无牵引杆的飞机牵引车的制作方法

文档序号:4146293阅读:289来源:国知局
无牵引杆的飞机牵引车的制作方法
【专利摘要】一种无牵引杆的飞机牵引车,其包括:装配在多个牵引车车轮上的底盘,所述多个牵引车车轮中的至少一些是可转向的牵引车车轮;飞机轮子支撑组件,其装配在底盘上,用于支撑飞机前起落架的可旋转的轮子;至少一个牵引车车轮驱动器,其用于驱动所述多个牵引车车轮旋转以提供所述底盘的移动;以及用于控制所述牵引车的速度的至少一个牵引车控制器,所述至少一个牵引车控制器使用至少一个反馈回路,所述回路利用所述机场上所述牵引车和所述飞机经过的行驶路径沿途的速度限度的绘图以及所述牵引车和所述飞机沿行驶路径的瞬时位置的读数。
【专利说明】 无牵引杆的飞机牵引车
[0001]本申请是申请号为200880024713.4、申请日为2008年4月2日、发明名称为“无牵引杆的飞机牵引车”的中国发明专利申请的分案申请。
[0002]相关申请参考
[0003]下列未公布的专利申请与本申请相关,因此其公开的内容以参考的方式并入:
[0004]于2006年9月28日提交的、名为“用于转移飞机的系统和方法”的第11/528,647号美国专利申请;于2007年5月16日提交的、名为“用于转移飞机的系统和方法”的第11/798,777号美国专利申请;于2007年9月24日提交的、名为“用于转移飞机的系统和方法”的第IL2007/001172号PCT专利申请;以及于2008年I月8日提交的、名为“用于转移飞机的系统和方法”的第IL2008/000036号PCT专利申请。
[0005]因此根据37CFR1.178(a) (4)和5(i)要求以下申请的优先权:于2007年5月16日提交的、名为“用于转移飞机的系统和方法”的第11/798,777号美国专利申请;于2007年9月24日提交的、名为“用于转移飞机的系统和方法”的第IL2007/001172号PCT专利申请;以及于2008年I月8日提交的、名为“用于转移飞机的系统和方法”的第IL2008/000036号PCT专利申请。
【技术领域】
[0006]本发明总体上涉及用于飞机地面运动的系统,更具体地涉及用于在机场移动飞机的地面车辆。
【背景技术】
[0007]可认为下列专利公开文本代表了本领域当前的技术水平:
[0008]第6,945,354 ;6,739,822 ;6,675,920 ;6,751,588 ;6,600,992 ;6,405,975 ;6,390,762 ;6,357,989 ;6,352,130 ;6,305,484 ;6,283,696 ;6,209,671 ;5,860,785 ;5,680,125 ;5,655,733 ;5,562,388 ;5,549,436 ;5,516,252 ;5,511,926 ;5,480,274 ;5,381,987 ;5,346,354 ;5,314,287 ;5,308,212 ;5,302,076 ;5,302,075 ;5,302,074 ;5,261,778 ;5,259,572 ;5,219,033 ;5,202,075 ;5,176,341 ;5,151,003 ;5,110,067 ;5,082,082 ;5,078,340 ;5,054,714 ;5,051,052 ;5,048,625 ;5,013,205 ;4,997,331 ;4,976,499 ;4,950,121 ;4,923,253 ;4,917,564 ;4,917,563 ;4,913,253 ;4,911,604 ;4,911,603 ;4,836,734 ;4,810,157 ;4,745,410 ;4,730,685 ;4,658,924 ;4,632,625 ;4,482,961 ;4,375,244 ;4,225,279 ;4,113,041 和 4,007,890 号美国专利;
[0009]第2003/095854号美国专利公开文本;
[0010]第W093/13985 ;W089/03343 和 W098/52822 号 PCT 专利公开本文;
[0011]第RU2302980 ;RU2271316 ;EP1623924 ;EP1190947 ;JP2279497 ;JP4138997 ;JP57070741 JP56002237 ;GB1249465 ;DE3844744 ;DE4446048 ;DE4446047 ;DE4131649 ;DE4102861;DE4009419 ;DE4007610 ;DE19734238 ;DE3534045 ;DE3521429 ;DE3327629 ;DE3327628 ;DE4340919 ;FR2581965 和 FR2675919 号专利公开文本。
【发明内容】

[0012]本发明寻求提供用于使飞机滑行的新型机器人牵弓I车。
[0013]因此根据本发明的优选实施例提供了一种无牵引杆的飞机牵引车,其包括:装配在多个牵引车车轮上的底盘,该多个牵引车车轮中的至少一些是可转向的牵引车车轮;基座组件,其装配在牵引车底盘上;飞机前轮支撑转台组件,其以可旋转的方式装配在基座组件上,用于支撑飞机前起落架的轮子;至少一个力传感器,其可用于检测由飞机飞行员控制的制动、减速和加速中的至少一种引起的沿至少一个近似水平的方向施加于飞机前起落架上的作用力;至少一个牵引车车轮驱动器单元,其用于驱动该多个牵引车车轮旋转以提供底盘的移动;至少一个牵引车车轮转向机构,其用于在飞机滑行期间使可转向的牵引车车轮转向;以及至少一个牵引车控制器,其用于至少部分响应于指示飞机飞行员控制的对飞机的制动的该至少一个力传感器的输出工作,从而操纵该至少一个牵引车车轮驱动器单元以减少因飞机飞行员控制的制动而施加于飞机前起落架上的作用力。
[0014]优选地,无牵引杆的飞机牵引车还包括至少一个旋转检测器,其用于检测至少因飞行员控制的飞机在地面上的转向引起的飞机前轮支撑转台组件相对于底盘的旋转,并且该至少一个牵引车控制器还至少用于控制该至少一个牵引车车轮转向机构的操作,该至少一个牵引车控制器至少部分响应于指示飞行员控制的飞机转向的该至少一个旋转检测器的输出工作,从而操纵该至少一个牵引车车轮转向机构以使可转向的牵引车车轮转向,从而使得底盘沿通过飞行员控制的转向指示的方向移动。
[0015]根据本发明的另一优选实施例还提供了一种无牵引杆的飞机牵引车,其包括:装配在多个牵引车车轮上的底盘,该多个牵引车车轮中的至少一些是可转向的牵引车车轮;飞机前轮支撑转台组件,其以可旋转的方式装配在底盘上,用于支撑飞机前起落架的可旋转的轮子;至少一个旋转检测器,其用于检测至少因飞行员控制的飞机在地面上的转向引起的飞机前轮支撑组件相对于底盘的旋转;至少一个牵引车车轮驱动器,其用于驱动该多个牵引车车轮旋转以提供底盘的移动;至少一个牵引车车轮转向机构,其用于使可转向的牵引车车轮转向;以及至少一个牵引车控制器,其至少用于控制该至少一个牵引车车轮转向机构的操作,该至少一个牵引车控制器至少部分响应于指示飞机飞行员控制的飞机转向的该至少一个旋转检测器的输出工作,从而操纵该至少一个牵引车车轮转向机构以使可转向的牵引车车轮转向,从而使得底盘沿通过飞行员控制的转向指示的方向移动。
[0016]优选地,飞机前轮支撑转台组件通过轴承以可旋转的方式装配在底盘上。优选地,无牵引杆的飞机牵引车还包括至少一个能量吸收器组件,其装配在飞机前轮支撑转台组件和底盘之间以吸收因牵引车的惯性力产生的能量,否则这些能量将作用在飞机的前起落架上。
[0017]优选地,无牵引杆的牵引车还包括至少一个飞机轮子接合组件,其用于将飞机轮子置于飞机前轮支撑转台组件上以使飞机前起落架的水平旋转中心位于飞机前轮支撑转台组件相对于底盘的旋转中心上。另外,该至少一个飞机轮子接合组件还可用于将飞机前起落架的轮子保持在合适位置上,以使飞机前起落架的轮子的水平旋转中心位于飞机前轮支撑转台组件相对于底盘的旋转中心上。作为补充或作为选择,该至少一个飞机轮子接合组件可适应飞机轮子的尺寸以便将飞机轮子置于飞机轮子支撑组件上,以及将飞机轮子恰当保持在该位置上以使飞机前起落架的轮子位于飞机前轮支撑转台组件相对于底盘的旋转中心上。
[0018]优选地,飞机前轮支撑转台组件相对于底盘以可枢转的方式装配以在飞机运动期间允许飞机前起落架的轮子的倾斜。作为补充或作为选择,无牵引杆的飞机牵引车具有用于飞机后推的、由牵引车驾驶员控制的操作模式,和用于飞机在后推和着陆中的至少一个之后的滑行过程中的运动的、由飞机飞行员控制的操作模式。
[0019]优选地,无牵引杆的飞机牵引车具有用于飞机在后推和着陆中的至少一个之后的滑行过程中的运动的自主操作模式。此外,在该自主操作模式下,牵引车控制器可以对从机场命令和控制中心处接收到的命令作出响应。作为补充或作为选择,在该自主操作模式下,牵引车控制器可以对预先编程的驾驶路径和速度限度作出响应,以及对通过装配在牵引车上的牵引车位置功能接收到的牵引车位置信息作出响应。
[0020]优选地,无牵引杆的飞机牵引车具有用于牵引车从起飞区返回预后推位置的自主操作模式。
[0021]优选地,无牵引杆的飞机牵引车具有牵引车速度控制功能,其允许牵引车在机场的不同位置上以高达不同速度限度的速度行驶。
[0022]优选地,该至少一个牵引车控制器可用于控制牵引车的加速和减速,从而限制作用到飞机前起落架上的作用力,该至少一个牵引车控制器使用至少一个力反馈回路,该回路利用来自该至少一个力传感器的输入以及以下输入中的至少一个:牵引车经过的飞机行进表面沿途的各个位置上的已知斜度的读数,其中这些位置通过牵引车位置和倾斜度检测功能被识别给该至少一个牵引车控制器;作用于飞机上的风力的读数;牵引车经过的飞机行进表面沿途的各个位置上的已知的牵引车和飞机滚动摩擦力的读数,其中这些位置通过位置检测功能被识别给该至少一个牵引车控制器;以及障碍物检测读数。在另一优选实施例中,该至少一个力反馈回路利用来自该至少一个传感器的输入和以下输入:牵引车经过的飞机行进表面沿途的各个位置上的已知斜度的读数,其中这些位置通过牵引车位置和倾斜度检测功能被识别给该至少一个牵引车控制器;作用于飞机上的风力的读数;牵引车经过的飞机行进表面沿途的各个位置上的已知的牵引车和飞机滚动摩擦力的读数,其中这些位置通过位置检测功能被识别给该至少一个牵引车控制器;以及障碍物检测读数。
[0023]优选地,该至少一个牵引车控制器可用于控制牵引车的速度和使用至少一个速度反馈回路,所述回路利用以下输入中的至少一个:牵引车经过的飞机行进表面沿途的各个位置上的已知的所需速度的读数,它是利用牵引车位置检测功能和指示沿途速度限度的预定飞机行进表面地图由该至少一个牵引车控制器获得;以及由飞机主控制器提供给该至少一个牵引车控制器的所需速度的信息。
[0024]优选地,该至少一个牵引车控制器可用于通过使用至少一个位置反馈回路控制牵引车的转向,其中所述回路至少利用了由该至少一个旋转检测器提供的飞机前起落架的轮子的旋转读数。
[0025]还根据本发明的又一优选实施例提供了一种无牵引杆的飞机牵引车,其包括:装配在多个牵引车车轮上的底盘,该多个牵引车车轮中的至少一些是可转向的牵引车车轮;飞机轮子支撑组件,其装配在底盘上,用于支撑飞机前起落架的可旋转的轮子;至少一个力传感器,其可用于检测沿至少一个近似水平的方向施加于飞机前起落架上的作用力;至少一个牵引车车轮驱动器,其可用于驱动该多个牵引车车轮旋转以提供底盘的移动;至少一个牵引车控制器,其可用于控制牵引车的加速和减速,从而限制作用到飞机前起落架上的作用力,该至少一个牵引车控制器使用至少一个力反馈回路,该回路利用来自该至少一个力传感器的输入以及以下输入中的至少一个:牵引车经过的飞机行进表面沿途的各个位置上的已知斜度的读数,其中这些位置通过牵引车位置和倾斜度检测功能被识别给该至少一个牵引车控制器;作用于飞机上的风力的读数;牵引车经过的飞机行进表面沿途的各个位置上的已知的牵引车和飞机滚动摩擦力的读数,其中这些位置通过位置检测功能被识别给该至少一个牵引车控制器;以及障碍物检测读数。
[0026]优选地,该至少一个牵引车控制器使用至少一个反馈回路,该回路利用来自该至少一个力传感器的输入和以下输入中的至少两个:牵引车经过的飞机行进表面沿途的各个位置上的已知斜度的读数,其中这些位置通过牵引车位置和倾斜度检测功能被识别给该至少一个牵引车控制器;作用于飞机上的风力的读数;牵引车经过的飞机行进表面沿途的各个位置上的已知的牵引车和飞机滚动摩擦力的读数,其中这些位置通过位置检测功能被识别给该至少一个牵引车控制器;以及障碍物检测读数。
[0027]优选地,该至少一个牵引车控制器使用至少一个反馈回路,该回路利用来自该至少一个力传感器的输入和以下所有输入:牵引车经过的飞机行进表面沿途的各个位置上的已知斜度的读数,其中这些位置通过牵引车位置和倾斜度检测功能被识别给该至少一个牵引车控制器;作用于飞机上的风力的读数;牵引车经过的飞机行进表面沿途的各个位置上的已知的牵引车和飞机滚动摩擦力的读数,其中这些位置通过位置检测功能被识别给该至少一个牵引车控制器;以及障碍物检测读数。
[0028]优选地,无牵引杆的飞机牵引车还包括至少一个能量吸收器组件,其装配在底盘上以吸收因牵引车的惯性产生的作用力,否则这些作用力将作用在飞机的前起落架上。作为补充或作为选择,飞机前轮支撑转台组件通过轴承以可旋转的方式装配在底盘上。
[0029]优选地,无牵引杆的牵引车还包括至少一个飞机轮子接合组件,其用于将飞机轮子置于飞机轮子支撑组件上,以使飞机前起落架位于飞机轮子支撑组件相对于底盘的旋转中心上。另外,该至少一个飞机轮子接合组件还可用于将飞机轮子保持在合适位置上,以使飞机前起落架的轮子位于飞机轮子支撑转台组件相对于底盘的旋转中心上。作为补充或作为选择,该至少一个飞机轮子接合组件可适应飞机轮子的尺寸以便将飞机轮子置于飞机轮子支撑组件上,以及将飞机轮子保持在合适位置上以使飞机前起落架位于飞机轮子支撑组件相对于底盘的旋转中心上。
[0030]优选地,该至少一个能量吸收器组件包括多个活塞,这些活塞在牵引车相对于飞机加速或减速时吸收能量。
[0031 ] 优选地,该至少一个牵弓I车控制器对来自机场命令和控制系统的输入信号作出响应。
[0032]还根据本发明的另一优选实施例提供了一种无牵引杆的飞机牵引车,其包括:装配在多个牵引车车轮上的底盘,该多个牵引车车轮中的至少一些是可转向的牵引车车轮;飞机轮子支撑组件,其装配在底盘上,用于支撑飞机前起落架的可旋转的轮子;至少一个牵引车车轮驱动器,其可用于驱动该多个牵引车车轮旋转以提供底盘的移动;以及至少一个可用于控制牵弓I车速度的牵弓I车控制器,该至少一个牵弓I车控制器使用至少一个反馈回路,该回路利用机场上牵引车和飞机经过的行驶路径沿途的速度限度的绘图以及牵引车和飞机沿行驶路径的瞬时位置的读数。
【专利附图】

【附图说明】
[0033]本发明将结合附图从以下详细描述中得到更为全面的理解和认识,在附图中:
[0034]图1A是根据本发明的优选实施例构造和工作的无牵引杆的飞机牵引车的示意图;
[0035]图1B是沿图1A中的线1B-1B截取的、根据本发明的优选实施例构造和工作的无牵引杆的飞机牵引车的剖面图;
[0036]图1C是图1A和IB的无牵引杆的飞机牵引车的顶视图;
[0037]图2A、2B、2C、2D、2E、2F、2G、2H、2I和2J分别是图1A — IC的无牵引杆的飞机牵引
车的预后推和后推操作中的各个阶段的示意图;
[0038]图3A、3B、3C、3D和3E分别是根据本发明一个实施例的图1A — IC的无牵引杆的飞机牵引车的由飞行员控制的滑行操作中的各个阶段的示意图;
[0039]图4A、4B、4C、4D和4E分别是根据本发明替换实施例的图1A — IC的无牵引杆的飞机牵引车的自主滑行操作中的各个阶段的示意图;
[0040]图5A、5B、5C、ro和5E分别是图1A — IC的无牵引杆的飞机牵引车的自主返回操作中的各个阶段的示意图;以及
[0041]图6A、6B和6C分别是图1A — IC的无牵引杆的飞机牵引车的转向功能的图解。【具体实施方式】
[0042]本发明涉及一种新型机器人牵引车,其用于在不使用飞机喷气发动机的情况下使飞机从库门滑行至起飞跑道。根据本发明的优选实施例,机器人牵引车优选工作在飞机飞行员控制的滑行模式下,在这种模式下,飞机飞行员进行转向和制动就好像飞机正在利用其自身的发动机动力运动一样,并且牵引车的速度由控制器控制。在飞机完成滑行时,在机场命令和控制系统的控制下,牵引车优选自主返回位于库门处的预后推位置。优选地,牵引车驾驶员执行后推操作,之后他离开牵引车,在滑行期间由飞机飞行员控制牵引车。根据本发明的替换实施例,牵引车可以在飞机滑行期间工作在自主操作模式下。贯穿全文,术语“自主的”被广义地使用以包括在机场命令、控制和通讯系统的控制下(优选是飞机飞行员优先)的操作。
[0043]现在参见图1A、1B和1C,它们示出了根据本发明的优选实施例构造和工作的无牵引杆的飞机牵引车100。如在图1A、1B和IC中所见,无牵引杆的牵引车100优选包括支撑于6个车轮上的底盘102,这6个车轮包括前转向轮104和106、后转向轮108和110以及中间的非转向轮112和114。可想到的是:作为选择,车轮112和114也可以是可转向的。分别用参考数字115、116、117和118标示的转向轮104、106、108和110的旋转中心优选定义出一个矩形的顶点,其中该矩形的长度A由牵引车100同侧上的相应前轮和后轮的旋转中心之间的间隔定义,其宽度B由相应前轮104和106的旋转中心115和116之间的间隔和相应后轮108和110的旋转中心117和118之间的间隔定义。
[0044]车轮104、106、108、110、112和114中的每一个均优选由对应的液压马达(未示出)以可控的方式驱动,其中液压马达由对应的液压泵(未示出)提供动力,所述液压泵由车辆的柴油发动机(未示出)驱动,以响应来自控制器119的速度和扭矩控制信号。转向轮104、106,108和110中的每一个均优选在一个或多个转向活塞(未示出)的作用下转向,以响应来自控制器119的转向控制信号。
[0045]驾驶员控制接口组件,其优选包括方向盘120、制动器(未示出)及可选地其它控制装置,优选与控制器119对接以便驾驶员能够在后推之前和后退期间、和/或者在出现紧急事件或牵引车控制系统故障的情况下控制无牵引杆的飞机牵引车100的操作。根据本发明的优选实施例,无牵引杆的飞机牵引车100借助控制器119在飞机飞行员的控制下(PIC)工作以滑行到或接近起飞点。在起飞点附近,响应于从机场命令和控制中心或牵引车位置传感器121 (诸如GPS传感器或任何其它合适的牵引车位置传感器)处接收到的命令,控制器119自动地使牵引车100脱离飞机,并且牵引车100在控制器119的控制下工作以从起飞点自主返回需要的预后推位置。牵引车100还优选配备有:风传感器122 ;输出给控制器119的一个或多个障碍物检测传感器123,诸如雷达和/或激光传感器(例如Velodyne HDL-64E激光扫描器);以及一个或多个驾驶相机124,其诸如通过远程命令和控制中心实现牵引车100的远程驾驶。驾驶相机124可以旋转从而具有可选择的云台,以使操作人员能够观察牵引车100上或其附近的不同位置。
[0046]根据本发明的优选实施例,可旋转的飞机前起落架的轮子的支撑转台125以可枢转且可旋转的方式装配在水平基座组件126上。用参考数字127标出的转台125的稳态旋转中心优选位于由各转向轮104、106、108和110的旋转中心115、116、117和118定义的矩形的几何中心上。
[0047]水平基座组件126以允许水平基座组件126相对于底盘102具有有限量的运动自由的方式连接底盘102,并且接合能量吸收器组件,其中所述吸收器组件优选包括多个能量吸收活塞128,并且每个活塞均以可枢转的方式耦联底盘102和水平基座组件126。力传感器(优选是负载传感器129)优选与能量吸收活塞128中的每一个均形成关联,其输出给控制器119并且被控制器119用来控制车辆的加速和减速。
[0048]水平基座组件126优选包括圆周基座元件130,其通过一对前面的悬吊式支撑件132悬挂到横向延伸的支撑棒131和悬挂在一对后面的悬吊式支撑件132上,以可枢转的方式被装配到底盘102上,其中后面的悬吊式支撑件132是以可枢转的方式装配到底盘102上的。悬吊式支撑件132接合以可枢转的方式装配的能量吸收活塞128。优选借助可枢转轴133将圆周基座元件130装配到悬吊式支撑件132上,其中轴133可以是或不是与圆周基座元件130 —体形成的。
[0049]转台125优选通过一对枢转棒134以可枢转且可旋转的方式装配到基座126上,其中枢转棒134向外伸出以接合具有高载荷能力的轴承135,轴承135接着接合形成于基座126中的360°圆周的轴承座圈136。这种结构使得转台125能够以相对较低的摩擦相对于基座元件130、水平基座组件126和底盘102旋转和倾斜。
[0050]转台125上固定装配有直立框架140以调整转台125上的飞机前起落架的轮子。优选通过锚固在转台125上的挡条定位活塞144以可选择的方式相对直立框架140定位飞机前起落架的轮子的挡条142,以使转台125适应飞机前起落架的轮子的不同尺寸。转台125的旋转方位优选由旋转传感器145 (诸如电位计)检测,所述传感器145向控制器119提供转台的旋转方位输入。转台125的旋转方位可由转台旋转马达146控制。
[0051]可选择性定位的夹具组件147优选被装配在转台125上并且连接直立框架140,它可用于选择性地将飞机前起落架的轮子夹紧在转台125上以使飞机前起落架的轮子的旋转中心尽可能地恰好落在转台125的旋转中心127处,而正如在上文中提及的那样,旋转中心127位于由转向轮104、106、108和110的旋转中心定义的矩形的几何中心上。
[0052]优选地,力传感器(诸如负载传感器148)被装配在可选择性定位的夹具组件147的前向表面以及挡条142的后向表面上以便接合飞机前起落架的轮子,从而检测水平面上的作用力,所述作用力是诸如由牵引车100的加速度和/或减速度相对于因此正被拖曳的飞机的加速度和/或减速度的差异引起的、施加于飞机前起落架的轮子上且因此施加于飞机前起落架上的作用力。
[0053]倾斜的飞机前起落架的轮子的斜坡150优选被装配在基座元件130上。优选提供一对飞机前起落架的轮子的接合活塞组件152来推动和提升飞机前起落架以及将飞机前起落架的轮子放置在转台125上。
[0054]本发明的一个特有的特征是:力传感器(诸如负载传感器148)可用于检测沿至少一个近似水平的方向施加于前起落架上的作用力,所述作用力至少来自飞机飞行员控制的飞机制动、引起牵引车减速以及来自牵引车的加速。控制器119用于至少部分响应力传感器的输出,向驱动牵引车100的车轮的液压马达提供速度和扭矩控制信号,该输出尤其指示引起飞机减速的飞机飞行员控制的制动。这种控制要将施加于飞机前起落架上的作用力减小和限制为最大容许作用力,所述最大容许作用力将不会因引起牵引车减速和/或牵引车加速的飞机飞行员控制的制动而对飞机前起落架造成破坏。
[0055]另外,本发明的一个特有的特征是:旋转传感器145可用于检测转台125相对于基座组件126的旋转(其中,这种旋转是借助飞机前起落架由飞机飞行员的转向引起的),控制器119可用于基于旋转传感器145的输出、从而响应于飞机飞行员的转向命令控制转向轮104、106、108 和 110 的转向。
[0056]本发明的另一特有的特征是:力传感器(诸如负载传感器129和148)可用于检测沿至少一个近似水平的方向施加于前起落架上的作用力,因此控制器119可用于通过使用至少一个力反馈回路来控制牵引车的加速和减速,其中所述回路利用了检测飞机员控制的制动的至少一个力传感器的输出,以及下列输入中的至少一个:
[0057]由牵引车100经过的飞机行进表面沿途的各个位置上的已知斜度引起的作用力的读数,其中这些位置通过位置检测功能被识别给控制器;
[0058]作用于飞机上的风力的读数,其中风力信息是从机场和/或装载于牵引车上的风传感器提供给控制器的;以及
[0059]牵引车经过的飞机行进表面沿途的各个位置上的已知的牵引车和飞机滚动摩擦力的读数,其中这些位置通过位置检测功能被识别给控制器。
[0060]本发明的另一特有的特征是:控制器119可用于通过使用至少一个速度反馈回路来控制牵引车100的速度,其中所述回路基于牵引车和飞机经过的行进路径沿途的已知速度限度(优选利用了嵌在控制器119中的合适的机场地图)以及指示牵引车100在牵引车100和飞机的行进路径沿途上的位置的牵引车位置传感器的输出。
[0061]根据本发明的实施例,在牵引车100的底盘102上装配一对激光测距仪154以确定飞机纵轴与牵引车100的纵轴之间的角度关系。特别地,在自主滑行操作模式(诸如下面在图4A - 4E中描述的)中使用飞机纵轴与牵引车100的纵轴之间的这种角度关系。
[0062]现在参见图2A、2B、2C、2D、2E、2F、2G、2H、2I和2J,它们分别是优选在牵引车驾驶员控制之下的、图1A -1C的无牵引杆的飞机牵引车的预后推和后推操作中的各个阶段的绘图。
[0063]如在图2A中看到的那样,根据本发明的优选实施例构造和操作的无牵引杆的飞机牵引车100在牵引车驾驶员的控制之下沿箭头200所示方向朝等待后推的飞机202移动。图2B示出了位于斜坡150上的前起落架的轮子204。图2C示出了前起落架的轮子的接合活塞组件152,其与前起落架的轮子204接合以推动和提升飞机前起落架并且将飞机前起落架的轮子放置在转台125上。图2D示出了通过挡条定位活塞144实现的飞机前起落架的轮子的挡条142相对直立框架140的、适于容纳特定飞机202的特定飞机前起落架的轮子204的定位。图2E示出了正被推到转台125上的前起落架的轮子204。
[0064]图2F示出了飞机前起落架的轮子204在活塞组件152的推动下抵靠合适设置的挡条142,使得飞机前起落架的轮子204的旋转轴优选尽可能地恰好位于转台125的旋转中心127,其中如上文提及的那样,中心127位于或靠近由转向轮104、106、108和110的旋转中心定义的矩形的几何中心。
[0065]图2G和2H示出了单个活塞组件152回缩脱离与飞机前起落架的轮子204的接合和可选择性定位的夹具组件147的单个夹具与飞机前起落架的轮子204接合的顺序,以将飞机前起落架的轮子夹紧到转台125上,以使飞机前起落架的轮子的旋转中心尽可能地恰好位于转台125的旋转中心127上。图21示出了在牵引车驾驶员控制之下牵引车100对飞机202的后推。图2J示出了牵引车驾驶员在后推完成之后离开牵引车100。根据本发明的替换实施例,驾驶员在滑行的整个或部分过程中留在牵引车100上,并且可以在发动机启动之后参与使牵引车脱离飞机。
[0066]现在参见图3A、3B、3C、3D和3E,它们分别是在具有控制器119的帮助的飞机飞行员控制之下的、图1A -1C的无牵引杆的飞机牵引车100的滑行操作中的各个阶段的绘图。
[0067]图3A示出了飞机飞行员利用常规的飞机转向舵柄206或踏板(未示出)使飞机前起落架的轮子204发生的旋转,这种旋转引起了转台125相对于基座元件130的相应旋转。转台125的旋转立即被旋转传感器145检测到,传感器145向控制器119提供输出,从而导致牵引车100的转向轮104、106、108和110的立即旋转,这将在下面参考图6A — 6B进行更详细的描述。
[0068]控制器119优选根据从旋转传感器145处接收输入的反馈控制回路执行牵引车100的转向,其中所述输入指示了飞机飞行员进行转向时的前起落架的轮子204、以及因此的转台125的方向与牵引车100的纵轴(在此用参考数字210标出)之间的角度α。控制器119使牵引车的转向轮104、106、108和110分别旋转角度31、32、33和β4 (这将在下面参考图6Α - 6C进行描述),驱动牵引车100使得角度α变为零。
[0069]图3Β示出了牵引车100运动过程中的中间阶段,其用于对牵引车100进行定向以使牵引车100沿飞机飞行员指示的方向拉动飞机202。在这个阶段,转台125和牵引车100的纵轴210之间的角度α被示出是图3Α中示出的角度的1/2。角度Y被标示于牵引车100的纵轴210和正被牵引车100拖曳的飞机202的纵轴(在此用参考数字220标出)之间,它是由牵引车100相对于飞机202的转动造成的。
[0070]图3C示出了牵引车100相对于飞机202的前起落架的轮子204被定向成使α为零。要注意:牵引车的转向轮104、106、108和110的角度β 2、03和04通常不为O。在这个阶段,牵引车100的纵轴210和正被牵引车100拖曳的飞机202的纵轴220之间的角度Y小于图3Β中的Y,这是因为飞机202已经开始转动了。
[0071]图3D示出了通过飞机飞行员压住踏板222对飞机202进行的制动。飞机202的制动通过飞机202的主起落架(未示出)上的制动器来实现,并且立即引起由夹具147上的负载传感器148检测的作用力的施加,控制器119接收传感器148的输出,并且立即使牵引车100减速。由于在飞机202的制动和牵引车100的相应减速之间存在时间延迟,因此作用力被施加到后能量吸收活塞128上,其立即被负载传感器129检测到。后能量吸收活塞128吸收由飞机202相对于牵引车100的制动产生的能量。在这个阶段,负载传感器129充当负载传感器148的备用设备。
[0072]图3Ε示出了由控制器119尤其响应于从力传感器(诸如负载传感器148和129)处接收到的输入控制的牵引车100的受控加速,其用于使飞机在飞机行进路径沿途的预定位置上的滑行速率落在预定的速度限度内以及确保作用于前起落架上的力不超出预定限度,其中考虑了下列因素中的一个或多个、优选全部:
[0073]由牵引车100经过的飞机行进表面沿途的各个位置上的已知斜度引起的作用力,其中这些位置通过位置检测功能(诸如GPS功能)被识别给控制器119,在此由装配在牵引车上的牵引车位置传感器121 (图1A - 1C)提供上述功能;
[0074]作用于飞机202上的风力,其中风力信息是从机场或装载于牵引车上的风传感器(诸如装载于牵引车上的风传感器122)、并且优选还通过机场命令和控制功能提供给控制器119的;以及
[0075]牵引车100经过的飞机行进表面沿途的各个位置上的牵引车100和飞机202的滚动摩擦力,其中这些位置通过牵引车位置传感器121所提供的位置检测功能、并且优选还通过机场命令和控制功能被识别给控制器119。
[0076]图3Ε还考虑了牵引车100的受控减速,所述减速不仅响应于飞机飞行员对飞机202的制动,还响应于障碍物传感器123 (图1A-1C)检测到的对障碍物的发觉。牵引车的减速是由控制器119尤其响应于从力传感器(诸如负载传感器148和129)处接收到的输入进行控制的,以确保飞机和牵引车之间协调的减速比,从而将作用在飞机202的前起落架上的力限制在预定的作用力限度内。
[0077]为区分前起落架上的正常牵引力和因飞行员实施制动而施加的作用力,控制器119考虑上述因素中的一个或多个、优选全部,其中这些因素是通过来自各个传感器(诸如传感器120、121、122和123)和相机124的数据来指示的。
[0078]控制器Il9可用于控制牵引车100的加速和减速以便优选通过利用速度控制反馈回路来保持需要的牵引车速度。控制器119内嵌有指示牵引车行进路径的各个区域上的相关牵引车速度限度的机场地图。这种速度限度信息与指示牵引车100瞬时位置的信息(其优选由牵引车位置传感器121提供)相匹配。控制器119优选包括指示牵引车100瞬时速度的惯性导航系统。反馈回路用于使实际速度尽可能接近、但不超出牵引车100的瞬时位置上的速度限度。[0079]控制器119还可用于优选地利用作用力控制反馈回路,控制牵引车100的加速和减速,以将作用在飞机202的前着落架上的水平作用力限制在可接受的限度(其当前是飞机总重量的6%)内。控制器119接收来自负载传感器148和129的输入,所述输入指示了尤其由风、斜度、滚动摩擦以及飞机202和/或牵引车100的加速或减速引起的作用于飞机202的前起落架上的作用力的总和。作用力反馈回路可用于使牵引车100加速或减速以将负载传感器148和129所检测到的作用力完全维持在可接受限度之下,从而为飞机202或牵引车100的意外加速或减速留出余量。
[0080]现在参考图4A、4B、4C、4D和4E,它们是根据本发明的替换实施例的图1A — IC的无牵引杆的飞机牵引车100的自主滑行操作中的不同阶段的绘图。这种自主滑行操作可以在后推完成之后由牵引车100的驾驶员启动或者响应于机场命令和控制中心的命令自动启动。
[0081]在自主滑行操作中,转台125的功能是通过将前起落架的轮子204的位置保持在飞机飞行员最近选定的位置(其通常与飞机纵轴220平行)上来将在水平面上作用于前起落架上的作用力(特别是扭矩)减为零。因此,在牵引车100沿其行进路径改变朝向时,前起落架保持在该位置上。这意味着在牵弓I车100的大部分转向操作中,转台将沿着与牵弓I车100相反的方向转动。
[0082]飞机飞行员可以通过操作主起落架上的飞机制动器来立即超控自主牵引车控制,而所述操作会立即被负载传感器148和129检测到。
[0083]自主滑行优选使用机场命令和控制中心的增强的C4功能,该功能利用以下输入来协调和优化机场上的所有滑行飞机的滑行路径和速度:
[0084]在机场上滑行的所有飞机的位置;
[0085]关于所有飞机滑行间隙和滑行路径的计算;以及
[0086]机场气象条件和滑行道地面行驶条件。
[0087]这种增强的C4功能优选提供以下功能:
[0088]避免发生跑道侵占;
[0089]为所有飞机计算最佳滑行速度以在滑行过程中保证最小的启动和停止时间;
[0090]使滑行道上的交通堵塞最小化;以及
[0091]允许在发生故障或紧急事件时立即由飞行员控制。
[0092]图4A示出了在自主滑行操作开始时牵引车100和飞机202的初始方位。飞机前起落架的轮子204与牵引车100的纵轴210和飞机的纵轴220平行。牵引车100的转向轮104、106、108和110也与轴线210和220平行。
[0093]图4B示出了牵引车100在控制器119控制下的初始转动,其优选是响应于从机场命令和控制系统250处接收到的交通控制指令发生的,该系统250可以基于C4(命令、控制&通讯中心)系统。如在图4B中看到的那样,在该实施例中,除进行紧急制动以外,飞机飞行员未使用常规的飞机转向舵柄206或踏板(未示出)。牵引车100响应于来自控制器119的合适指令通过牵引车100的转向轮104、106、108和110的旋转实现需要的转向。为避免将扭矩施加到飞机202的前起落架上,转台125通过转台旋转马达146旋转与牵引车纵轴210和飞机纵轴220之间的角度α大小相等、方向相反的角度-α。转台125的旋转被旋转传感器145检测到,传感器145向控制器119提供反馈输出。[0094]控制器119优选根据两个反馈控制回路通过使转向轮104、106、108和110转向来实现牵引车100的转向,并且通过转台旋转马达146来实现转台125的旋转。一个反馈回路确保牵引车100的朝向遵循机场命令和控制系统250所建立的预定行进路径。第二反馈回路使用激光测距仪154来确保前起落架的轮子204与飞机的纵轴220平行对齐。激光测距仪154确定牵引车100的纵轴210和飞机202的纵轴220之间的角度α。控制器119确保转台125相对于纵轴210旋转角度- α,以确保前起落架的轮子204始终与飞机的纵轴220保持对齐。
[0095]图4C示出了更进一步的牵引车100的旋转阶段。在这一阶段,牵引车100的纵轴210和飞机202的纵轴220之间的角度α以及转台125和牵引车100的纵轴210之间的角度-α被示出是在图4Β中示出的角度的两倍。
[0096]图4D示出了通过飞机飞行员(优选通过飞机飞行员压下制动踏板222)实现的对自主操作模式的超控。这种超控可用于紧急制动和/或用于让飞机飞行员控制牵引车100的转向,如上面参考图3Α — 3Ε描述的那样。飞机202的制动通过飞机202的主起落架(未示出)上的制动器来实现,并且立即引起由夹具147上的负载传感器148检测的作用力的施力口,控制器119接收传感器148的输出,并且立即使牵引车100减速。
[0097]控制器119自动中止牵引车100的自主模式操作,并且使牵引车恢复为由飞机飞行员控制的操作,正如上面参考图3Α - 3Ε描述的那样。
[0098]由于在飞机202的制动和牵引车100的相应减速之间存在时间延迟,因此作用力被施加到后能量吸收活塞128上,其立即被负载传感器129检测到。后能量吸收活塞128吸收由飞机202相对于牵引车100的制动产生的能量。在这个阶段,负载传感器129充当负载传感器148的备用设备。
[0099]自主模式操作的恢复通常需要来自机场命令和控制系统250的输入或者通过电子飞行包(EFB)(以色列的Astronautics有限公司有售)传送的飞行员的命令。
[0100]图4E示出了在自主操作模式下牵引车100的受控加速,其由控制器119尤其响应于从机场命令和控制中心250以及力传感器(诸如负载传感器148和129)处接收到的输入控制,用于使飞机在飞机行进路径沿途的预定位置上的滑行速率落在预定的速度限度内以及确保作用于前起落架上的力不超出预定限度,其中考虑了下列因素中的一个或多个、优选全部:
[0101]由牵引车100经过的飞机行进表面沿途的各个位置上的已知斜度引起的作用力,其中这些位置通过位置检测功能(诸如GPS功能)被识别给控制器119,在此由装配在牵引车上的牵引车位置传感器121 (图1A - 1C)提供上述功能;
[0102]作用于飞机202上的风力,其中风力信息是从机场或装载于牵引车上的风传感器(诸如装载于牵引车上的风传感器122)、并且优选还通过机场命令和控制功能提供给控制器的;以及
[0103]牵引车100经过的飞机行进表面沿途的各个位置上的牵引车和飞机的滚动摩擦力,其中这些位置通过牵引车位置传感器121所提供的位置检测功能、并且优选还通过机场命令和控制功能被识别给控制器119。
[0104]图4E还考虑了牵引车100的受控减速,所述减速不仅响应于飞机飞行员对飞机202的制动,还响应于障碍物传感器123或驾驶相机124之一(图1A-1C)检测到的对障碍物的发觉或者从机场命令和控制中心250处接收到的控制指令。牵引车的减速是控制器119尤其响应于从力传感器(诸如负载传感器148和129)处接收到的输入进行控制的以确保飞机和牵引车之间协调的减速比,从而将作用在飞机202的前起落架上的力限制在预定的作用力限度内。
[0105]为区分前起落架上的正常牵引力和因飞行员实施制动而施加的作用力,控制器119考虑上述因素中的一个或多个、优选全部,其中这些因素是通过来自各个传感器(诸如传感器120、121、122和123)的数据来指示的。
[0106]控制器Il9可用于控制牵引车100的加速和减速以便优选通过利用速度控制反馈回路来保持需要的牵引车速度。控制器119内嵌有指示牵引车行进路径的各个区域上的相关牵引车速度限度的机场地图。这种速度限度信息与指示牵引车100瞬时位置的信息(其优选由牵引车位置传感器121提供)相匹配。控制器119优选包括指示牵引车100瞬时速度的惯性导航系统。反馈回路用于使实际速度尽可能接近、但不超出牵引车100的瞬时位置上的速度限度。
[0107]控制器119还可用于控制牵引车100的加速和减速以优选通过利用作用力控制反馈回路将作用在飞机202的前着落架上的水平作用力限制在可接受的限度(其当前是飞机总重量的6%)内。控制器119接收来自负载传感器148和129的输入,所述输入指示了尤其由风、斜度、滚动摩擦以及飞机202和/或牵引车100的加速或减速引起的作用于飞机前起落架的作用力的总和。作用力反馈回路可用于使牵引车100加速或减速以将负载传感器148和129所检测到的作用力完全维持在可接受的前起落架作用力限度之下,从而为飞机202或牵引车100的意外加速或减速留出余量。
[0108]当工作在图4A - 4E所示的自主滑行操作模式下时(其中牵引车100和所拖曳的飞机202的滑行速度通常是飞机飞行员控制的滑行操作模式下的速度),本发明的特殊特征是:飞机飞行员可以通过应用飞机制动器和利用飞机舵柄206继续实施牵引车的转向来超控该自主系统以切换到飞机飞行员控制的操作模式下。飞机飞行员还可以在紧急状况下应用飞机制动器。
[0109]因为机场上所有飞机的地面运动均由命令和控制系统250以一体的方式进行管理,在自主滑行操作模式下提供了有效的滑行操作,由此避开等待起飞的飞机的线路。在图4E中可以看到,命令和控制系统250将所有飞机的运动一体化,以使飞机在滑行过程中之间保持需要的间距和尽可能地避免启动和停止运动。
[0110]现在参见图5A、5B、5C、5D和5E,它们分别是图1A-1C的无牵引杆的飞机牵引车100通过控制器119在机场指挥塔中的命令和控制系统的控制之下的自主操作模式中的各个阶段的绘图,其中所述阶段是用于牵引车滑行运动和牵引车100从起飞区返回预后推位置的。
[0111]图5A、5B和5C示出了牵引车100与飞机前起落架的轮子204的脱离。可认识到的是:通常是在飞机飞行员已启动飞机发动机之后执行牵引车100与飞机的脱离。在本发明的一个实施例中,命令和控制系统250命令牵引车100实施脱离。作为选择,牵引车的脱离是在起飞点附近的预定脱离位置上由所检测到的牵引车的位置自动触发的。脱离指令优选以无线的方式传给控制器119。响应于脱离牵引车的指令,可选择性定位的夹具组件147解除与飞机前起落架的轮子204的夹紧接合,牵引车100向前移动,同时飞机飞行员对飞机202实施制动并且控制飞机舵柄206,让飞机前起落架的轮子滚下斜坡150并且在斜坡150相对前移时保持前起落架与飞机220的纵轴平行。
[0112]根据其中在牵引车100上存在安全驾驶员的本发明的替换实施例(未示出),脱离可以由安全驾驶员以常规方式实现,并且通常伴随有由安全驾驶员断开声音通信线。
[0113]图示出了由控制器119控制的牵弓丨车的受控加速和转向,其用于使牵弓I车在从起飞区到预后推位置的预定牵引车自主行进路径沿途的预定位置上的行驶速度落在预定速度限度内,其中考虑了以下因素中的一个或多个、优选全部:
[0114]由牵引车位置传感器121指示的牵引车100的瞬时位置;
[0115]从传感器123或相机124处接收到的障碍物发觉信息;
[0116]由机场命令和控制系统250提供的、有关牵引车行进路径沿途上的其它车辆的位置的实时信息;以及
[0117]指示从起飞位置到预后推位置的牵引车100的一条或多条预定行进路线的信息。该信息可以保存在控制器119中,或者由机场命令和控制系统250实时提供。
[0118]图5E示出了在预后推位置上由控制器119控制的牵引车的受控减速和停泊。
[0119]现在参见图6A、6B和6C,它们分别是实现飞机202梯形转向的、图1A — IC的无牵引杆的飞机牵引车100的转向功能的图解。
[0120]参见图6A,其示出了飞机202,其中飞机202的前起落架的轮子204沿着飞机202的纵轴220笔直向前行进,要注意以下参数规定:
[0121]L=沿飞机202的纵轴220位于前起落架的轮子204的旋转中心302与连接主起落架(此处用参考数字306和308标出)的线304之间的距离;
[0122]A=连接牵引车100的后转向轮108和110的中心的线310与连接前转向轮104和106的中心的线312之间的纵向距离;
[0123]B=牵引车100的车轮108和110中心之间的横向距离以及车轮104和106中心之间的横向距离;以及
[0124]C=沿线304的位于主起落架306和308之间的距离。
[0125]图6B示出了飞机202,其中飞机202的前起落架的轮子204响应飞机飞行员利用舵柄206实施的转向转动角度α,从而引起转台125相对于牵引车100的底盘102的相应旋转。控制器119引起牵引车的转向轮104、106、108和110的旋转,以便对牵引车100重新定向使得α变为零,正如上面参考图3Α-3Ε描述的那样。控制器119还控制牵引车100的运动以便根据以下参数如图6Β中示出的那样形成飞机202的梯形转向:
[0126]R+C/2=飞机202的瞬时旋转半径;
[0127]α =前起落架的轮子204相对于飞机202的纵轴220的旋转角度;以及
[0128]β尸牵引车100的轮子的转向角(i=104、106、108和110)。
[0129]优选地,作为α的函数的β i的计算如下:
[0130]L/[R+C/2]=tana >>>>R=L/tan a -C/2
[0131]tan β 1(l8=[L_A/2cos a -B/2sin α ] / [L/tan a +A/2_B/2sin α ]
[0132]tan β 110= [L_A/2cos a + (A/2tan a +B/2) sin a ] / [L/tan a + (A/2tan α +B/2)cos a ]
[0133]tan β 104=[L+A/2cos a +B/2sin a ] / [L/tan a -A/2+B/2sin a ][0134]tan β 106= [L+A/2cos a - (A/2tan a +B/2) sin a ] / [L/tan a - (A/2tan α +B/2)cos a ]
[0135]图6C示出了根据优选的牵引车转向算法的牵引车100的操作,牵引车100由此相对于飞机202被重新定向以使a为O。如上面参见图3A-3E提及的那样,控制器119通过如上述那样旋转牵引车的转向轮104、106、108和110来对牵引车100重新定向,以使由旋转传感器145检测的角度α减为O。控制器119优选可用于形成牵引车100的方位,以使牵引车拖曳的飞机202的瞬时旋转半径R+C/2与飞机202自身的瞬时旋转半径R+C/2—致,从而使得在图3A-3E的实施例中,不管飞机是由牵引车100拉动还是利用其自身动力前进,飞机的飞行员都以相同的方式使飞机转向。
[0136]本领域技术人员将认识到:本发明不受已特别示出且在上文中描述过的内容的限制。更确切地,本发明包括上述各种特征的组合和子组合以及阅读了上述描述的本领域技术人员可作出的且不属于现有技术的改进。
【权利要求】
1.一种无牵引杆的飞机牵引车,其包括: 装配在多个牵弓I车车轮上的底盘,所述多个牵弓I车车轮中的至少一些是可转向的牵弓I车车轮; 飞机轮子支撑组件,其装配在底盘上,用于支撑飞机前起落架的可旋转的轮子; 至少一个牵引车车轮驱动器,其用于驱动所述多个牵引车车轮旋转以提供所述底盘的移动; 用于控制所述牵弓I车的速度的至少一个牵弓I车控制器,所述至少一个牵弓I车控制器使用至少一个反馈回路,所述回路利用所述机场上所述牵引车和所述飞机经过的行驶路径沿途的速度限度的绘图以及所述牵引车和所述飞机沿行驶路径的瞬时位置的读数。
【文档编号】B64F1/22GK103803096SQ201310654571
【公开日】2014年5月21日 申请日期:2008年4月2日 优先权日:2007年5月16日
【发明者】兰·布莱尔, 阿里·佩里 申请人:以色列宇航工业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1