具有移动式隔气板的连续式炉的制作方法

文档序号:4745704阅读:172来源:国知局
专利名称:具有移动式隔气板的连续式炉的制作方法
相关申请的交叉引用本申请依据U.S.C.9 119(e)要求申请日为1999年6月17日的美国临时申请第60/139612号的优先权,该临时申请的全部内容作为参考被引入本文中。
本申请是申请日为1999年11月10日、申请号为09/438073的申请的部分继续申请,该申请的全部内容作为参考被引入到本文中。
背景技术
连续式炉可应用于许多领域中,例如用于电子元件的制造过程中。这些炉通常设置有一组热处理室或加热室,每个加热室内的温度和气氛组成都受到控制。产品以一定的速度顺序移过每个腔室,以得到所需的热断面和气氛断面。
产品能够以不同的方式从连续的多个炉中移过,例如在一种连续式炉中,产品支承在一个金属网织带上,该金属网织带拉动产品通过该炉。在另一种连续式推进炉中,产品被放置在板件或运载部件或船形器具上,而这些板件、运载部件或船形器具则被推入炉的入口内。后面的每个板都推动着位于其前方的那块板。一排接触板通过对该排接触板中的最后那块板进行顶推而得以前移。
通常情况下,最好使一个连续式炉内的两个腔室在必须被相互隔开的不同氛围下进行操作。一般情况下,这些腔室被多个烟道或通道隔开。此外,在腔室的入口和出口处还设置有门,目的是保持腔室内的氛围。但是,这些门的成本很高,而且结构也复杂。为将连续式炉内的门关闭,接触线上的产品运载部件必须相互分开,例如通过以90°的角度顶推位于该接触线头部的运载部件,从而将其从移动路线上移开并移动到一个净化腔室或净化炉段内。接着,门就会在被隔离的运载部件后方关闭并对该腔室进行清洗。然后,运载部件可被另一推动器沿一条偏离第一线的直线移动到下一腔室。对每个运载部件而言,该工序都必须反复执行。这就要求炉具有更大的长度、需要更高的成本、而且还需要多个推动器。

发明内容
在本发明中,一种连续式炉安装有一个移动式的隔气板,该移动式隔气板能够形成一个可防止开放的气体在炉腔之间移动的隔气板。在炉的运行过程中,气体从一个加热室例如上游腔室流向一个相邻的加热室例如下游腔室。同时,气体可能试图逆气流方向从下游侧的加热室向上游侧的加热室扩散。扩散速度的大小可大于气流速度的大小,在这种情况下,上游腔内的气氛组成可能会随着扩散气体进入上游腔而发生改变。本发明可通过一个与产品一起移过炉的隔气板来防止气体从下游腔扩散到上游腔内。该隔气板能够保证下游气体的速度足够大,以防止扩散现象的发生。
具体而言,这种连续式推进炉设置有至少一个加热室,一般设置有多个加热室。多个通道将这些加热室相互连接起来。此外,还设置有入口和出口通道。气体污染物通过入口和出口通道从处理腔到外部的操作以与腔室间相互隔开的情况相同的方式进行。
每个产品运载部件都包括一个能在其上接收产品的推板和一个由推板向上延伸的隔气板。该隔气板具有周边,该周边的尺寸和结构被设计成能够装配在通道内并在该周边和通道壁之间留有一个间隙的结构形式,该间隙可充分提高流过通道的气流速度,以克服气体逆气流方向通过该通道的扩散速度。这样,本发明的移动式隔气板就可以防止气体扩散到上游腔内。这种移动式隔气板能够使炉的加热室沿一条直线相互对准,从而减小炉的尺寸。而且还省去结构复杂的门和多个推动器,而且产品也可以更加快速、高效地从炉移过。
在另一实施例中,还在通道或腔室内设置有一个或多个排气口,以将上游腔和下游腔内的废气从炉内排出。该通道的长度可按照使需要排出的气体能够通过排气口充分排出的方式进行选择。


下面将接合附图通过对最佳实施例的详细说明,更加全面地理解本发明。其中附图图1为设置有根据本发明的隔气推板的连续式推进炉的剖视图,该图仅示出了炉长度的一半;图2为沿图1中的剖面线II-II的剖视图;
图3为沿图1中的剖面线III-III的剖视图;图4为根据本发明的一列隔气推板的透视图;图5为根据本发明的隔气推板与产品在一起时的透视图;图6为陶瓷电容器烧制过程中的加工曲线;图7为根据本发明的隔气板的另一实施例的透视图;图8为图7所示实施例的另一透视图。
具体实施例方式
图1至5示出了本发明的连续式推进炉10,该炉设置有一个入口12、多个热处理室或加热室14、16、18及一个出口20。多个通道22、24或烟道将加热室14、16、18相互连接在一起。一个入口通道26设置在入口12和第一加热室14之间,一个出口通道28设置在最后一个加热室18与出口20之间。尽管图中示出了三个加热室,但也可以根据应用条件的不同而设置一个加热室或其它数量的加热室。通道22、24、26和28可具有相同的尺寸,或者使其横截面面积小于加热室14、16、18的横截面面积,这一点可通过对图2和3进行对比而得知。一个炉膛表面30可由一系列炉膛座板32构成并沿炉的长度方向从入口12延伸至出口20。支承在产品运载部件36上的产品34沿炉膛表面30由入口12经加热室14、16、18和通道22、24、26、28被推向出口20。每个加热室都按照本领域公知的方式进行操作,这样就能够在预定的气氛组成下将加热室内的产品加热至所需的温度。
每个运载部件36包括一个推板38和隔气板46,而且推板38和隔气板46可在炉膛30上滑动。产品34支承在推板的平面状表面40上。这种推板一般为方形或矩形。该推板一般设置有一个面对产品移动方向的前缘42和一个与一推动器或一后续推板相接触的后缘44。隔气板46由推板38向上延伸。隔气板46形成一个在横切产品移动方向的平面内延伸的壁。隔气板最好设置在推板后缘44附近或设置在推板的后缘44上。该隔气板还可从其它位置向上延伸,只要在推板上设置有足够的面积,以用于容纳或保持产品。例如,隔气板可从前缘42或从靠近该前缘42的位置上向上延伸。在另一种结构中,隔气板从中央位置向上延伸,从而将产品区域留在隔气板的前方和后方。隔气板与推板以下述方式连接在一起当运载部件和支承在运载部件上的产品从炉经过时,使隔板能够与推板一起移动。
在炉的运行过程中,气体从一个上游加热室例如加热室16经过邻近的通道22流向最近的下游加热室例如加热室14。应该知道气流方向可与产品移动方向相同或相反;本文中所采用的术语“上游”和“下游”是指气流的方向。同时,气体试图逆气流方向进行扩散,即气体试图从下游侧的加热室14向上游侧的加热室16扩散。
例如,如果没有本发明,那么下游侧加热室14内的微量氢气就可能逆气流方向向上游侧扩散。扩散速度的大小也可大于气流速度的大小。在这种情况下,随着时间的流逝,上游加热室16内的气氛组成可能会因为有气体从下游侧加热室14流入到该加热室16内而发生变化。给定的应用领域可能允许气氛组成产生这种变化或者不允许气氛组成产生这种变化。
本发明的运载部件36提供了一种可防止气体逆气流方向进行扩散的隔气板。隔气板46的尺寸和结构被加工成能够装配在通道内并在通道壁、通道顶板与隔气板周边之间仅留有一个微小间隙54的结构形式。因此,流过通道的气体必须从该微小间隙内流过,如图1中的箭头56所示。由于存在微小间隙而使沿气体流动路径的隔气板的横截面面积及长度减小,因此气体的速度将随着气体从该隔气板上流过和围绕该隔气板的流动而增加。该间隙的横截面面积越小,那么气体流速的增加也就越大。该间隙的尺寸可按下述方式进行选择能够在一个计算出来的长度上充分提高气流的速度并使气流速度大于扩散速度的大小。这样,气体就不能逆气体流动方向向上游侧扩散。
间隙54的尺寸和长度可基于几个方面的考虑来进行选择,从而使气流速度达到足够大的程度。一个因素是该处理工序所采用的气体源的尺寸。气体源越大,那么气流速度也就越大。这样,对于大型的气体源而言,较大的间隙就足以将气流速度提高到能够充分克服气体扩散速度的程度。另一因素是由制造隔气板所用材料而产生的公差。例如,砖料不能提供象金属材料那样的紧公差。这样,如果需要一个具有紧公差的微小间隙,那么就需要选取能够达到这种公差要求的合适材料。再一因素是上游加热室内允许的扩散气体量,如果存在扩散气体的话。
推板和隔气板可由任何合适的材料制成,例如金属或陶瓷或其它能够承受炉内的环境的耐火材料,这在本领域内是公知的。隔气板可以合适的方式与推板连接在一起,例如利用螺钉、粘接剂或其它紧固部件或紧固方法或通过保持在一个定位槽内的方式将其连接在一起。如果需要,可将该隔气板从推板上拆卸下来。该隔气板与推板不必固定地连接在一起。其可以通过重力作用装在推板上。隔气板和推板还可被制造成一体的部件。而且,隔气板也可以是一个与推板分开的独立部件,例如将隔气板插装在各个推板之间。
在上述的情况下,从上游腔室内流出的气体能够进入到下游腔室内。在许多应用领域内,都允许气氛在下游腔室内的混合。但某些领域却不允许上游气体进入到下游腔室内。因此,在另一实施例中,一个或多个排气出口60可设置在通道或加热室内。在图1中,在每个通道22和24内仅示出了一个排气口。一些或全部上游气体可通过该出口排出。这样,当这种排气口与本发明的移动式隔气板接合使用时,不仅可以防止上游气体进入下游腔室内,而且还可以防止下游气体进入上游腔室内。这种排气口可以是任何合适的排气口,例如通向大气的排气口或安装有一个风机或真空源的排气口,这在本领域内是公知的。通道的长度可按照下述方式进行选取在通道内的隔气板数量一定的情况下,能够通过足够多的排气口将气体排出。
下面将接合一个实例例如陶瓷电容器的制造更好地理解本发明。图6示出了陶瓷电容器的典型烧制曲线。在该实例中,采用了三个加热室。在800℃的温度条件下,在预定的时间段内将产品保持在第一加热室例如加热室14内含有氮气和微量氢气的还原气氛下。在该加热室内,仅可存在数量上可忽略不计的氧气(例如,氧气的分压可约为10-20atm)。接着,将产品移动到第二或中心加热室16内,以1350℃的温度在氮气和氧气的氛围下对该产品进行烧制。氧气在该加热室内的分压约为10-11至10- 12atm。接着,在第三加热室或最后一个加热室18内,以1000℃的温度在氮气与含有更多氧气的氛围下对产品进行再氧化处理。氧气的分压约为10-4atm。
在该过程中,气体趋于从中心加热室16内流出并流向第一加热室14和最后一个加热室18。氢气趋于从第一加热室14向中心加热室16扩散。本发明的移动式隔气板46可防止氢气向中心腔室16扩散。尽管第一和最后一个加热室14、18内的氛围会被中心加热室14内的气氛冲淡,而且在该过程中这种稀释作用也是允许的,但是设置在第一加热室与中心加热室之间和设置在中心加热室与最后一个加热室之间的通道内的排气口60能够使这种稀释作用最小化。
本发明的移动式隔气板还可用于防止室内气氛通过入口通道26进入第一加热室14内或防止室内气氛通过出口通道28进入最后一个加热室18内。
下面将接合图7和8对隔气板的另一实施例加以说明,在该实施例中,多个产品部件沿垂直方向堆垛在一起,从而形成了一个隔气板。在图示的实施例中,这些产品部件由多个支承托盘70构成,这些托盘携带着产品从炉通过。这些托盘沿垂直方向以多排的形式堆垛在运载部件74的推板72上。为清楚起见,在图7中仅示出了一个托盘。虚线76表示可被堆垛的托盘70填满的体积。在该图示的实施例中,每个托盘70都设置有沿长度方向延伸的直立壁78、一个承载着产品(未示出)的底板80和开口端82,开口端82允许气体自由移动,以对产品进行加热并使产品与气氛相互接触。
托盘70按照下述方式构造而成当沿垂直方向堆垛在一起时,使直立的壁78形成一个垂直壁84,如图8所示。这些托盘以下述方式排列在推板72上使壁84能够在一个横切产品从炉内穿过的方向的平面内延伸。这些托盘被构造成使该壁的尺寸和结构能够装配到通道内并在通道壁和顶板与堆垛托盘周边之间仅留有微小间隙的结构形式。该间隙的大小和长度可按照能够使气流速度足够大的方式进行选取,如上所述。应该知道只要结构合适,那么还可以用其它托盘结构或排列方式、或产品本身来形成上述的壁。
本发明并非局限于图示的内容和上述的内容,其保护范围由所附权利要求书来限定。
权利要求
1.一种连续式炉,包括至少一个加热室和邻接加热室的至少一个通道、以及限定了一条经过加热室和上述通道的产品路径的一个炉膛表面;以及运载部件,该部件包括一个能够在其上接收产品的板和一个隔气板,该隔气板包括多个沿垂直方向堆垛在一起的产品元件,这些产品元件在横切产品路径的方向上延伸,从而形成一个具有周边的隔气板壁,该隔气板壁的尺寸和结构被选择成能够将其装配到所述通道内并在所述周边与通道之间留有间隙,其中,所述间隙和长度选择成能够提高流过所述通道的气流速度并使气流速度足以克服沿着隔气板周边的气流相反方向流过通道的气体扩散速度。
2.根据权利要求1的炉,其特征在于,所述产品元件包括多个产品托盘,这些托盘被构造成能够在其上容纳产品。
3.根据权利要求2的炉,其特征在于,每个产品托盘包括一个底板和至少一个直立壁,每个产品托盘的直立壁构成隔气板壁。
4.根据权利要求1的炉,其特征在于,还包括多个运载部件。
5.根据权利要求1的炉,其特征在于,所述通道的横截面面积小于或等于加热室的横截面面积。
6.根据权利要求1的炉,其特征在于,所述产品路径位于一条从炉入口延伸到炉出口的直线上。
7.根据权利要求1的炉,其特征在于,还包括至少一个第二加热室,所述通道将所述至少一个加热室与第二加热室连接起来。
8.根据权利要求7的炉,其特征在于,所述产品路径位于一条从一个加热室延伸到第二加热室的直线上。
9.根据权利要求1的炉,其特征在于,所述通道包括一个入口通道,该入口通道设置在加热室的产品入口附近。
10.根据权利要求1的炉,其特征在于,所述通道包括一个出口通道,该出口通道设置在加热室的产品出口附近。
11.根据权利要求1的炉,其特征在于,还包括至少一个设置在所述通道或炉腔室上的排气口。
12.根据权利要求11的炉,其特征在于,所述通道是足够的长,以通过所述至少一个排气口将所有气体排出。
13.根据权利要求1的炉,其特征在于,所述运载部件由一种能够承受炉内的加热环境的材料制成。
14.根据权利要求1的炉,其特征在于,所述运载部件由一种耐火材料制成。
15.根据权利要求1的炉,其特征在于,所述炉是一个连续式的推进炉。
全文摘要
一种连续式推进炉(10)包括一个产品运载部件(36),该产品运载部件包括一个移动式的隔气板(46)。该产品运载部件包括一个能够接收产品的板(38)和一个从该板向上延伸的隔气板。该隔气板周边的尺寸和结构被加工成能够装配到炉各个腔室之间的通道内并留有一个间隙(54)的结构形式,而通道按照下述方式选取能够增加流过该通道的气流(56)的速度并使气流速度足以克服逆气流方向流过通道的气体扩散速度。这样,气体就不能扩散到上游加热室(18)内。在另一实施例中,可在通道或加热室内设置一个排气口(60),以将上游和下游腔室内的气体从炉内排出。
文档编号F27D99/00GK1549915SQ02817101
公开日2004年11月24日 申请日期2002年7月26日 优先权日2001年8月30日
发明者加里·奥尔贝克, 加里 奥尔贝克 申请人:Btu国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1