件在给赛车提供可观的下压力的同时如何减少空气阻力的问题,兼顾整车的参数及整车仿真,提供一种高升阻比可变尾翼的赛车空气动力学套件。

为解决以上技术问题,本发明是通过以下技术方案实现:

一种高升阻比可变尾翼的赛车空气动力学套件,包括前翼,尾翼和可变尾翼系统,

所述前翼包括一块前翼主翼,对称设置的两块外襟翼,对称地位于两块外襟翼内侧的两套内襟翼组,每套内襟翼组均包括前后设置的第一内襟翼和第二内襟翼及连接于第一内襟翼和第二内襟翼两端的第二端板和第三端板,外襟翼及第二内襟翼后沿上设有格尼襟翼,所述前翼主翼及外襟翼连接设置在两块第一端板之间,各端板切割为弧形边沿;

所述尾翼包括两块大端板、固定设置在两块大端板之间的尾翼主翼、第一减速翼和第二减速翼、活动设置在两块大端板之间的第一襟翼和第二襟翼,所述尾翼主翼位于最前端,所述第一襟翼位于尾翼主翼翼梢末端,并且和主翼翼梢末端有一小部分重叠和一定的间隙,所述第二襟翼与第一襟翼在第一襟翼的翼梢末端有小部分的重叠与间隙,且第二襟翼后沿设有格尼襟翼;所述第一减速翼位于尾翼主翼正上方,所述第二减速翼位于第一减速翼翼梢末端;

所述可变尾翼系统与第一襟翼、第二襟翼驱动连接,用于调节各襟翼工作状态。

进一步地,所述的可变尾翼系统包括舵机、连杆,摇臂和襟翼轴,所第一襟翼、第二襟翼分别与一根襟翼轴固定连接,每根襟翼轴及所述舵机的输出端均连接有一根摇臂,各摇臂之间通过连杆依次活动连接。

进一步地,所述尾翼主翼的攻角为3-5°,第一襟翼的最大攻角为28°、第二襟翼的最大攻角为51°。

进一步地,所述第一减速翼位于尾翼主翼正上方170-230mm处,其攻角为0°,所述第二减速翼的攻角为25-30°。

进一步地,所述的格尼襟翼的长度为所在翼片弦长的2%。

进一步地,所述的尾翼主翼、第一襟翼、第二襟翼内分别设置有翼端安装件,所述翼端安装件的外形与所在翼型的形状一样,尺寸比所在翼型的尺寸缩小1%~2%,所述翼端安装件与所在翼型的间隙设有填充物。

进一步地,所述的翼端安装件上设置有减少自重的挖空部。

进一步地,所述的襟翼轴与所述翼端安装件固定连接。

进一步地,所述的填充物为胶水。

进一步地,所述大端板上沿设置有百叶窗,后下方设置有切槽。

相比现有技术,本发明具有如下有益效果:开发设计得出高升阻比的翼型及翼片组合,充分综合考虑升力、阻力、气流,整个套件的质量及结合整车仿真,权衡得出一套高负升力而又低阻力,可变尾翼的大学生方程式赛车的空气动力学套件。

附图说明

图1本发明实施例的尾翼组合翼的布置示意图。

图2发明实施例的尾翼结构示意图。

图3发明实施例的翼端安装件结构示意图。

图4发明实施例的可变尾翼系统结构示意图。

图5发明实施例的前翼结构示意图。

图中所示:1-尾翼主翼;2-第一襟翼;3-第二襟翼;4-第一减速翼;5-第二减速翼;6-格尼襟翼;7-大端板;8-前翼主翼;9-外襟翼;10-第一内襟翼;11-第二内襟翼;12-第一端板;13-第二端板;14-第三端板;15-翼端安装件;16-襟翼轴;17-舵机;18-摇臂;19-连杆;20-百叶窗;21-切槽。

具体实施方式

下面通过具体实施例对本发明的目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。

如图1至图5所示, 一种高升阻比可变尾翼的赛车空气动力学套件,包括前翼,尾翼和可变尾翼系统,所述前翼包括一块前翼主翼8,对称设置的两块外襟翼9,对称地位于两块外襟翼9内侧的两套内襟翼组,每套内襟翼组均包括前后设置的第一内襟翼10和第二内襟翼11及连接于第一内襟翼10和第二内襟翼11两端的第二端板13和第三端板14,外襟翼9及第二内襟翼11后沿上设有格尼襟翼6,所述前翼主翼8及外襟翼9连接设置在两块第一端板12之间,各端板切割为弧形边沿;

所述尾翼包括两块大端板7、固定设置在两块大端板7之间的尾翼主翼1、第一减速翼4和第二减速翼5、活动设置在两块大端板7之间的第一襟翼2和第二襟翼3,所述尾翼主翼1位于最前端,所述第一襟翼2位于尾翼主翼1翼梢末端,并且和主翼1翼梢末端有一小部分重叠和一定的间隙,所述第二襟翼3与第一襟翼2在第一襟翼2的翼梢末端有小部分的重叠与间隙,且第二襟翼3后沿设有格尼襟翼6;所述第一减速翼4位于尾翼主翼1正上方,所述第二减速翼5位于第一减速翼4翼梢末端;所述尾翼主翼1的攻角为4°,第一襟翼2的最大攻角为28°、第二襟翼3的最大攻角为51°。所述第一减速翼4位于尾翼主翼1正上方200mm处,其攻角为0°,所述第二减速翼5的攻角为28°。所述大端板7上沿设置有百叶窗20,后下方设置有切槽21。

所述的尾翼主翼1、第一襟翼2、第二襟翼3内分别设置有翼端安装件15,所述翼端安装件15的外形与所在翼型的形状一样,尺寸比所在翼型的尺寸缩小1%~2%,所述翼端安装件15与所在翼型的间隙设有胶水,同时,所述的翼端安装件15上设置有减少自重的挖空部。

所述可变尾翼系统与第一襟翼2、第二襟翼3驱动连接,用于调节各襟翼工作状态,包括舵机17、连杆19,摇臂18和襟翼轴16,所第一襟翼2、第二襟翼3内的翼端安装件15分别与一根襟翼轴16固定连接,每根襟翼轴16及所述舵机17的输出端均连接有一根摇臂18,各摇臂18之间通过连杆19依次活动连接。

所述的格尼襟翼6的长度为所在翼片弦长的2%。

上述实施例设计过程中,包括以下过程及原理:

1)翼型的设计,首先是选型,根据翼型几何参数与升力阻力之间的关系,筛选出来部分翼型,对这些翼型在Profili软件分别两次生成所对应的极曲线图,通过翼型的升阻比例特性曲线以及攻角-气动力矩曲线图来综合地判断翼型的气动综合性能;其次是翼型的修剪,在VU-FOIL软件里调整翼型的几何参数,实时监控其升阻特性的变化,再调整来流速度与翼片的攻角,观测失速特性与气流分离时所对应的最大攻角,最终确定尾翼主翼翼型最大相对厚度12.84%,最大相对厚度位置30.6%,最大相对弯度10.20%,最大相对弯度位置49.3%,襟翼和前翼主翼翼型最大相对厚度12.83%,最大相对厚度位置20.0%,最大相对弯度7.63%,最大相对弯度位置49.9%;

2)组合翼的布置,首先根据目标赛车的发动机功率及整车参数确立空套设计目标,包括:前翼的组合布置:采用一块前翼主翼8,两块外襟翼9,四块内襟翼组成,内外襟翼不对称,由于前翼高度受限,所以将襟翼拆分为内外襟翼,外襟翼9只能装一片襟翼,但为了增加下压力,所以内襟翼采用两片,形成不对称结构,通过仿真的压力系数图来优化端板的形状,端板切割为弧形边沿,使整体轻量化;尾翼的组合布置:尾翼主翼1在最前端,第一襟翼2在尾翼主翼1翼梢末端,并且和尾翼主翼1翼梢末端有一小部分重叠和一定的间隙,第二襟翼3与第一襟翼2在第一襟翼2的翼梢末端有小部分的重叠与间隙,翼间的间隙主要会影响到组合翼的失速特性,翼间间隙与前一片翼的后缘可以形成文丘里管的结构,这样的结构一方面可以让气流在这里形成一个加速区,使气流流速增大,另一方面,翼片上表面的气流可以通过翼间间隙进行加速之后流经翼片下表面,对下表面的气流进行一些补充,从而延迟翼片失速的到来,利用这一性能,可以把第二襟翼3的攻角调高,使得整个组合翼的迎风面积增大,得到的升力也相应增多,同时大角度的襟翼也对尾翼主翼1上方的气流起到了一个很好的保压作用,使翼片上下表面的压差更大,最后进行自由流的二维仿真调整攻角达到最高的升阻比,根据大端板7的压力云图来把不必要的部分切除,同时对一些压差过大的地方进行切弧和切槽,从而疏导气体流动,起到减阻导流的效果,大端板7上沿布置百叶窗来减弱甚至消除大端板7上沿涡流的发生率,削弱涡流带来的阻力效应;在距离大端板7上沿10公分左右处布置百叶窗,来减弱甚至消除端板上沿涡流的发生率,削弱涡流带来的阻力效应;根据仿真结果,根据仿真结果,我们将二维组合翼的攻角暂定为尾翼主翼为4°、第一襟翼2最大为28°、第二襟翼3最大为51°

3)格尼襟翼6的设计,格尼襟翼6是加装在前翼以及尾翼最后一片翼片后沿上与翼片成一定角度的长条,长度为所在翼片弦长的2%;格尼襟翼6的结构非常简单,但是效果明显:它能在仅增加少量阻力的情况下使翼片的下压力大为提升;

4)减速翼的设计,气流在通过减速翼区域时,使其流速下降,根据伯努利定律,气流经减速之后所在区域的气动压力增大,这样就能在高压区安装减速翼,使得翼片上表面的压力增大,根据多次仿真调整,确定第一减速翼4在主翼正上方200mm处,攻角为0°,第二减速翼5攻角为28°;

5)可变尾翼系统采用舵机17,连杆19,摇臂18和襟翼轴16组成,如图4所示,三个翼端安装件15分别装进尾翼主翼1、第一襟翼2、第二襟翼3,在赛车行进过程中,改变尾翼的攻角,使尾翼在低下压力低阻力和高下压力高阻力两种工作状态之间,当赛车不需要大的下压力时尾翼转换为无攻角状态,减少空气阻力,提高车速,当赛车需要足够的下压力时,尾翼转换为有攻角状态,提供足够的下压力,利用舵机17设定其旋转角度进行切换,摇臂18即充当了杆件机构,它的作用是实现六杆机构的运动,并连接连杆19及翼片,襟翼轴16的作用是连接翼端安装件15和摇臂18,并且传递舵机17输出的扭力,来对襟翼的角度进行调节,使它在最大攻角与水平位置处相互转换,通过机构反置法,建立连杆机构,实现襟翼攻角的可调节性能,之后再根据襟翼的风压中心的位置,确定襟翼的转轴位置,从而设计出襟翼轴16以及与襟翼轴配套的摇臂18;

6)翼端安装件15的设计,它的作用为更好地组装尾翼主翼1和襟翼,其外形与翼型的形状一样,只是在尺寸上比原翼型的尺寸缩小了1%~2%,间隙来填充胶水,考虑轻量化设计,根据翼端安装件受到的分布载荷,施加约束之后,通过Hyperworks的拓扑优化,将多余的部分挖去如然后形成最终的零件。

(7)固定连接方案:考虑到整个空气动力学套件内部的连接固定可靠性,本实施例采用预埋件加螺栓连接尾翼的翼片和端板;采用预埋件加襟翼轴,螺栓固定可变尾翼系统;采用预埋件,螺栓连接前翼的襟翼与端板,采用耳片,螺栓和螺母连接前翼主翼8和端板。

本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1