一种空气分离的方法和装置的制作方法

文档序号:4762535阅读:124来源:国知局
专利名称:一种空气分离的方法和装置的制作方法
技术领域
本发明涉及到一种空气分离方法和装置,特别涉及到利用液化天然气冷量的空气分离方法和装置。
背景技术
在本发明提出之前,由于空气的液化温度很低(临界温度为-140。7℃),在低温下通过精馏来分离空气的方法和装置就要求外界提供大量的能量来获取相当的冷量。液化天然气(简称LNG)作为清洁燃料正在推广使用。液化天然气的主要成份是甲烷,常压下的蒸发温度为-160℃左右。将液化天然气作为燃料来使用时,必须将液化天然气气化并加热到常温。如果将液化天然气的冷量应用到空气分离装置中去,无论对空气分离还是对液化天然气的使用都是一举两得的好事。
从安全出发,常采用氮气与液化天然气进行冷量交换。因此利用液化天然气冷量的空气分离方法和装置常采用氮气循环的方式。一般说来,经过压缩和净化后的干净原料空气由冷量交换而达到饱和温度或部分带液后进入精馏塔。精馏塔由下塔,上塔及冷凝蒸发器组成。原料空气在精馏塔的下塔进行初步分离,在其底部得到富氧液空。该富氧液空被引出后经过过冷和节流膨胀作为回流液进入上塔。在下塔的顶部得到气氮,部分气氮在冷凝蒸发器内被液氧所冷凝,冷凝后的一部分液氮成为下塔的回流液,另一部分液氮从冷凝蒸发器中引出后去与另一股液氮汇合。一部分气氮从下塔的顶部引出后经过热交换器复热后部分可作为产品引出,其余部分则与另一股氮气汇合后进入氮气增压机,提高了压力的氮气经过水冷器冷却后进入液化天然气热交换器。在该热交换器中氮气被冷却和冷凝成液氮,而液化天然气在液化天然气热交换器中得到气化和复热成为天然气而离开以作它用。离开热交换器的液氮经过节流膨胀后进入气液分离器,分离出来的液氮与从冷凝蒸发器引出的液氮合并,经过过冷后少部分可作为产品引出,大部分则经过节流后送入上塔作为上塔的回流液。分离出来的气氮则返回液化天然气热交换器复热后与从下塔引出的经热交换器复热的气氮汇合进入氮气增压机,完成了氮气循环。在精馏塔的上塔底部可得到液氧和气氧,在顶部可得到返流污氮(和返流氮)。应用了液化天然气的冷量来分离空气的方法和装置,单位产品的电耗已有较大下降,但对于生产液氧和液氮的装置来说电耗仍比较高,还有降低的余地。

发明内容
本发明的目的是提出一种新的利用液化天然气的冷量来分离空气的方法和装置。使单位产品的电耗进一步降低。在使用同等数量液化天然气的情况下,空气分离装置的能力还可有所提高。即在规定的装置能力情况下,可以节省液化天然气的使用量。
本发明是通过以下的技术措施来实现的。本发明的主要特征在于从精馏塔的上塔获得的返流污氮(或返流氮),进入返流污氮(或返流氮)膨胀机膨胀制冷,然后经换热器复热后去工艺预定位置;精馏塔是双级精馏塔,上塔的操作压力为0.08MPa(表压,下同)以上,下塔的操作压力为0.65MPa以上。而且返流污氮(或返流氮)膨胀机是增压透平膨胀机。
经过压缩机压缩的并在预冷系统中冷却及在净化系统中除去水蒸汽,二氧化碳等有害杂质后的原料空气进入主换热器,降温到飽和温度或部分带液后,进入精馏塔的下塔的底部,成为下塔的上升气流,在塔板上与下降液流充分接触进行热量和质量的交换。在下塔的底部获得含氧较多的富氧液空。该富氧液空被引出下塔后,先经过液空过冷器被由上塔顶部来的返流污氮(及返流氮)过冷,再经过节流膨胀进入上塔成为上塔的回流液之一。在下塔的顶部获得氮气,一部分氮气在主换热器中复热后部分可作为产品外供,其余部份氮气则与另一股氮气汇合后用作氮循环;另一部分氮气在两塔之间的冷凝蒸发器内被液氧冷凝成液氮。冷凝后的一部分液氮成为下塔的回流液,另一部分与来自气液分离器的液氮汇合后经过液氮过冷器被由上塔顶部来的返流污氮(和返流氮)过冷,少部分作为产品外供;大部分经过节流膨胀进入上塔的顶部成为上塔的另一股回流液。上述两股回流液成为上塔的下降液流。在塔板上下降液流与上升气流充分接触进行热量和质量的交换。在上塔的底部获得液氧,少部分可作为产品外供。大部分液氧则在两塔之间的冷凝蒸发器内被气氮加热成气氧,该气氧成为上塔的上升气流,也可抽取少部分气氧经复热后作为产品外供。在上塔的顶部可以获得返流污氮(和返流氮),该部分气体进入返流污氮(或返流氮)膨胀机,气体对外做功,降压降温后进入主换热器复热后进入工艺预定位置。当上塔的顶部获得大量纯氮气产品(返流氮)时,进入返流污氮(或返流氮)膨胀机的气体就是产品氮气(返流氮)。
由下塔顶部引出的氮气经过主换热器复热后少部分氮气可作为产品外供,其余的氮气与来自液化天然气热交换器的氮气会合,一同进入氮气增压机增压并在水冷器内冷却。这些氮气隨后进入液化天然气热交换器与液化天然气换热并冷凝成为液氮。而液化天然气在液化天然气热交换器中得到气化和复热成为天然气后离开以作它用。离开液化天然气热交换器的液氮进行节流膨胀后进入气液分离器,由气液分离器流出的液氮与来自冷凝蒸发器的液氮汇合,再经过液氮过冷器过冷后,一部分可作为产品外供;大部分经节流膨胀后作为回流液进入上塔。由气液分离器得到的气氮在液化天然气热交换器中复热后,与由下塔顶部引出经过主换热器复热后的氮气会合去增压机,完成了氮气循环。
在本发明中,在上塔的顶部获得的返流污氮(或返流氮)的温度较低,可以在液氮过冷器和液空过冷器中复热。因此返流污氮(或返流氮)膨胀机可位于液氮过冷器之前;或位于液氮过冷器和液空过冷器中间;或位于液空过冷器之后。
在本发明中,进入返流污氮(或返流氮)膨胀机的气体也可以取自主换热器中的返流污氮(或返流氮)通道。
在本发明中,下塔可以不引出纯液氮而引出污液氮,此时上塔也只能引出污氮气,这样就不生产氮气产品和液氮产品,上述的氮气循环就由纯氮气循环变成为污氮气循环。
在本发明中,还可在上塔合适部位抽取含氩量较高的氩馏份,作进一步处理即可获得氩产品。
在本发明中,还可设置高压换热器及低温泵,在外供液体产品的同时,还能外供部分内压缩气体产品。
在本发明中,返流污氮(或返流氮)膨胀机是增压透平膨胀机本发明实施上述技术措施之后,由於返流污氮(或返流氮)在膨胀机中膨胀作功,自身温度下降,为装置带来了额外的低温冷量,使单位产品的电耗有明显的下降,初步测祘可降低10%上下。另外在使用同等数量的液化天然气的情况下,空气分离装置的能力有所提高。即在规定的装置能力情况下,可以节省液化天然气的使用量。


附图是实施例的示意图。内中设备序号如下1为主换热器,2为精馏塔,3为下塔,4为上塔,5为冷凝蒸发器,6为液空过冷器,7为液氮过冷器,8为返流污氮(或返流氮)膨胀机,9为氮气增压机,10为水冷器,11为液化天然气热交换器,12为气液分离器。此外相关的物料流也作如下编号101为原料空气,102为富氧液空,103为返流污氮(或返流氮),104为从下塔顶部引出的氮气,105为从冷凝蒸发器5引出的液氮,106为液氧产品,107为由液化天然气热交换器引出的气氮,108为增压、冷却后的氮气,109为液化天然气,110为天然气,111为离开液化天然气热交换器的并经节流后的氮的气液混合物,112为离开气液分离器的液氮,113为外供液氮,114为氩馏分。
具体实施例方式
下面结合附图和实施例对本发明作进一步说明。经过压缩机压缩的并在预冷系统中冷却及在净化系统中除去水蒸汽,二氧化碳等有害杂质后的原料空气101进入主换热器1,降温到飽和温度或部分带液后,进入精馏塔2的下塔3,精馏塔2由下塔3,上塔4和两塔之间的冷凝蒸发器5组成。下塔3的操作压力是0.65MPa,上塔4的操作压力是0.08MPa。原料空气101进入下塔3的底部,成为下塔3的上升气流,在塔板上与下降液流充分接触进行热量和质量的交换。在下塔3的底部获得含氧较多的富氧液空102。该富氧液空102被引出下塔3后,先经过液空过冷器6被由上塔4顶部来的返流污氮103过冷,再经过节流膨胀进入上塔4成为上塔4的回流液之一。在下塔3的顶部获得的氮气分为两部分,一部分氮气在换热器1中复热后部分可作为产品外供,其余则与另一股氮气107汇合后进入增压机9。另一部分氮气在两塔之间的冷凝蒸发器5内被液氧冷凝成液氮。该液氮的一部分成为下塔3的回流液,另一部分液氮从冷凝蒸发器5中引出后与来自气液分离器12的液氮112汇合后经过液氮过冷器7被由上塔4顶部来的返流污氮103过冷,少部分作为产品113外供;大部分经过节流膨胀进入上塔4的顶部成为上塔4的另一股回流液。上述两股回流液成为上塔4的下降液流。在塔板上下降液流与上升气流充分接触进行热量和质量的交换。在上塔4的底部获得液氧,少部分可作为产品106外供,大部分液氧在两塔之间的冷凝蒸发器5内被气氮加热成气氧,该气氧成为上塔4的上升气流,也可抽取少部分作为产品经复热后外供。在上塔4的顶部获得返流污氮103,该部分气体在液氮过冷器7和液空过冷器6中复热后进入返流污氮膨胀机8,气体在膨胀机8中膨胀制冷后,再进入主换热器1复热后进入工艺预定位置。
由下塔3顶部引出的部份氮气104经过主换热器1复热并除去外供的少部分氮气产品后与来自液化天然气热交换器的氮气107汇合,一同进入氮气增压机9增压并在水冷器10内冷却;这些氮气108隨后进入液化天然气热交换器11与液化天然气109换热并冷凝成为液氮,而液化天然气109在液化天然气热交换器11中得到气化和复热成为天然气110后离开以作它用。离开液化天然气热交换器的液氮进行节流膨胀后成为氮的气液混合物111进入气液分离器12,由气液分离器12流出的液氮112与来自冷凝蒸发器5的液氮105汇合,再经过液氮过冷器7过冷后,一部分可作为产品113外供;大部分经过节流膨胀作为回流液进入上塔4。由气液分离器12得到的气氮107在液化天然气热交换器11中复热后,与由下塔3顶部引出经过主换热器1的氮气104汇合,完成了氮气循环。在上塔的适当位置抽出含氩较高的氩餾份114去制氩系统制得氩产品。
权利要求
1.一种空气分离的方法,包括(1)经过压缩机压缩并在预冷系统中冷却,在净化系统中除去杂质后的空气(101)在主换热器(1)中获得冷量后,进入精馏塔(2)分离成为各种形态的氧,氮产品和氩馏分,(2)由下塔(3)的顶部引出部份气氮(104)在主换热器(1)中复热后与来自液化天然气热交换器(11)的气氮(107)会合,经过增压机(9)增压及水冷器(10)冷却后,进入液化天然气热交换器(11),(3)进入液化天然气热交换器(11)的氮气(108)与液化天然气(109)、节流后氮气(107)进行冷量交换后,经过节流膨胀在气液分离器(12)中分为液氮(112)和气氮(107),(4)在气液分离器(12)中得到的液氮(112)与由冷凝蒸发器(5)引出的液氮(105)会合。气氮(107)在液化天然气热交换器(11)中复热后与上述气氮(104)会合后进入增压机(9),完成氮气循环,其特征在于(1)从精馏塔(2)的上塔(4)获得的返流污氮(103)(或返流氮),进入返流污氮(或返流氮)膨胀机(8),在该膨胀机(8)中降压降温后经过主换热器(1)复热后进入工艺预定位置,(2)精馏塔(2)的上塔(4)的操作压力为0.08MPa(表压)以上,而下塔(3)的操作压力为0.65MPa(表压)以上。
2.权利要求1所述的一种空气分离的方法,其特征在于从精馏塔(2)的上塔(4)获得的返流污氮(103)(或返流氮)在进入液氮过冷器(7)之前进入返流污氮(或返流氮)膨胀机(8)。
3.权利要求1所述的一种空气分离的方法,其特征在于从精馏塔(2)的上塔(4)获得的返流污氮(103)(或返流氮)经过液氮过冷器(7)之后进入返流污氮(或返流氮)膨胀机(8)。
4.权利要求1所述的一种空气分离的方法,其特征在于从精馏塔(2)的上塔(4)获得的返流污氮(103)(或返流氮)经过液氮过冷器(7)和液空过冷器(6)之后进入返流污氮(或返流氮)膨胀机(8)。
5 权利要求1所述的一种空气分离的方法,其特征在于从精馏塔(2)的上塔(4)获得的返流污氮(103)(或返流氮)经过液氮过冷器(7)和液空过冷器(6)后,进入主换热器(1)初步复热后进入返流污氮(或返流氮)膨胀机(8)降压降温后,再进入主换热器(1)复热后去工艺预定位置。
6.一种空气分离的装置,依次由(1)对空气进行加压,冷却和除去杂质使之成为原料空气的压缩机,预冷系统和和净化系统,(2)对各种不同的流体进行冷热交换的主换热器(1),过冷器(6),(7),(3)将分离用原料空气进行分离获得产品的精馏塔(2),(4)将液化天然气的冷量释放出来的液化天然气热交换器(11),(5)为循环氮气提高压力的增压机(9)和水冷器(10),(6)将节流后的氮的气液混合物进行气液分离的气液分离器(12),组成,其特征在于(1)还有将返流污氮(或返流氮)进行降压降温的返流污氮(或返流氮)膨胀机(8),(2)精馏塔(2)是双级精馏塔,由操作压力为0.65MPa(表压)以上的下塔(3),操作压力为0.08MPa(表压)以上的上塔(4)和两塔之间的冷凝蒸发器(5)组成
7.根据权利要求6所述的一种空气分离装置,其特征在于返流污氮(或返流氮)膨胀机(8)是增压透平膨胀机。
全文摘要
一种空气分离方法和装置,涉及到利用液化天然气冷量的空气分离方法和装置。在空气分离的过程中,用氮气作为传媒将液化天然气的冷量传送给进入装置的原料空气进而获得各种形态的氧,氮产品和氩馏分。液化天然气则成为可供使用的天然气。分离过程中使用了返流污氮(或返流氮)膨胀机,返流污氮(或返流氮)在低温下进行膨胀,向外做功,为分离过程提供补充的低温冷量。分离过程采用双级精馏塔,精馏塔由下塔,上塔和两塔之间的冷凝蒸发器组成。下塔的操作压力是0.65MPa(表压)以上,上塔的操作压力是0.08MPa(表压)以上。这样,单位产品的电耗有明显的下降,在使用同等数量的液化天然气的情况下,空气分离装置的能力有所提高。
文档编号F25J3/04GK1616908SQ200410065188
公开日2005年5月18日 申请日期2004年10月28日 优先权日2004年10月28日
发明者江楚标, 薛鲁 申请人:苏州市兴鲁空分设备科技发展有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1