高阻隔生物降解自立袋及其制备方法与流程

文档序号:20191944发布日期:2020-03-27 19:45阅读:371来源:国知局

本发明属于食品包装领域,涉及一种封条式自立袋,更具体的说是涉及一种高阻隔生物降解自立袋及其制备方法。



背景技术:

自立袋最早发明于1963年,在上世纪90年代从美国推广开来,并逐渐被全球认可,如今已渗透于我们生活中的多个角落。目前,自立袋主要分为普通自立袋,带吸嘴的自立袋,封条式自立袋,防嘴型自立袋和异形自立袋五个基本类型。其中带拉链的自立袋在我们的生活中应用十分广泛,例如坚果,糖果,饼干,果冻等食品包装领域。

封条式自立袋由两个主要部分组成,自封条和多层复合高阻隔袋体。其中自封条的主材质为pe或pp,采用挤出成型的工艺制备而成。多层复合高阻隔袋体一般包括印刷层,粘结层,阻隔层,热封层等,其中最为关键的是阻隔层,目前大量使用的阻隔层材料主要有pet,尼龙,evoh,铝箔,镀铝膜等。封条式自立袋的使用给我们的生活带来了很大便利,但大量废弃的封条式自立袋同时给我们的环境造成了严重的“白色污染”,且由于袋体的多层复合结构,使材料的回收面临着巨大的技术障碍和高昂的回收成本。推广使用生物降解自立袋被认为是解决这一问题最为根本和有效的途径。

那么高阻隔生物降解自封条和多层复合高阻隔生物降解袋体的开发无疑成为制备封条式生物降解自立袋的关键。

申请公布号为cn109627703a的发明专利公开了一种生物降解自封条的制备方法,仅采用pla和pbat两种材料通过简单的共混挤出后即可制备出封合性能良好的生物降解自封条,与淋膜无纺布复合后制备成了拉链袋。但由于其封条主材质为pla和pbat,而这两种材质的氧气透过率和水蒸气透过率都很大,因此该种方法制备的生物降解封条无法应用于对阻隔性要求较高的自立袋包装上。

对于生物降解高阻隔薄膜的研制已有大量的科研工作者做了细致的工作,并取得了不错的成果。例如:

北京印刷学院的张新林等人利用等离子体增强化学气相沉积法在pla表面制备siox阻隔层,使得pla的阻隔性大幅度提高。但该方法制备薄膜成本较高,在工业化推广中具有很大障碍。

美国natureworks公司制备了综合性能优良的pla镀铝膜,与纸张复合后制备出了高阻隔生物降解膜,并成功制备成了包装袋。但该复合材料降解后,铝会依然残存于自然界中且难以回收,有影响农作物品质和危害人畜健康的隐患。

日本吴羽公司通过申请公布号为cn101945749的发明专利公开了一种生物降解高阻隔薄膜,该方法首先通过双向拉伸的工艺制备出了一种阻隔性能优异的pga薄膜,然后采用层压法与纸张,聚乳酸,聚琥珀酸,聚己内酯等材料复合,可制备成生物降解的多层复合高阻隔薄膜。该种方法制备的多层复合生物降解薄膜阻隔性能确实优异,但双向拉伸设备投资十分巨大,多步层压制备工艺繁杂,生产成本较高,而且多步层压过程中在pga双向拉伸膜与其它材料层之间容易残存氧气及水蒸气,这对于降解速度很快的pga而言易造成性能的劣化。

在所有的生物降解塑料中,聚乙醇酸(pga)具有最佳的阻隔性,因此对于阻隔性要求较高的自立袋而言将是优选的材料。但pga本身存在着降解速度过快、熔点太高(与其它多种生物降解塑料不存在加工温度重合区)等缺点,这使得pga与其它生物降解塑料在共混改性及共挤过程中存在着很大难度。



技术实现要素:

解决的技术问题:针对现有不可降解封条式自立袋大量废弃后造成严重“白色污染”、回收难度大且成本高等现状,本发明提供了一种高阻隔生物降解自立袋及其制备方法,其设计原理思路为:

1、以多元复合改性技术为基础,优选熔点较低、阻隔性优异的刚性材料plga及阻隔性较佳的柔性材料ppc为主基材,回弹性较好的pbs为辅材,并加入反应性增容剂聚(n-丙酰基乙烯亚胺)、封端改性剂邻苯二甲酸酐(用以抑制plga和ppc在加工过程中的热氧降解)及复配爽滑剂,通过熔融共混的方式制备出高阻隔生物降解封条改性料;

2、在所述pbat中共混加入有机改性蒙脱土以改善pbat的阻隔性,加入超支化聚酯hyperc181以改善熔体的流动性,使其在共挤时与其它层熔体流动速率相匹配;

3、优选乙酰柠檬酸三丁酯增塑改性pga以降低其熔点温度,使其与其它层生物降解材料在共挤时有加工温度的重合区,加入聚醋酸乙烯酯以增加与其它层的粘结力;

4、采用马来酸酐封端改性ppc以抑制其在加工过程中的“解拉链”式降解,加入超支化聚酯hyperc100以改善熔体的流动性,使其在共挤时与其它层熔体流动速率相匹配;

5、将四层共挤和淋膜的工艺相结合,通过一次成型的工艺制备出五层复合高阻隔生物降解膜。

本发明需要保护的技术方案:

技术方案一

一种高阻隔生物降解自立袋的制备方法,包括如下步骤:

过程一、制备的高阻隔生物降解自封条

(1.1)备好原料配方,以下质量分数计为:乙交酯-丙交酯共聚物(plga)5~10份,二氧化碳基全降解塑料(ppc)60~70份,聚丁二酸丁二醇酯(pbs)20~30份,聚(n-丙酰基乙烯亚胺)1份,邻苯二甲酸酐0.5份,芥酸酰胺0.2份,纳米二氧化硅0.5份,白油0.3份。

(1.2)将步骤(1.1)中plga,ppc,pbs,聚(n-丙酰基乙烯亚胺),邻苯二甲酸酐,芥酸酰胺,纳米二氧化硅,白油混合均匀后加入到平行双螺杆挤出机(属于市售设备,为现有技术)中,熔融共混并风冷切粒,制备出高阻隔生物降解自封条改性料;

(1.3)将步骤(1.2)所制高阻隔生物降解自封条改性料加入到骨条挤出机(属于市售设备,为现有技术)中熔融挤出、水冷定型,收制成高阻隔生物降解自封条;

过程二、制备的五层复合高阻隔生物降解膜卷

(2.1)将pbat,有机改性蒙脱土,超支化聚酯hyperc181,白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出粘结层改性料;

(2.2)将pga,乙酰柠檬酸三丁酯,聚醋酸乙烯酯,抗氧剂168混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第一阻隔层改性料;

(2.3)将ppc,马来酸酐,抗氧剂1010,超支化聚酯hyperc100,白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第二阻隔层改性料;

(2.4)将步骤(2.1)、(2.2)、(2.3)制备的改性料和pbs,将此四种料分别加入到对应四层共挤流延机(为本领域常见设备,不是本发明技术方案公开的内容范围)对应的四个挤出机中,依次启动四台挤出机,通过调节各个挤出机的转速可制备出各层厚度不同的四层共挤流延膜,该膜自上而下依次为热封层、第二阻隔层、第一阻隔层、粘结层。待熔体流动稳定后,淋膜在单光白牛皮纸上,使单光白牛皮纸的粗糙面与熔体的粘结层接触,切边后收制成五层复合高阻隔生物降解膜卷,用于制备高阻隔生物降解袋体由外到内依次为:印刷层,粘结层,第一阻隔层,第二阻隔层,热封层;

(3)将步骤(1.3)制备的高阻隔生物降解自封条和步骤(2.4)制备的五层复合高阻隔生物降解膜卷通过贴骨三边封制袋机制备成高阻隔生物降解自立袋。

进一步,步骤(1.1)中所述的plga中,重复单元-och2co-占比在80%~90%,plga的重均分子量(mw)为100000~200000。

进一步,步骤(2.1)制备出粘结层改性料,以下重量分数原料配方为:聚己二酸/对苯二甲酸丁二酯(pbat)92份,有机改性蒙脱土7份,超支化聚酯hyperc1811份,白油0.3份。

进一步,步骤(2.2)制备出第一阻隔改性料,以下重量分数原料配方为:聚乙交酯(pga)90份,乙酰柠檬酸三丁酯5份,聚醋酸乙烯酯5份,抗氧剂1680.5份。

进一步,步骤(2.2)中所述的pga重均分子量(mw)为150000~300000,乙交酯残留量不大于0.3wt%。

进一步,步骤(2.3)制备出第二阻隔层改性料,以下重量分数原料配方为:二氧化碳基全降解塑料(ppc)100份,马来酸酐0.5份,抗氧剂10100.3份,超支化聚酯hyperc1000.5份,白油0.3份。

进一步,步骤(2.4)中挤出机挤出的流延膜中,所述的粘结层厚度为5~10微米。

进一步,步骤(2.4)中挤出机挤出的流延膜中,所述的第一阻隔层厚度为20~40微米。

进一步,步骤(2.4)中挤出机挤出的流延膜中,所述的第二阻隔层厚度为20~40微米。

进一步,步骤(2.4)中挤出机挤出的流延膜中,所述的热封层厚度为5~10微米,热封层材料为聚丁二酸丁二醇酯(pbs)。

进一步,步骤(2.4)中所述的单光白牛皮纸为印刷层,密度为50g/m2,厚度为65微米。

技术方案二

一种由上述制备方法制备获得的高阻隔生物降解自立袋,其特征在于,由高阻隔生物降解自封条和五层复合高阻隔生物降解袋体两部分组成。

有益效果:

与现有封条式自立袋相比,本发明所制高阻隔生物降解自立袋在工业堆肥状态下180天内生物降解率达90%以上,氧气透过率和水蒸气透过率更低,不含镀铝成分,制备工艺简单,生产成本较低,对于解决废弃自立袋造成的“白色污染”问题具有重要的意义。

具体实施方式

以下通过实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。

需要说明的是,本申请的实施例有较佳的实施性,并非是对本申请任何形式的限定。本申请实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。本申请优选实施方式的范围也可以包括另外的实现,且这应被本申请实施例所属技术领域的技术人员所理解。

对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限定。因此,示例性实施例的其它示例可以具有不同的值。

若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。

实施例中将自立袋尺寸设计为9×(14+3)cm,用于与对比实施例产品尺寸相统一。

实施例1:

(1)将5份plga(重复单元-och2co-占比为80%,mw为100000),70份ppc,25份pbs,1份聚(n-丙酰基乙烯亚胺),0.5份邻苯二甲酸酐,0.2份芥酸酰胺,0.5份纳米二氧化硅,0.3份白油混合均匀后加入到平行双螺杆挤出机中,熔融共混并风冷切粒,制备出高阻隔生物降解自封条改性料;

(2)将步骤(1)所制高阻隔生物降解自封条改性料加入到骨条挤出机中熔融挤出、水冷定型,收制成高阻隔生物降解自封条;

(3)将92份pbat,7份有机改性蒙脱土,1份超支化聚酯hyperc181,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出粘结层改性料;

(4)将90份pga(mw为150000,乙交酯残留量为0.15wt%),5份乙酰柠檬酸三丁酯,5份聚醋酸乙烯酯,0.5份抗氧剂168混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第一阻隔层改性料;

(5)将100份ppc,0.5份马来酸酐,0.3份抗氧剂1010,0.5份超支化聚酯hyperc100,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第二阻隔层改性料;

(6)将步骤(3)、(4)、(5)制备的改性料和pbs分别加入到四层共挤流延机对应的四个挤出机中,依次启动四台挤出机,通过调节各个挤出机的转速制备出粘结层厚度为5微米,第一阻隔层厚度为20微米,第二阻隔层厚度为40微米,热封层厚度为10微米的四层共挤流延膜,该膜自上而下依次为热封层、第二阻隔层、第一阻隔层、粘结层。待熔体流动稳定后,淋膜在单光白牛皮纸上,使单光白牛皮纸的粗糙面与熔体的粘结层接触,切边后收制成厚度为140微米的五层复合高阻隔生物降解膜卷;

(7)将步骤(2)制备的高阻隔生物降解自封条和步骤(6)制备的五层复合高阻隔生物降解膜卷通过贴骨三边封制袋机制备成高阻隔生物降解自立袋,自立袋尺寸为9×(14+3)cm。

实施例2:

(1)将10份plga(重复单元-och2co-占比为90%,mw为200000),60份ppc,30份pbs,1份聚(n-丙酰基乙烯亚胺),0.5份邻苯二甲酸酐,0.2份芥酸酰胺,0.5份纳米二氧化硅,0.3份白油混合均匀后加入到平行双螺杆挤出机中,熔融共混并风冷切粒,制备出高阻隔生物降解自封条改性料;

(2)将步骤(1)所制高阻隔生物降解自封条改性料加入到骨条挤出机中熔融挤出、水冷定型,收制成高阻隔生物降解自封条;

(3)将92份pbat,7份有机改性蒙脱土,1份超支化聚酯hyperc181,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出粘结层改性料;

(4)将90份pga(mw为300000,乙交酯残留量为0.1wt%),5份乙酰柠檬酸三丁酯,5份聚醋酸乙烯酯,0.5份抗氧剂168混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第一阻隔层改性料;

(5)将100份ppc,0.5份马来酸酐,0.3份抗氧剂1010,0.5份超支化聚酯hyperc100,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第二阻隔层改性料;

(6)将步骤(3)、(4)、(5)制备的改性料和pbs分别加入到四层共挤流延机对应的四个挤出机中,依次启动四台挤出机,通过调节各个挤出机的转速制备出粘结层厚度为5微米,第一阻隔层厚度为20微米,第二阻隔层厚度为40微米,热封层厚度为10微米的四层共挤流延膜,该膜自上而下依次为热封层、第二阻隔层、第一阻隔层、粘结层。待熔体流动稳定后,淋膜在单光白牛皮纸上,使单光白牛皮纸的粗糙面与熔体的粘结层接触,切边后收制成厚度为140微米的五层复合高阻隔生物降解膜卷;

(7)将步骤(2)制备的高阻隔生物降解自封条和步骤(6)制备的五层复合高阻隔生物降解膜卷通过贴骨三边封制袋机制备成高阻隔生物降解自立袋,自立袋尺寸为9×(14+3)cm。

实施例3:

(1)将10份plga(重复单元-och2co-占比为90%,mw为200000),70份ppc,20份pbs,1份聚(n-丙酰基乙烯亚胺),0.5份邻苯二甲酸酐,0.2份芥酸酰胺,0.5份纳米二氧化硅,0.3份白油混合均匀后加入到平行双螺杆挤出机中,熔融共混并风冷切粒,制备出高阻隔生物降解自封条改性料;

(2)将步骤(1)所制高阻隔生物降解自封条改性料加入到骨条挤出机中熔融挤出、水冷定型,收制成高阻隔生物降解自封条;

(3)将92份pbat,7份有机改性蒙脱土,1份超支化聚酯hyperc181,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出粘结层改性料;

(4)将90份pga(mw为300000,乙交酯残留量为0.1wt%),5份乙酰柠檬酸三丁酯,5份聚醋酸乙烯酯,0.5份抗氧剂168混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第一阻隔层改性料;

(5)将100份ppc,0.5份马来酸酐,0.3份抗氧剂1010,0.5份超支化聚酯hyperc100,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第二阻隔层改性料;

(6)将步骤(3)、(4)、(5)制备的改性料和pbs分别加入到四层共挤流延机对应的四个挤出机中,依次启动四台挤出机,通过调节各个挤出机的转速制备出粘结层厚度为10微米,第一阻隔层厚度为30微米,第二阻隔层厚度为30微米,热封层厚度为5微米的四层共挤流延膜,该膜自上而下依次为热封层、第二阻隔层、第一阻隔层、粘结层。待熔体流动稳定后,淋膜在单光白牛皮纸上,使单光白牛皮纸的粗糙面与熔体的粘结层接触,切边后收制成厚度为140微米的五层复合高阻隔生物降解膜卷;

(7)将步骤(2)制备的高阻隔生物降解自封条和步骤(6)制备的五层复合高阻隔生物降解膜卷通过贴骨三边封制袋机制备成高阻隔生物降解自立袋,自立袋尺寸为9×(14+3)cm。

实施例4:

(1)将10份plga(重复单元-och2co-占比为90%,mw为200000),70份ppc,20份pbs,1份聚(n-丙酰基乙烯亚胺),0.5份邻苯二甲酸酐,0.2份芥酸酰胺,0.5份纳米二氧化硅,0.3份白油混合均匀后加入到平行双螺杆挤出机中,熔融共混并风冷切粒,制备出高阻隔生物降解自封条改性料;

(2)将步骤(1)所制高阻隔生物降解自封条改性料加入到骨条挤出机中熔融挤出、水冷定型,收制成高阻隔生物降解自封条;

(3)将92份pbat,7份有机改性蒙脱土,1份超支化聚酯hyperc181,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出粘结层改性料;

(4)将90份pga(mw为300000,乙交酯残留量为0.1wt%),5份乙酰柠檬酸三丁酯,5份聚醋酸乙烯酯,0.5份抗氧剂168混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第一阻隔层改性料;

(5)将100份ppc,0.5份马来酸酐,0.3份抗氧剂1010,0.5份超支化聚酯hyperc100,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出第二阻隔层改性料;

(6)将步骤(3)、(4)、(5)制备的改性料和pbs分别加入到四层共挤流延机对应的四个挤出机中,依次启动四台挤出机,通过调节各个挤出机的转速制备出粘结层厚度为10微米,第一阻隔层厚度为40微米,第二阻隔层厚度为20微米,热封层厚度为5微米的四层共挤流延膜,该膜自上而下依次为热封层、第二阻隔层、第一阻隔层、粘结层。待熔体流动稳定后,淋膜在单光白牛皮纸上,使单光白牛皮纸的粗糙面与熔体的粘结层接触,切边后收制成厚度为140微米的五层复合高阻隔生物降解膜卷;

(7)将步骤(2)制备的高阻隔生物降解自封条和步骤(6)制备的五层复合高阻隔生物降解膜卷通过贴骨三边封制袋机制备成高阻隔生物降解自立袋,自立袋尺寸为9×(14+3)cm。

对比实验1:

本实施例在制备的五层复合高阻隔生物降解膜卷中省略第一阻隔层、第二阻隔层自立袋,用于与本发明制备获得五层复合的自立袋进行性能做比较。

(1)将10份plga(重复单元-och2co-占比为90%,mw为200000),70份ppc,20份pbs,1份聚(n-丙酰基乙烯亚胺),0.5份邻苯二甲酸酐,0.2份芥酸酰胺,0.5份纳米二氧化硅,0.3份白油混合均匀后加入到平行双螺杆挤出机中,熔融共混并风冷切粒,制备出高阻隔生物降解自封条改性料;

(2)将步骤(1)所制高阻隔生物降解自封条改性料加入到骨条挤出机中熔融挤出、水冷定型,收制成高阻隔生物降解自封条;

(3)将92份pbat,7份有机改性蒙脱土,1份超支化聚酯hyperc181,0.3份白油混合均匀后一起加入平行双螺杆挤出机中,熔融共混并风冷切粒,制备出粘结层改性料;

(4)将步骤(3)备的改性料和pbs分别加入到两层共挤流延机对应的两个挤出机中,依次启动两台挤出机,通过调节各个挤出机的转速制备出粘结层厚度为35微米,pbs层厚度为40微米的两层共挤流延膜,该膜上层为热封层,下层为粘结层。待熔体流动稳定后,淋膜在单光白牛皮纸上,使单光白牛皮纸的粗糙面与熔体的粘结层接触,切边后收制成厚度为140微米的三层复合高阻隔生物降解膜卷;

(5)将步骤(2)制备的高阻隔生物降解自封条和步骤(4)制备的三层复合高阻隔生物降解膜卷通过贴骨三边封制袋机制备成高阻隔生物降解自立袋,自立袋尺寸为9×(14+3)cm。

对比实验2:

目前市场上大量生产和使用的封条式自立袋产品,根据其产品说明披露,袋体材质为牛皮纸+pet+cpp三层复合材料。为不可降解材料。

用于对比实验,购置传统封条式自立袋,具体产品型号为:袋体材质为牛皮纸+pet+cpp三层复合材料,袋体单层厚度为140微米,自立袋尺寸为9×(14+3)cm。

实施例5:

本实施例旨在对实施例1~4和对比实验2所制自立袋袋体材料的物理机械性能(包括拉断力和热封合强度)进行评价。物理机械性能能的测试在万能拉伸试验机(cmt-4304,深圳新三思有限公司)上进行,其中拉断力的检测依照gb/t1040.3-2006,试验速率为250mm/min,热封合强度依照qb/t2358-1998,试验速率为300mm/min,检测结果详见表一。

表一不同自立袋袋体材料的物理机械性能

由表一实施例和对比实验可以得出,本发明提供的高阻隔生物降解自立袋袋体材料具有与传统市售自立袋一样优异的物理机械性能。当第一阻隔层的厚度达到30微米时,已具有超过传统自立袋袋体材料的拉断力;本发明所制高阻隔生物降解自立袋袋体材料的热封合强度与传统自立袋基本相当。

实施例6:

本实施例旨在对实施例1~4和对比实验1~2所制自立袋袋体材料的阻隔性能(包括水蒸气透过量和氧气透过量的测试)和自立袋的密封性能进行评价。其中水蒸气透过量(wvt)的检测依照gb/t1037-1988在w3/031水蒸气透过率测试仪上进行,实验条件为:温度38±0.6℃,相对湿度90%±2%,测试面积33cm2;氧气透过量(o2tr)的检测依照gb/t1038-2000在vac-v2压差法气体渗透仪中进行,实验条件为:温度23±2℃,相对湿度0%;密封性能的检测依照gb/t15171-1994在密封性测试仪上进行,试验按照方法二a进行。相关检测结果详见表二。

表二不同自立袋的阻隔性能及密封性能

通过表二中数据可以看出,本发明所制高阻隔生物降解自立袋的氧气透过量显著低于传统自立袋的氧气透过量,当第一阻隔层厚度达到40微米时,高阻隔生物降解自立袋的水蒸气透过量也低于传统自立袋,综合来看本发明提供的高阻隔生物降解自立袋阻隔性能优于传统自立袋;此外密封性能的测试结果表明本发明提供的高阻隔生物降解自立袋具有良好的密封性能。

本发明所用plga和pga为我公司自己生产,其他原料如pbat、ppc、pbs、聚(n-丙酰基乙烯亚胺)、马来酸酐、邻苯二甲酸酐、芥酸酰胺、纳米二氧化硅、白油、单光白牛皮纸、有机改性蒙脱土、超支化聚酯hyperc181、超支化聚酯hyperc100、乙酰柠檬酸三丁酯、聚醋酸乙烯酯、抗氧剂168、抗氧剂1010可从市场直接采购。

上述描述仅是对本申请较佳实施例的描述,并非是对本申请范围的任何限定。任何熟悉该领域的普通技术人员根据上述揭示的技术内容做出的任何变更或修饰均应当视为等同的有效实施例,均属于本申请技术方案保护的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1