接合结构体的制造方法及接合结构体与流程

文档序号:14186262阅读:114来源:国知局

本发明涉及一种接合结构体的制造方法及接合结构体。



背景技术:

以往,已知将包含树脂材料的第1构件与包含金属材料的第2构件接合的接合方法(例如,参照专利文献1)。

专利文献1的接合方法中,在第2构件的表面形成凹凸面,在使第1构件与所述凹凸面接触的状态下,自第1构件侧朝向凹凸面照射激光光。由此,在第1构件及第2构件的边界面附近第1构件熔融,所述熔融的第1构件陷入在凹凸面,因而通过锚定效应(anchoreffect)将第1构件及第2构件接合。

现有技术文献

专利文献

专利文献1:日本专利特开2006-15405号公报



技术实现要素:

发明所要解决的问题

此处,如所述接合方法那样,在通过锚定效应将第1构件及第2构件接合的情况下,一般而言,为了使第1构件及第2构件的边界面(接合面)密接而自外部施力。而且,若增大自外部施加的力,则熔融的第1构件容易进入至凹凸面,但有在包含树脂材料的第1构件产生热变形应变而诱发应力裂纹(stresscrack)之虞。

本发明是为了解决所述问题而完成者,本发明的目的在于提供一种能够一方面抑制在树脂构件产生热变形应变,一方面实现树脂构件对穿孔部的填充率的提高的接合结构体的制造方法及接合结构体。

解决问题的技术手段

本发明的接合结构体的制造方法为接合有金属构件及树脂构件的接合结构体的制造方法,且包括下述步骤:在金属构件的表面设置突部,在突部的接合区域形成具有开口的穿孔部;在使树脂构件与金属构件的表面隔开的状态下,使树脂构件加压接触至金属构件的突部的接合区域;以及使与金属构件的接合区域接触的树脂构件熔融,使所述熔融的树脂构件在填充至穿孔部后固化。

通过如此构成,与金属构件及树脂构件平坦且这些整个面接触的情况相比,可抑制施加至树脂构件的力被分散。即,可使施加至树脂构件的力集中在包含接合区域的金属构件及树脂构件的接触面。由此,可一方面抑制自外部施加至树脂构件的力增大,一方面有效率地使加压力作用于包含接合区域的接触面。因此,可一方面抑制在树脂构件产生热变形应变,一方面实现树脂构件对穿孔部的填充率的提高。

所述接合结构体的制造方法中,也可在树脂构件的表面设置突部,使树脂构件的突部加压接触至金属构件的突部的接合区域。

所述接合结构体的制造方法中,也可在树脂构件的表面设置凹部,使树脂构件的凹部加压接触至金属构件的突部的接合区域。

所述接合结构体的制造方法中,金属构件的突部也可形成为俯视时呈环状。

所述接合结构体的制造方法中,金属构件的突部也可设置着多个,且各突部分离。

本发明的接合结构体的制造方法是接合有金属构件及树脂构件的接合结构体的制造方法,且包括下述步骤:在金属构件的接合区域形成具有开口的穿孔部;在树脂构件的表面设置突部,在使树脂构件的突部以外的部分与金属构件的表面隔开的状态下,使树脂构件的突部加压接触至金属构件的接合区域;使与金属构件的接合区域接触的树脂构件熔融,使所述熔融的树脂构件在填充至穿孔部后固化。

在所述树脂构件设置着突部的接合结构体的制造方法中,也可在金属构件的表面设置凹部,在所述凹部设置接合区域。

在所述树脂构件设置着突部的接合结构体的制造方法中,树脂构件的突部也可形成为俯视时呈环状。

在所述树脂构件设置着突部的接合结构体的制造方法中,树脂构件的突部也可设置着多个,且各突部分离。

所述接合结构体的制造方法中,也可通过对金属构件照射第1激光光,而使树脂构件熔融。

所述情况下,也可多次扫描第1激光光。

所述接合结构体的制造方法中,也可通过对金属构件的接合区域照射第2激光光,而形成穿孔部。

所述情况下,第2激光光的一个脉冲也可包含多个次脉冲(subpulse)。

本发明的接合结构体为接合有金属构件及树脂构件的接合结构体。在金属构件及树脂构件中的至少一者的表面设置着突部,于在金属构件设置着突部的情况下,在所述突部设置着接合区域,于在树脂构件设置着突部的情况下,在与所述突部相向的位置的金属构件设置着接合区域。在金属构件的接合区域形成着具有开口的穿孔部,金属构件的穿孔部内填充着树脂构件。树脂构件的一部分与金属构件隔开,并且树脂构件与金属构件的接合区域接触。

发明的效果

根据本发明的接合结构体的制造方法及接合结构体,可一方面抑制在树脂构件产生热变形应变,一方面实现树脂构件对穿孔部的填充率的提高。

附图说明

图1是将本发明的第1实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图2是表示图1的接合结构体的金属构件的立体图。

图3是表示图1的接合结构体的树脂构件的立体图。

图4是用以说明第1实施方式的接合结构体的制造方法中,在金属构件形成穿孔部的步骤的图。

图5是用以说明第1实施方式的接合结构体的制造方法中,将金属构件与树脂构件接合的步骤的图。

图6是将本发明的第2实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图7是表示图6的接合结构体的树脂构件的立体图。

图8是将本发明的第3实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图9是表示图8的接合结构体的树脂构件的立体图。

图10是将本发明的第4实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图11是表示图10的接合结构体的金属构件的立体图。

图12是将本发明的第5实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图13是表示图12的接合结构体的金属构件的立体图。

图14是将本发明的第6实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图15是用以说明第6实施方式的接合结构体的制造方法中,将金属构件与树脂构件接合的步骤的图。

图16是将本发明的第7实施方式的接合结构体的接合部放大而表示的示意性剖面图。

图17是表示图16的接合结构体的金属构件的立体图。

图18是表示实施例1的接合结构体的金属构件的立体图。

图19是表示实施例1的接合结构体的树脂构件的立体图。

图20是表示实施例3的接合结构体的树脂构件的立体图。

图21是表示实施例7的接合结构体的金属构件的立体图。

图22是表示第1实施方式的第1变形例的金属构件的示意性剖面图。

图23是表示第1实施方式的第2变形例的金属构件的示意性剖面图。

图24是表示第1实施方式的第3变形例的金属构件的示意性剖面图。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。

(第1实施方式)

首先,参照图1~图3对本发明的第1实施方式的接合结构体100进行说明。

接合结构体100如图1所示,具备金属构件1及树脂构件2,且将金属构件1及树脂构件2接合。

金属构件1如图2所示,具有平坦的表面11,并且具有自所述表面11突出的突部12。突部12的剖面为矩形状,其端面(上端面)13设置着接合有树脂构件2的接合区域r。所述突部12形成为俯视时呈矩形的环状,以包围其内部空间s的方式设置。即,金属构件1中,接合区域r设置成俯视时呈矩形的环状。另外,接合区域r设置在例如端面13的整个区域。

另外,突部12的宽度优选为0.1mm~4.0mm。其原因在于,若突部12的宽度低于0.1mm,则有接合面积不足而无法获得接合强度之虞,若突部12的宽度高于4mm,则超过接合用的激光光l2(参照图5)的照射径,因而端面13容易产生未接合部位。而且,突部12的高度优选为0.05mm以上。若突部12的高度低于0.05mm,则有引起面精度不均之虞。

如图1所示,在金属构件1的接合区域r形成着多个穿孔部14,在所述穿孔部14中填充树脂构件2并固化。由此,金属构件1与树脂构件2通过锚定效应而机械接合。

穿孔部14为俯视时呈大致圆形的非贯通孔,内周面形成着向内侧突出的突出部141。突出部141遍及周方向上的全长而形成,且形成为环状。

具体而言,穿孔部14以深度方向上自端面13侧朝向底部而开口径减小的第1缩径部、深度方向上自端面13侧朝向底部而开口径增大的扩径部、及深度方向上自端面13侧朝向底部而开口径减小的第2缩径部相连的方式形成。第1缩径部配置在端面13侧,以呈直线状缩径的方式形成。扩径部配置在第1缩径部及第2缩径部之间,以呈曲线状扩径的方式形成。第2缩径部配置在底部侧,以呈曲线状缩径的方式形成。即,利用第1缩径部及扩径部而构成突出部141。

穿孔部14的开放端的开口径优选为30pm以上且100μm以下。其原因在于,若开口径低于30μm,则存在树脂构件2的填充性劣化而锚定效应降低的情况。另一方面原因在于,若开口径高于100μm,则存在每单位面积的穿孔部14的数量减少而锚定效应降低的情况。

而且,穿孔部14的间隔(规定的穿孔部14的中心、和与规定的穿孔部14邻接的穿孔部14的中心的距离)优选为200μm以下。其原因在于,若穿孔部14的间隔高于200μm,则存在每单位面积的穿孔部14的数量减少而锚定效应降低的情况。

所述穿孔部14例如由加工用的激光光l1(参照图4)而形成。另外,作为射出激光光l1的激光装置,优选为能够进行脉冲振荡的装置,可选择光纤激光、钇铝石榴石(yttriumaluminumgarnet,yag)激光、yvo4激光、半导体激光、碳酸气体激光、准分子激光,若考虑波长,则优选为光纤激光、yag激光、yag激光的第2谐波、yvo4激光、半导体激光。

此种穿孔部14由一个脉冲包含多个次脉冲的激光光l1而形成。所述激光光l1中,因容易使能量向深度方向集中,故适合于形成穿孔部14。作为能够照射此种激光光l1的激光装置的一例,可列举欧姆龙(omron)制造的光纤激光刻印机mx-z2000或mx-z2050。

作为所述光纤激光刻印机的加工条件,次脉冲的1周期优选为15ns以下。其原因在于,若次脉冲的1周期超过15ns,则能量容易因导热而扩散,难以形成穿孔部14。另外,次脉冲的1周期为次脉冲的1次照射时间、与所述次脉冲的照射结束后到开始下一次的次脉冲的照射为止的间隔的合计时间。

而且,一个脉冲的次脉冲数优选为2以上且50以下。其原因在于,若次脉冲数超过50,则次脉冲的每单位的输出减小,难以形成穿孔部14。

作为金属构件1的材料的一例,可列举铁系金属、不锈钢系金属、铜系金属、铝系金属、镁系金属、以及这些金属的合金。而且,可为金属成型体,也可为锌铸件、铝铸件、粉末冶金等。

树脂构件2如图3所示,具有平坦的表面21。所述树脂构件2例如通过对接合用的激光光l2(参照图5)具有透过性的材料而形成。另外,作为射出激光光l2的激光装置,可列举光纤激光、yag激光、yvo4激光、半导体激光、碳酸气体激光、准分子激光。

作为树脂构件2的材料的一例,可列举聚甲基丙烯酸甲酯(polymethylmethacrylate,pmma)、聚碳酸酯(polycarbonate,pc)、聚苯乙烯(polystyrene,ps)、聚芳酯(polyarylate,par)、聚醚砜(polyethersulfone,pes)、聚醚酰亚胺(polyetherimide,pei)、环烯烃共聚物(cycloolefincopolymer,coc)、环烯烃聚合物(cycloolefinpolymer,cop)、芴(fluorene)衍生物,乙烯-四氟乙烯共聚合物(ethylenetetrafluoroethyleneeopolymer,efep)、聚砜(polysulfone,psu)、聚苯基砜(polyphenylsulfone,ppsu)、丙烯腈-苯乙烯(acrylonitrilestyrene,as)、低密度聚乙烯(low-densitypolyethylene,ldpe)、聚丙烯(polypropylene,pp)、聚乙烯(polyethylene,pe)、聚对苯二甲酸丁二酯(polybutyleneterephthalate,pbt)、聚对苯二甲酸乙二酯(polyethyleneterephthalate,pet)、聚酰胺(polyamide,pa)、聚酰胺6(pa6)、聚酰胺66(pa66)、聚缩醛(polyacetal,pom)、聚苯硫醚(polyphenylenesulfide,pps)、聚氯乙烯(polyvinylchloride,pvc)、聚偏二氯乙烯(polyvinylidenechloride,pvdc)、以及聚偏二氟乙烯(polyvinylidenefluoride,pvdf)。而且,树脂构件2也可为热塑性弹性体(thermoelastomer,tpe),作为tpe的一例,可列举热塑性聚烯烃(thermoplasticpolyolefin,tpo)(烯烃系)、热塑性苯乙烯(thermoplasticstyrene,tps)(苯乙烯系)、热塑性聚酯弹性体(thermoplasticpolyesterelastomer,tpee)(酯系)、热塑性聚氨基甲酸酯(thermoplasticpolyurethane,tpu)(氨基甲酸酯系)、热塑性丙烯酸(thermoplasticacrylics,tpa)(尼龙系)、以及热塑性氯乙烯(thermoplasticvinylchloride,tpvc)(氯乙烯系)。

另外,树脂构件2中也可添加填充剂。作为填充剂的一例,可列举无机系填充剂(玻璃纤维、无机盐类等)、金属系填充剂、有机系填充剂、以及碳纤维等。

而且,接合结构体100中,如图1所示,树脂构件2对接在金属构件1的突部12的端面13,在其端面13的接合区域r接合有金属构件1及树脂构件2。因此,接合结构体100中,金属构件1的表面11与树脂构件2的表面21隔开。即,金属构件1中的未形成突部12的部分与树脂构件2隔开。即,仅设置着接合区域r的突部12的端面13与树脂构件2接触。

-接合结构体的制造方法-

其次,参照图1~图5,对第1实施方式的接合结构体100的制造方法进行说明。

首先,在平坦的表面11形成具有突部12的金属构件1(参照图2),并且形成具有平坦表面21的树脂构件2(参照图3)。而且,如图4所示,对金属构件1的突部12的接合区域r照射加工用的激光光l1,由此在内周面形成具有突出部141的穿孔部14。另外,所述激光光l1的一个脉冲包含多个次脉冲。而且,激光光l1为本发明的“第2激光光”的一例。

而且,如图5所示,层叠金属构件1与树脂构件2。此时,金属构件1的突部12的端面13与树脂构件2接触,并且树脂构件2与金属构件1的表面11隔开。即,金属构件1的接合区域r与树脂构件2接触,金属构件1的其它的部分不与树脂构件2接触。

而且,以与金属构件1之间夹入树脂构件2的方式配置加压构件5。所述加压构件5遍及树脂构件2的整个面而配置,包含相对于接合用的激光光l2具有高透过性的材料(具体而言,透过率为90%以上的玻璃或树脂等)。而且,利用加压构件5,将树脂构件2向金属构件1侧加压。另外,为了抑制在树脂构件2产生热变形应变,此时的加压力例如为数mpa以下。

如此,在使树脂构件2加压接触至金属构件1的接合区域r的状态下,自树脂构件2侧(加压构件5侧)朝向接合区域r照射接合用的激光光l2。另外,激光光l2沿着环状的突部12照射,其照射径设定为例如与突部12的宽度相同。而且,多次(例如3次)扫描激光光l2。因此,金属构件1及树脂构件2的接触面附近的金属构件1变得高温,接触面附近的树脂构件2熔融。而且,所述熔融的树脂构件2填充在穿孔部14,然后,熔融的树脂构件2固化。由此,金属构件1与树脂构件2通过锚定效应而机械接合。另外,激光光l2为本发明的“第1激光光”的一例。

如此,制造图1所示的接合结构体100。

-效果-

第1实施方式中,如所述那样,将金属构件1的突部12作为接合区域r而在所述接合区域r形成穿孔部14,在使树脂构件2与金属构件1的表面11隔开的状态下使树脂构件2加压接触至接合区域r,使树脂构件2熔融而填充在穿孔部14中并固化。通过如此构成,与金属构件及树脂构件平坦且这些整个面接触的情况相比,可抑制自加压构件5施加至树脂构件2的力在接触面分散。即,可使自加压构件5施加至树脂构件2的力集中在接合区域r(金属构件1及树脂构件2的接触面)。由此,可一方面抑制自加压构件5施加至树脂构件2的力增大,一方面使加压力有效率地作用于接合区域r(接触面)。因此,可一方面抑制在树脂构件2产生热变形应变,一方面实现树脂构件2对穿孔部14的填充率的提高。其结果,可实现接合结构体100的接合强度的提高,并且可实现热循环环境下的耐久性的提高。

而且,第1实施方式中,通过使突部12形成为俯视时呈环状,而可将内部空间s(参照图2)密封。

而且,第1实施方式中,通过在穿孔部14的内周面形成突出部141,而可进一步提高锚定效应。

而且,第1实施方式中,通过多次扫描激光光l2,而可进一步提高树脂构件2对穿孔部14的填充率。

而且,第1实施方式中,通过在突部12设置接合区域r,可抑制接合用的激光照射时热扩散。因此,可效率佳地将激光能量用在接合中,并且抑制热扩散引起的接合的不均。

(第2实施方式)

其次,参照图6及图7,对本发明的第2实施方式的接合结构体100a进行说明。

接合结构体100a如图6所示,具备金属构件1及树脂构件2a,且将金属构件1及树脂构件2a接合。

树脂构件2a如图7所示,具有平坦的表面21a,并且具有自所述表面21a突出的突部22a。突部22a的剖面为矩形状,以与金属构件1的突部12对应的方式形成为俯视时呈环状。

另外,树脂构件2a的其它构成与所述树脂构件2相同。

而且,接合结构体100a中,如图6所示,将金属构件1的突部12与树脂构件2a的突部22a对接,以所述对接的接合区域r将金属构件1及树脂构件2a接合。因此,接合结构体100a中,金属构件1的表面11与树脂构件2a的表面21a隔开。

另外,接合结构体100a的制造方法除使树脂构件2a的突部22a加压接触至金属构件1的突部12的接合区域r以外,与第1实施方式相同。

第2实施方式中,如所述那样,通过在树脂构件2a设置突部22a,而树脂构件2a的厚度小,由此即便在树脂构件2a接合时容易热变形的情况下,也可利用突部22a确保厚度而抑制热变形。即,第2实施方式中,即便在树脂构件2a的厚度小的情况(例如,厚度低于1.0mm的情况)下,也可获得接合结构体100a。

另外,第2实施方式的其它效果与第1实施方式相同。

(第3实施方式)

其次,参照图8及图9对本发明的第3实施方式的接合结构体100b进行说明。

接合结构体100b如图8所示,具备金属构件1及树脂构件2b,且将金属构件1及树脂构件2b接合。

树脂构件2b如图9所示,具有平坦的表面21b,并且具有自所述表面21b凹陷的槽部22b。另外,槽部22b为本发明的“凹部”的一例。槽部22b的剖面为矩形状,以与金属构件1的突部12对应的方式形成为俯视时呈环状。所述槽部22b嵌合有金属构件1的突部12。具体而言,如图8所示,槽部22b的深度小于突部12的高度,且槽部22b的宽度大于突部12的宽度。

另外,树脂构件2b的其它构成与所述树脂构件2相同。

而且,接合结构体100b中,金属构件1的突部12与树脂构件2b的槽部22b嵌合,以所述嵌合的接合区域r将金属构件1及树脂构件2b接合。因此,接合结构体100b中,金属构件1的表面11与树脂构件2b的表面21b隔开。

另外,接合结构体100b的制造方法除使树脂构件2b的槽部22b加压接触至金属构件1的突部12的接合区域r以外,与第1实施方式相同。

第3实施方式中,如所述那样,通过在树脂构件2b设置槽部22b,可减小与接合区域r对应的部分的树脂构件2b的厚度,因而即便在树脂构件2b的厚度大且接合用的激光光l2的透过率低的情况下,也可容易透过激光光l2。即,第3实施方式中,即便在树脂构件2b的厚度大且激光光l2的透过率低的情况(例如,厚度高于1.0mm、透过率低于30%的情况)下,也可获得接合结构体100b。

而且,第3实施方式中,通过使金属构件1的突部12与树脂构件2b的槽部22b嵌合,而可容易地进行接合时的定位。

另外,第3实施方式的其它效果与第1实施方式相同。

(第4实施方式)

其次,参照图10及图11对本发明的第4实施方式的接合结构体100c进行说明。

接合结构体100c如图10所示,具备金属构件1c及树脂构件2a,且将金属构件1c及树脂构件2a接合。

金属构件1c如图11所示,具有平坦的表面11c,在其表面11c设置着接合区域r。所述接合区域r配置在与树脂构件2a的突部22a对应的位置,且设置成俯视时呈环状。在接合区域r形成着多个具有突出部141的穿孔部14(参照图10)。即,与第1实施方式不同,未在金属构件1c设置突部12(参照图2)。

另外,金属构件1c的其它构成与所述金属构件1相同。

而且,接合结构体100c中,如图10所示,树脂构件2a的突部22a对接于金属构件1c的接合区域r,以所述对接的接合区域r将金属构件1c及树脂构件2a接合。因此,接合结构体100c中,金属构件1c的表面11c与树脂构件2a的表面21a隔开。

另外,接合结构体100c的制造方法除在使树脂构件2a的突部22a以外的部分与金属构件1c的表面11c隔开的状态下,使树脂构件2a的突部22a加压接触至金属构件1c的接合区域r以外,与第1实施方式相同。

而且,第4实施方式的效果与第1实施方式相同。

(第5实施方式)

其次,参照图12及图13,对本发明的第5实施方式的接合结构体100d进行说明。

接合结构体100d如图12所示,具备金属构件1d及树脂构件2a,且将金属构件1d及树脂构件2a接合。

金属构件1d如图13所示,具有平坦的表面11d,并且具有自所述表面11d凹陷的槽部12d。另外,槽部12d为本发明的“凹部”的一例。槽部12d的剖面为矩形状,以与树脂构件2a的突部22a对应的方式形成为俯视时呈环状。所述槽部12d嵌合有树脂构件2a的突部22a。具体而言,如图12所示,槽部12d的深度小于突部22a的高度,槽部12d的宽度大于突部22a的宽度。而且,在槽部12d的底面设置着接合区域r,所述接合区域r为俯视时呈环状。在接合区域r形成着多个具有突出部141的穿孔部14。

另外,金属构件1d的其它构成与所述金属构件1相同。

而且,接合结构体100d中,金属构件1d的槽部12d与树脂构件2a的突部22a嵌合,以所述嵌合的接合区域r将金属构件1d及树脂构件2a接合。因此,接合结构体100d中,金属构件1d的表面11d与树脂构件2a的表面21a隔开。

接合结构体100d的制造方法除使树脂构件2a的突部22a加压接触至金属构件1d的槽部12d的接合区域r以外,与第4实施方式相同。

第5实施方式中,如所述那样,通过使金属构件1d的槽部12d与树脂构件2a的突部22a嵌合,而可容易地进行接合时的定位。

另外,第5实施方式的其它效果与第1实施方式相同。

(第6实施方式)

其次,参照图14及图15,对本发明的第6实施方式的接合结构体100e进行说明。

接合结构体100e如图14所示,具备金属构件1及树脂构件2e,且将金属构件1及树脂构件2e接合。

树脂构件2e可通过相对于接合用的激光光l2(参照图15)透过性低的材料而形成。因此,作为树脂构件2e的材料,除第1实施方式中列举的材料之外,也可列举丙烯腈-丁二烯-苯乙烯(acrylonitrilebutadienestyrene,abs)、改性聚苯基醚(modifiedpolyphenyleneether,m-ppe)、聚醚醚酮(polyetheretherketone,peek)、聚酰胺酰亚胺(polyamideimide,pai)、液晶聚合物(liquid-crystalpolymer,lcp)、聚四氟乙烯(polytetrafluorethylene,ptfe)、以及聚氯三氟乙烯(polychlorotrifluoroethylene,pctfe)。

另外,树脂构件2e的其它构成与所述树脂构件2相同。

接合结构体100e中,树脂构件2e对接在金属构件1的突部12的端面13,以所述端面13的接合区域r将金属构件1及树脂构件2e接合。因此,接合结构体100e中,金属构件1的表面11与树脂构件2e的表面21e隔开。

接合结构体100e的制造方法如图15所示,以在与树脂构件2e之间夹入金属构件1的方式配置加压构件5,自树脂构件2e的相反侧对金属构件1照射激光光l2而加热金属构件1,除此以外与第1实施方式相同。

第6实施方式中,如所述那样,通过自树脂构件2e的相反侧照射激光光l2,即便在树脂构件2e相对于激光光l2不具有透过性的情况下,或不易自树脂构件2e侧照射激光光l2的情况下,也可获得接合结构体100e。

另外,第6实施方式的其它效果与第1实施方式相同。

(第7实施方式)

其次,参照图16及图17,对本发明的第7实施方式的接合结构体100f进行说明。

接合结构体100f如图16所示,具备金属构件1f及树脂构件2,且将金属构件1f及树脂构件2接合。

金属构件1f如图17所示,具有平坦的表面11f,并且具有自所述表面11f突出的多个突部12f。各突部12f的剖面为矩形状,在其端面(上端面)13f设置着接合树脂构件2的接合区域r。所述突部12f与第1实施方式不同,未形成为俯视时呈环状。即,各突部12f分离(独立)。接合区域r形成着多个具有突出部141的穿孔部14。

另外,金属构件1f的其它构成与所述金属构件1相同。

接合结构体100f中,如图16所示,树脂构件2对接于金属构件1f的突部12f的端面13f,以所述端面13f的接合区域r将金属构件1f及树脂构件2接合。因此,接合结构体100f中,金属构件1f的表面11f与树脂构件2的表面21隔开。

接合结构体i00f的制造方法与第1实施方式相同。

第7实施方式中,如所述那样,通过使多个突部12f分离,可进一步减小金属构件1f与树脂构件2的接触面,因而可更有效率地使加压力作用于接合区域r。

另外,第7实施方式的其它效果与第1实施方式相同。

(实验例1)

其次,参照图18~图21,对为了确认所述各实施方式的效果而进行的实验例1进行说明。

所述实验例1中,制作与第1实施方式~第7实施方式对应的实施例1~实施例7的接合结构体、及比较例的接合结构体,并进行关于它们的接合评价。另外,关于接合评价,对未进行热冲击试验者测定接合强度,并且对热冲击试验后者测定接合强度,基于所述测定结果进行是否合格判定。

-各接合结构体的制作方法-

首先,对实施例1的接合结构体的制作方法进行说明。

实施例1的接合结构体中,使用sus304作为金属构件510的材料。所述金属构件510如图18所示,形成为板状,长度为40mm,宽度为20mm,厚度为1mm。在所述金属构件510的表面511形成着突部512。突部512形成为俯视时呈矩形环状,宽度为0.8mm,高度为0.5mm。另一方面,使用pmma作为树脂构件520的材料。所述树脂构件520如图19所示,形成为板状,长度为40mm,宽度为20mm,厚度为1mm。

而且,对金属构件510的突部512的接合区域照射加工用的激光光而形成穿孔部。所述激光光的照射使用欧姆龙制造的光纤激光刻印机mx-z2000来进行。激光光的照射条件为以下所示。

<加工用的激光照射条件>

激光:光纤激光(波长1062nm)

频率:10khz

扫描速度:650mm/sec

扫描次数:20次

照射间隔:65μm

次脉冲数:20

另外,频率为包含多个(所述例中为20个)次脉冲的脉冲的频率。即,所述照射条件下,在1秒内移动650mm,同时以65μm的间隔照射1万次激光光(脉冲),所述脉冲包含20个次脉冲。另外,扫描次数为激光光对同一部位重复照射的次数。

如此,通过照射一个脉冲包含多个次脉冲的激光光,而在金属构件510的接合区域形成穿孔部,并且在所述穿孔部的内周面形成突出部。

然后,金属构件510的表面511与树脂构件520的表面521隔开,并且在使树脂构件520加压接触至设置在金属构件510的突部512的接合区域的状态下,自树脂构件520侧对接合区域照射接合用的激光光,由此将金属构件510与树脂构件520接合。具体而言,通过激光光的照射将金属构件510加热,利用其热使树脂构件520熔融。因此,所述熔融的树脂构件520填充在穿孔部,然后树脂构件520固化。而且,接合用的激光光的照射条件为以下所示。另外,为了包含接合区域,而焦点径大于突部的宽度。

<接合用的激光照射条件>

激光:半导体激光(波长808nm)

振荡模式:连续振荡

输出:18w

焦点径:1mm

扫描速度:3mm/sec

加压力:0.3mpa

扫描次数:3次

如此,制作实施例1的接合结构体。

其次,对实施例2~实施例7以及比较例的接合结构体的制作方法进行说明。

实施例2的接合结构体中,将树脂构件的形状设为与所述金属构件510相同。即,在树脂构件的表面设置突部,并且使所述突部对接而接合于金属构件的突部。另外,关于实施例2的其它方面,与实施例1相同。

实施例3的接合结构体中,树脂构件530如图20所示,形成为板状,长度为40mm,宽度为20mm,厚度为1mm。在所述树脂构件530的表面531形成着槽部(凹部)532。槽部532形成为俯视时呈矩形环状,宽度为1.0mm,深度为0.3mm。即,槽部532的宽度大于突部512的宽度,槽部532的深度小于突部512的高度。而且,实施例3的接合结构体中,使金属构件510的突部512与树脂构件530的槽部532嵌合而接合。另外,关于实施例3的其它方面,与实施例1相同。

实施例4的接合结构体中,将树脂构件的形状设为与所述金属构件510相同,并且将金属构件的形状设为与所述树脂构件520相同。即,实施例4中,设为与实施例1的情况相反的形状,在金属构件的平坦的表面设置矩形环状的接合区域。另外,关于实施例4的其它方面,与实施例1相同。

实施例5的接合结构体中,将树脂构件的形状设为与所述金属构件510相同,并且将金属构件的形状设为与所述树脂构件530相同。即,实施例5中,设为与实施例3的情况相反的形状,在金属构件的槽部设置矩形环状的接合区域。另外,关于实施例5的其它方面与实施例1相同。

实施例6的接合结构体中,自金属构件侧照射接合用的激光光。另外,关于实施例6的其它方面与实施例1相同。

实施例7的接合结构体中,如图21所示,在金属构件540的表面541设置多个突部542。所述突部542的长度为2mm、宽度为0.8mm、高度为0.5mm。即,突部542未形成为俯视时呈环状。另外,关于实施例7的其它方面与实施例1相同。

比较例的接合结构体中,将金属构件的形状设为与所述树脂构件520相同,在金属构件的平坦的表面设置接合区域。即,比较例中,金属构件及树脂构件的两方平坦,未设置突部及槽部。另外,比较例的其它方面与实施例1相同。

-接合评价-

而且,进行关于实施例1~实施例7的接合结构体以及比较例的接合结构体的接合评价,将其结果示于表1。

另外,关于树脂填充率,观察穿孔部的剖面,测量穿孔部的剖面的面积,并且测量填充在所述穿孔部的树脂构件的剖面的面积,计算树脂构件占据穿孔部的面积的比例。

而且,接合强度是使用英斯特朗(instron)制造的电性机械式万能试验机5900进行测定。具体而言,在剪切方向及剥离方向(垂直方向)以拉伸速度5mm/min进行试验,以树脂构件的断裂或接合界面的断裂结束试验。而且,采用所述试验中的最大强度作为接合强度。另外,剪切方向是沿着接合界面偏离的方向。

而且,热冲击试验中,将-40℃的低温中暴露30分钟、70℃的高温中暴露30分钟重复进行500次。

而且,为了判断热循环环境下的可靠性,按照以下的基准进行是否合格判定。

合格(○):“热冲击试验后的接合强度”/“热冲击试验前的接合强度”≥90%

不合格(×):“热冲击试验后的接合强度”/“热冲击试验前的接合强度”<90%

所述表1所示,实施例1~实施例7的接合结构体中,树脂填充率高于90%,与此相对,比较例的接合结构体中,树脂填充率低于80%。认为其原因在于,实施例1~实施例7的接合结构体中,通过在金属构件及树脂构件中的至少一者设置突部,可使激光接合时的加压力集中在包含接合区域的接触面。

而且,实施例1~实施例7的接合结构体中,即便在热冲击试验后也可将热冲击试验前的接合强度维持90%以上,与此相对,比较例的接合结构体中,接合强度维持率低于70%。因此,实施例1~实施例7的接合结构体中,实现树脂填充率的提高,由此锚定效应不易降低,因而可实现热循环环境下的耐久性的提高。

(实验例2)

其次,对为了确认接合用的激光光的扫描次数与树脂填充率的关系而进行的实验例2进行说明。

所述实验例2中,制作实施例8及实施例9的接合结构体。实施例8中,将接合用的激光光的扫描次数设为1次,实施例9中,接合用的激光光的扫描次数设为2次。另外,实施例8及实施例9的其它方面与实施例1相同。而且,如所述那样实施例1的扫描次数为3次。而且,进行关于这些的接合评价,将其结果示于表2。

[表2]

如所述表1及表2所示,实施例1、实施例8及实施例9中,可增加接合用的激光光的扫描次数,树脂填充率提高,并且提高接合强度维持率。另外,即便扫描次数为1次,树脂填充率也高于90%,并且接合强度维持率也高于90%。

(其它实施方式)

另外,此次揭示的实施方式的所有方面均为例示,并非为限定性解释的根据。因此,本发明的技术范围并非仅由所述实施方式解释,而且基于权利要求的记载而划定。而且,本发明的技术范围内包括与权利要求均等的含义及范围内的所有变更。

例如,第1实施方式中,示出在穿孔部14形成突出部141的例子,但不限定在此,穿孔部也可形成为圆筒状或研钵状。而且,示出由激光光l1形成穿孔部14的例子,但不限定在此,也可通过喷砂处理、砂纸处理、阳极氧化处理、放电加工处理、蚀刻处理或压制加工处理等形成穿孔部。

而且,第1实施方式中,示出利用接合用的激光光l2将金属构件1与树脂构件2接合的例子,但不限于此,也可通过热压制接合或超声波接合而将金属构件及树脂构件接合。所述情况下,作为树脂构件的材料,除第1实施方式中列举的材料之外,也可使用第6实施方式中列举的材料。

而且,第1实施方式中,示出多次扫描接合用的激光光l2的例子,但不限于此,接合用的激光光的扫描次数也可为1次。

而且,第1实施方式中,示出在金属构件1的表面11设置突部12的例子,但不限于此,也可如图22所示的第1变形例的金属构件1g那样,在平坦的表面11g设置突部12g,并且在所述突部12g的侧方设置自表面11g凹陷的凹部15g。若如此构成,则在接合用的激光照射时,利用凹部15g可进一步抑制热扩散。

而且,第1实施方式中,示出在金属构件1的表面11设置剖面为矩形状的突部12,但不限于此,也可如图23所示的第2变形例的金属构件1h那样,在表面11h设置剖面为圆弧状的突部12h。而且,也可如图24所示的第3变形例的金属构件li那样,在表面11i设置剖面为梯形状的突部12i。

而且,第1实施方式中,示出金属构件1的表面11及树脂构件2的表面21平坦的例子,但不限于此,金属构件的表面及树脂构件的表面也可弯曲。

而且,第1实施方式中,示出加压构件5遍及树脂构件2的整个面配置的例子,但不限于此,也可仅在接合用的激光光不通过的区域配置加压构件。所述情况下,加压构件也可相对于接合用的激光光不具有透过性。

而且,第1实施方式中,示出在端面13的整个区域设置接合区域r的例子,但不限于此,也可在端面的一部分区域设置接合区域。

而且,第1实施方式中,示出突部12形成为俯视时呈矩形环状的例子,但不限于此,突部也可形成为俯视时呈圆环状。

另外,也可将所述各实施方式适当组合。例如,也可将第4实施方式与第7实施方式组合,设置多个树脂构件的突部,且各突部分离。

产业上的可利用性

本发明能够用于接合有金属构件及树脂构件的接合结构体的制造方法及接合结构体中。

符号的说明

1、1c、1d、1f、1g、1h、li:金属构件

2、2a、2b、2e:树脂构件

11、11c、11d、1if、11g、11h、11i:表面

12、12f、12g、12h、12i:突部

12d:槽部(凹部)

14:穿孔部

21、21a、21b、21e:表面

22a:突部

22b:槽部(凹部)

100、100a、100b、100c、100d、100e、100f:接合结构体

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1