一种高抗冲双向拉伸聚酯/聚酰胺薄膜及其制备方法与流程

文档序号:16930662发布日期:2019-02-22 20:14阅读:305来源:国知局

本发明属于包装薄膜技术领域,涉及一种高抗冲双向拉伸聚酯/聚酰胺薄膜及其制备方法,以及包含其的一种铝塑复合膜。



背景技术:

目前,锂离子电池是常用的二次电池,在3c领域获得了广泛的应用,随着电动汽车的发展,对于锂离子电池的外包装材料提出了更高的要求。目前所使用的锂离子电池外包装材料为复合材料,其结构组成为:外层基材层、金属阻隔层、热封层组成。其中外层基材膜要求具有好的延伸率、韧性、抗拉强度、各项同性,应克服以下问题:

①、由于锂离子电池采用的成型方式为冷成型,因此在成型过程中,三种性能不同的材料易发生层间剥离,特别是外层基材层与金属阻隔层之间,且金属阻隔层在冷成型过程中易产生缺陷;

②、外包装膜进行热封工序时,温度180-200℃,时间2-3s,在此条件下易发生外层基材层与金属阻隔层的层间剥离;

③、锂电池在高温高湿的条件下使用,外层基材膜直接接触极端恶劣的环境,易发生层间剥离。

另外,外层基材膜保护中间层金属阻隔层不受划伤,在加工过程中应能够连续操作而不破坏外观,防止在使用过程中外力对电池的损伤,在电池的使用过程中进行保护内部,避免由于跌落等对电池造成的冲击震荡。锂电池用外包装的外层基材膜一般采用尼龙膜薄膜,但由于现有的尼龙膜本身材料性能决定其易吸潮,不耐腐蚀,难以满足锂电池用外包装的外层基材膜的要求。

中国专利(公开号cn107825794a)公开了一种表层为聚酯的双向拉伸尼龙共挤膜及其制备方法,采用流延法+双向拉伸的工艺,不管是同步拉伸还是异步拉伸,在纵向和横向两个方向上取向会有不同,就会使聚酰胺薄膜在纵向与横向机械强度不统一,而锂离子电池领域应用的聚酰胺薄膜需要在纵向与横向机械强度统一,防止在冷成型过程中因为纵向与横向机械强度不统一产生的剥离风险。



技术实现要素:

因此,针对现有技术中锂离子电池外包装材料尼龙膜作为外层基材层与金属阻隔层易发生层间剥离,易吸潮,不耐腐蚀,难以满足要求的技术问题,本发明的目的在于提供一种高抗冲双向拉伸聚酯/聚酰胺薄膜及其制备方法,所述的高抗冲双向拉伸聚酯/聚酰胺薄膜耐腐蚀、冷冲压成型性能和复合性能优异,适用于新能源汽车电池包装应用要求的外层材料。

本发明的高抗冲双向拉伸聚酯/聚酰胺薄膜的制备方法包括步骤:

a)、多层共挤出膜管:按重量计,将10%-20%的聚酯、10%-15%的粘结剂和65%-80%的聚酰胺通过多台挤出机分别熔融后共挤出结构为聚酯/粘结剂/(聚酰胺)n的多层薄壁膜管,膜管的厚度为100-400μm,n=2~5;

b)、共挤出后进行快速冷却至室温,让膜管处于高度无定形态,以利于双向拉伸;

c)、双向拉伸:冷却后的膜管加温至70-120℃后双向拉伸,拉伸比为:纵向2.5-4.0;横向:3.0-4.0;拉伸后面积:拉伸前面积为10:1~16:1;

d)、热处理:拉伸后的膜管经牵引辊压平后在保持纵向和横向张力的情况下,采用平板加热法进行退火热处理,热处理温度为80-230℃;

e)、收卷:热处理后的薄膜冷却后裁剪、收卷得到成品。

本发明所述方法控制配方为聚酯10%-20%,粘结剂10%-15%,聚酰胺65%-80%;其中聚酯作为耐腐蚀表层,粘结剂作为中间黏连层,这两种原料用量相对较低;而聚酰胺作为结构层和更适合与金属阻隔层铝铂粘合的表层,用量相对较大,而且聚酰胺分层与聚酯和粘结剂进行多层共挤出膜管然后双向拉伸,高分子分子链取向的均衡可以达到机械强度在两个方向的平衡并容易调整两个方向取向的比例,可以保持好的冷冲压性能。而且聚酰胺分层共挤出时调整起来更加灵活,更加便于实现调整最终性能的目的。

另外,常规生产时拉伸比过大后,拉伸结束后,材料会产生回弹,因此常规的膜管法生产过程中,纵向、横向拉伸比通常控制在3.0以内,总的面积比控制在9:1以内;薄膜需要拉伸充分才能符合锂离子电池包装材料的性能要求,拉伸比通常需要达到10:1以上,因此常规的膜管生产方法无法实现。为此,本发明中采用了后续热处理步骤,对拉伸后的膜,保持张力下热处理消除内应力,进行定型,避免材料回弹,有效提高薄膜性能。

步骤a中,多层共挤出膜管具体过程为:将原料聚酯、粘结剂、聚酰胺分配加入多台挤出机(具体分配为聚酯一台、粘结剂一台、聚酰胺n台),高温融化后分别供给不同的熔融料流,在模头内汇合,通过环状口模制成一个端部封闭的多层结构的薄壁管坯,再通入压缩空气,使之吹胀到所需的厚度。

较佳的,步骤a中,n=3,即聚酰胺分三层与聚酯和粘结剂共挤出,共挤出膜管的多层结构排布为聚酯/粘结剂/聚酰胺/聚酰胺/聚酰胺。

较佳的,所述的聚酯为聚对苯二甲酸乙二酯(pet)、聚对苯二甲酸丁二酯(pbt)、聚萘二甲酸乙二醇酯(pen)和聚萘二甲酸丁二醇酯(pbn)中的一种,也可以是两种或以上聚酯的混合。

较佳的,所述的粘结剂为改性聚烯烃、乙烯-乙酸乙烯酯共聚物(eva)、乙烯-丙烯酸共聚物(eaa)、乙烯-丙烯酸乙酯聚合物(eea)和乙烯-马来酸酐共聚物(ema)中的一种或两种以上。

较佳的,各层聚酰胺独立地选自尼龙6、尼龙66、尼龙11、尼龙12、尼龙610、尼龙612、尼龙6,66-尼龙12共聚物、尼龙mxd、芳香族聚酰胺、聚酰胺酰亚胺、芳香族聚酰亚胺、聚醚酰亚胺、聚马来酰亚胺和聚氨基双马来酰亚胺中的一种或两种以上。

本发明的一些较佳实施例中,所述的聚酯为聚对苯二甲酸乙二酯,所述粘结剂为乙烯-马来酸酐共聚物,所述的聚酰胺为尼龙6。

较佳的,步骤c中,加温方式为水加温、热气加温或红外加温。

较佳的,步骤c中,双向拉伸过程为:冷却后的膜管加热至玻璃化温度以上;然后进行纵向拉伸,同时利用压缩空气进行横向吹胀完成横向拉伸。

较佳的,步骤c中,拉伸后面积:拉伸前面积为13:1~16:1。

较佳的,步骤d中,热处理可分两步进行,双向拉伸后的膜管经牵引辊压平后,在保持纵向和横向张力的情况下,加热至80℃-180℃进行预退火处理,以此消除薄膜的内应力,防止薄膜收缩,消除薄膜的预收缩现象;然后进一步加热至100℃-230℃进行退火处理,使薄膜重新结晶,消除组织缺陷,可有效提高薄膜的机械性能。

较佳的,步骤a制备的膜管厚度为150-300μm。

较佳的,步骤e得到的成品薄膜厚度为10-50μm。

本发明的目的还在于提供一种铝塑复合膜,其包括外层、中间层和内层,外层与中间层之间、中间层与内层之间分别通过胶粘剂进行粘连;其特征在于,外层为所述的高抗冲双向拉伸聚酯/聚酰胺薄膜,中间层为铝箔膜,内层为聚丙烯薄膜。所述铝塑复合膜具有较佳的机械性能,且不易发生层间剥离,可作为电池外包装材料。

本发明的积极进步效果在于:

本发明所述方法控制配方为聚酯10%-20%,粘结剂10%-15%,聚酰胺65%-80%;其中聚酯作为耐腐蚀表层,可有效避免薄膜吸潮,提高薄膜的耐腐蚀性能。而聚酰胺作为结构层和更适合与金属阻隔层铝铂粘合的表层,用量相对较大,而且聚酰胺分层与聚酯和粘结剂进行多层共挤出膜管然后双向拉伸,高分子分子链取向的均衡以达到机械强度在两个方向的平衡并容易调整两个方向取向的比例,可以保持好的冷冲压性能。而且聚酰胺分层共挤出时调整起来更加灵活,更加便于实现调整最终性能的目的。

本发明中采用了后续热处理步骤,对拉伸后的膜,保持张力下热处理消除内应力,进行定型,避免材料回弹,有效提高薄膜性能。

综上,本发明的高抗冲双向拉伸聚酯/聚酰胺薄膜耐腐蚀、冷冲压成型性能优异,适用于新能源汽车电池包装应用要求的外层材料。

具体实施方式

为了进一步说明本发明,给出以下系列具体实施例,但本发明并不受这些具体实施例的限制,任何了解该领域的技术人员对本发明的些许改动将可以达到类似的结果,这些改动也包含在本发明之中。

实施例1~7

一、薄膜配方

实施例1~7的原料及其重量配比如表1所示。其中实施例1~5中聚酯优选聚对苯二甲酸乙二酯(pet);粘结剂优选乙烯-马来酸酐共聚物(ema);聚酰胺优选尼龙6。实施例6和7相比于实施例5原料种类做了调整。

二、制备步骤

a)、多层共挤出膜管:按配方将原料通过多台挤出机(聚酯一台、粘结剂一台、聚酰胺三台,)在高温下融化,按照聚酯/粘结剂/聚酰胺/聚酰胺/聚酰胺的排布分五层供给熔融料流,在模头内汇合,通过环状口模制成一个端部封闭的结构为聚酯/粘结剂/聚酰胺/聚酰胺/聚酰胺的多层薄壁管坯,再通入压缩空气,使之吹胀到所需厚度的膜管,膜管的厚度为100-400μm;

b)、共挤出后进行快速冷却至室温,让膜管处于高度无规、无定形态,以利于双向拉伸;

c)、双向拉伸:冷却后的膜管加温至70-120℃后双向拉伸,拉伸比为:纵向2.5-4.0;横向:3.0-4.0;

d)、热处理:拉伸后的膜管经牵引辊压平后在保持纵向和横向张力的情况下,采用平板加热的方式进行退火热处理,热处理温度为80-230℃;

e)、收卷:将热处理后的薄膜冷却,并进行裁剪、收卷得到成品。

实施例1~7的原料配方及工艺参数具体如表1所示。

表1实施例1~7的原料配方及工艺参数

对比例1~5

对比例1~4的原料配方及工艺参数如表2所示,以实施例5为比较对象,区别在于:

对比例1原料采用纯聚酰胺,其余同实施例5;

对比例2原料采用纯聚酯,其余同实施例5;

对比例3原料与实施例5相同,在步骤d热处理时温度为240度;其余同实施例5;

对比例4原料与实施例5相同,未经步骤d热处理,直接冷却至室温;其余同实施例5;

对比例5,采用流延和双向拉伸工艺制成共挤膜,原料、制备步骤及工艺参数参照专利cn107825794a中的实施例2。

表2对比例1~5的原料配方及工艺参数

对实施例1~7以及对比例1~5制备的薄膜进行性能测试,结果如表3和表4所示。

表3实施例1~7的薄膜性能参数

表4对比例1~5的薄膜性能参数

注1:冷冲压测试条件:①、样品尺寸:10mm*20mm;②、冲压机参数设定:压力0.2-0.6mpa,速度20-40mm/s,保压时间2-3s。

注2:耐腐蚀性测试方法:取实施例和对比例的膜,表面滴1ml的电解液,室温放置24h,电解液组成碳酸乙烯酯(ec):碳酸二乙酯(dec):碳酸二甲酯(dmc)=1wt%:1wt%:1wt%,lipf61mol/l(与专利cn107825794a相同的方法)。

由表3和表4可知,通过本发明方法制备的高抗冲双向拉伸聚酯-聚酰胺薄膜不仅具有良好的延伸率、韧性和抗拉强度,横向和纵向的机械性能相差较小,而且耐腐蚀和冷冲压成型性能优异,冲深深度高达3~4mm,复合性能大大提高,可很好地与金属阻隔层复合,避免层间剥离现象,适用于新能源汽车电池包装应用要求的外层材料。此种类型的薄膜更适合于应用在动力汽车的电池中。

而对比例1原料只采用聚酰胺,其耐腐性较差。对比例2原料只采用聚酯,冷冲压成型性能较差。对比例3拉伸后热处理温度过高,而对比例4拉伸后未经热处理,延伸率、韧性和抗拉强度均受较大影响,而对比例5参照的是专利cn107825794a的方案,通过流延和双向拉伸工艺制成的共挤膜虽然具有良好的延伸率、韧性和抗拉强度,以及耐腐蚀性,但是纵向与横向机械强度尤其是断裂伸长率差异较大,与其他材料复合时易出现剥离现象。由表4可知,对比例1~5的冲深深度均未能达到3mm,冷冲压成型性能均不高,大大降低了其与金属阻隔层的复合性能。

以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1