一种混合制冷剂-膨胀制冷循环的天然气液化方法

文档序号:4784704阅读:167来源:国知局
一种混合制冷剂-膨胀制冷循环的天然气液化方法
【专利摘要】本发明提供了一种混合制冷剂-膨胀制冷循环的天然气液化方法,其包括以下内容:1)设置四个冷箱、一条膨胀制冷循环管路、一条混合制冷剂循环管路和一条天然气管路;2)膨胀制冷循环管路的制冷剂经三级压缩和水冷后,再进入箱预冷后进入膨胀机,膨胀后的制冷剂再进入冷箱提供冷量;3)混合制冷剂循环管路的制冷剂经两级压缩和水冷后,再进入冷箱预冷后进入节流阀,节流后的制冷剂再进入冷箱提供冷量;4)天然气管路的天然气依次经四个冷箱冷却后,再经过节流阀,节流后的天然气进入闪蒸罐,经闪蒸罐分离。本发明由于采用将混合制冷循环和膨胀制冷循环相结合的天然气液化方法,因此不但减少了制冷剂的组分,降低了对原料气中组分含量变化的敏感性,而且配置和存储都非常方便,有效地提高了海上浮式环境的适应性。
【专利说明】一种混合制冷剂-膨胀制冷循环的天然气液化方法

【技术领域】
[0001]本发明涉及一种天然气液化方法,特别是关于一种混合制冷剂-膨胀制冷循环的天然气液化方法。

【背景技术】
[0002]我国已探明的近海天然气资源丰富,需要进行深海气田、边际气田和低品位天然气资源的处理量相当可观。针对此类气源的开采,采用传统的浮式生产平台等方式会受到成本和技术的限制,因此采用LNG(液化天然气)浮式生产储卸装置(LNG-FPSO),既可以灵活配置,又能满足天然气开采的需要。LNG-FPSO具有便于迁移、可重复使用、生产效率高等优点,这对促进我国海域尤其是深海气田、小型气田开发,充分利用油气资源具有重要意义。
[0003]液化工艺是LNG-FPSO的核心技术之一,由于海况条件的特殊性,海上浮式装置对液化流程提出了如下要求:1、流程简单,设备紧凑,占地面积少;2、流程对进料天然气的适应性强,热效率高;3、安全可靠,受到船体晃动的影响较小;4、能够迅速开停机。此外还包括操作灵活、易于维护、费用少等标准。目前,国外主要应用于浮式装置的液化方法是氮膨胀方法和混合制冷剂方法。氮膨胀方法使用N2作为制冷剂,制冷剂储存方便安全,流程简洁,结构紧凑,布局灵活,但是存在功耗较大,经济性略差等问题。而混合制冷剂方法效率高,功耗小,但是存在制冷剂组分复杂,配置困难,储存量较大,船体晃动影响制冷效果等问题,而且其对混合制冷剂组分变化比较敏感。


【发明内容】

[0004]针对上述问题,本发明的目的是提供一种制冷剂组分简单、储存方便安全、工艺效率较高、适用于海洋浮式装置的混合制冷剂-膨胀制冷循环的天然气液化方法。
[0005]为实现上述目的,本发明采取以下技术方案:一种混合制冷剂-膨胀制冷循环的天然气液化方法,其包括以下内容:1)设置四个冷箱、一条膨胀制冷循环管路、一条混合制冷剂循环管路和一条天然气管路;两条循环管路中的制冷剂均采用甲烷和氮气;2)膨胀制冷循环管路的制冷剂经过三级压缩和水冷后,再依次进入第一、第二冷箱预冷后进入膨胀机,膨胀后的制冷剂再依次进入第三、第二、第一冷箱提供冷量;3)混合制冷剂循环管路的制冷剂经过两级压缩和水冷后,再依次进入第一、第二、第三冷箱预冷后进入节流阀,节流后的制冷剂再依次进入第四、第三冷箱提供冷量;4)天然气管路的天然气依次经四个冷箱冷却后,再经过节流阀,节流后的天然气进入闪蒸罐,经过闪蒸罐分离后,液相进入LNG储罐储存,闪蒸罐顶部的BOG原料气中的甲烷和氮气作为制冷剂组分的一部分来源。
[0006]所述步骤I)中,甲烷的摩尔分率为94.54,氮气的摩尔分率为5.46,生产中按照此比例补充。
[0007]所述步骤2)中,进入膨胀机膨胀后的制冷剂温度降至_111°C,压力为1347kPa。
[0008]所述步骤3)中,进入节流阀节流后的制冷剂温度降低至-153.7°C,压力为300kPao
[0009]所述步骤4)中,经节流阀节流后的天然气温度降低至-158.6°C、压力为120kPa。
[0010]所述步骤4)中,在天然气依次进入冷箱前,先进入一预处理装置,去除其中的泥沙、水、酸性气体、汞、苯类杂质。
[0011]本发明由于采取以上技术方案,其具有以下优点:1、本发明由于采用将混合制冷循环和膨胀制冷循环相结合的天然气液化方法,并在两个循环管路中均采用液化流程自身产生的BOG原料气中的甲烷和氮气作为制冷剂,因此不但减少了制冷剂的组分,降低了对原料气中组分含量变化的敏感性,而且配置和存储都非常方便,可以在生产中边生产边按比例补充,有效地提高了海上浮式环境的适应性。2、本发明在膨胀制冷循环中采用了三级压缩和水冷,并经过两个冷箱预冷后经过膨胀机膨胀制冷,然后依次进入前三个冷箱为天然气和混合制冷剂提供冷量;同时在混合制冷剂循环中采用两级压缩和水冷,并经过前三个冷箱预冷后经过节流阀制冷,然后进入后两级冷箱中为天然气管路提供冷量;本发明不但合理地利用两条循环管路的预冷和提供冷量的作用使本发明的功率消耗有效降低,而且有效地提高了 LNG和BOG的年产量。本发明关键设备的数量减少,工艺简单,可靠性较好,液化率较高,特别适合于在海上LNG-FPSO中使用。

【专利附图】

【附图说明】
[0012]图1是本发明天然气液化流程示意图
[0013]图2是本发明液化流程在各冷箱流动示意图

【具体实施方式】
[0014]下面结合附图和实施例对本发明进行详细的描述。
[0015]如图1所示,本发明方法包括以下内容:
[0016]I)设置一条膨胀制冷循环管路、一条混合制冷剂循环管路、一条天然气管路和四个冷箱1、2、3、4。其中膨胀制冷循环管路包括一级压缩机5、第一水冷器6,二级压缩机7、第二水冷器8,三级压缩机9、第三水冷器10、膨胀机11。混合制冷剂循环管路包括一级压缩机12、第一水冷器13、二级压缩机14、第二水冷器15、混合制冷剂管路节流阀16。天然气管路包括天然气管路节流阀17和闪蒸罐18。四个冷箱的第一、第二和第三冷箱1、2、3中,每个冷箱分别包括四组换热器 101、102、103、104,201、202、203、204,301、302、303、304 ;第四冷箱4包括两组换热器401、402。
[0017]2)在膨胀制冷循环中,制冷剂组分包括甲烷和氮气,其中甲烷的摩尔分率为94.54,氮气的摩尔分率为5.46,生产中按照该组分的比例进行补充。甲烷和氮气的混合制冷剂依次经过膨胀制冷循环的一级压缩机5、第一水冷器6、二级压缩机7、第二水冷器8、三级压缩机9和第三水冷器10,得到压力为3730kPa,温度为40°C ;混合制冷剂再进入第一冷箱I的第二换热器102,冷却至温度_30°C,压力为3710kPa,然后进入第二冷箱2的第二换热器202,将温度降低至-65°C,压力为3690kPa ;之后经过膨胀机11降温降压,在膨胀机11出口的温度为_111°C,压力为1347kPa。第三级压缩机9由膨胀机11直接驱动,膨胀后的混合制冷剂依次经第三冷箱3的第三换热器303、第二冷箱2的第四换热器204和第一冷箱I的第四换热器104,为天然气和混合制冷剂提供冷量,换热后制冷剂温度为37.68°C,压力为1287kPa,返回到膨胀制冷循环的一级压缩机5完成循环。
[0018]3)在混合制冷剂循环中,同样以甲烷和氮气的混合组分作为制冷剂,甲烷摩尔分率为94.54,氮气摩尔分率为5.46,生产中按照该组分的比例进行补充。换热后的混合制冷剂依次经过混合制冷剂循环管路的一级压缩机12、第一水冷器13、二级压缩机14和第二水冷器15,得到压力为2550kPa,温度为40°C ;混合制冷剂再依次进入第一冷箱I的第三换热器103、第二冷箱2的第三换热器203和第三冷箱3的第二换热器302进行换热,温度降至_148°C,压力为2490kPa,然后进入混合制冷剂管路节流阀16节流降压至300kPa,温度为-153.7°C;之后甲烷和氮气混合制冷剂依次经过第四冷箱4的第二换热器402、第三冷箱3的第四换热器304,为天然气和混合制冷剂提供冷量,换热后制冷剂温度升高,第三换热器出口的混合制冷剂温度为_100°C,压力为260kPa,返回混合制冷剂循环的一级压缩机12完成循环。
[0019]4)在天然气管路中,经过预处理后的天然气入口温度为34.5°C、压力为5000kPa。首先进入第一冷箱I的第一换热器101冷却,温度降至-30°c,压力为4975kPa,再进入第二冷箱2的第一换热器201,温度降至-103°C、压力为4950kPa,然后进入第三冷箱的第一换热器301冷却,温度降至-140.(TC、压力为4925kPa,最后进入第四冷箱4的第一换热器401,冷却温度降至-151°C、压力为4900kPa;之后经过天然气管路节流阀17节流至温度为-158.6°C、压力为120kPa后进入闪蒸罐18,经过闪蒸罐18分离后,液相进入LNG储罐储存,闪蒸罐18顶部的BOG燃料气可以作为制冷剂组分的一部分来源。
[0020]上述天然气的预处理是采用常规装置,去除其中的泥沙、水、酸性气体、汞、苯等杂质。
[0021]如图2所示,通过上述描述可以看到,本发明膨胀制冷循环管路、混合制冷剂循环管路和天然气管路的物料在冷箱换热的过程,其中19?20为天然气管路物流,21?22、23?24为膨胀制冷循环管路物流,25?26、27?28为混合制冷剂循环管路物流。即:
[0022]19?20为天然气作为热源在换热冷箱中被冷却的过程;
[0023]21?22为膨胀制冷循环制冷剂物流作为热源在换热冷箱中被冷却的过程;
[0024]23?24为膨胀制冷循环制冷剂物流作为冷源在换热冷箱中冷却天然气、高温甲烷和氮气混合制冷剂的过程;
[0025]25?26为混合制冷剂循环的制冷剂物流作为热源在换热冷箱中被冷却的过程;
[0026]27?28为混合制冷剂循环的制冷剂物流作为冷源在换热冷箱中冷却天然气、甲烷和氮气混合制冷剂的过程。
[0027]本发明经过HYSYS (软件名称)流程模拟程序对本发明方法的流程进行了模拟及敏感性分析,分析结果表明,本发明对原料气流量变化、组分变化的敏感性较低,从而验证了本发明方法的稳定性和海上适应性。采用本发明方法对天然气液化处理量可以达到17590.08吨/年,LNG产量为16433.76吨/年,BOG产量为1163.33吨/年,与现有技术相比有非常明显的提闻。
[0028]上述实施例中,为了保证装置在晃动条件下仍然安全可靠的运行,对设备的选型及安装提出了以下要求。由于流程中天然气处理量较大,膨胀机11推荐选用透平膨胀机,尺寸小、工作稳定,对海上工况的适应性较好;冷箱1、2、3、4中的各换热器米用板翅式换热器,结构紧凑、性能稳定,是目前液化天然气厂普遍使用的一种换热器。
[0029]上述各实施例仅用于说明本发明,其中各部件的结构、连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。
【权利要求】
1.一种混合制冷剂-膨胀制冷循环的天然气液化方法,其包括以下内容: 1)设置四个冷箱、一条膨胀制冷循环管路、一条混合制冷剂循环管路和一条天然气管路;两条循环管路中的制冷剂均采用甲烷和氮气; 2)膨胀制冷循环管路的制冷剂经过三级压缩和水冷后,再依次进入第一、第二冷箱预冷后进入膨胀机,膨胀后的制冷剂再依次进入第三、第二、第一冷箱提供冷量; 3)混合制冷剂循环管路的制冷剂经过两级压缩和水冷后,再依次进入第一、第二、第三冷箱预冷后进入节流阀,节流后的制冷剂再依次进入第四、第三冷箱提供冷量; 4)天然气管路的天然气依次经四个冷箱冷却后,再经过节流阀,节流后的天然气进入闪蒸罐,经过闪蒸罐分离后,液相进入LNG储罐储存,闪蒸罐顶部的BOG原料气中的甲烷和氮气作为制冷剂组分的一部分来源。
2.如权利要求1所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤I)中,甲烷的摩尔分率为94.54,氮气的摩尔分率为5.46,生产中按照此比例补充。
3.如权利要求1所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤2)中,进入膨胀机膨胀后的制冷剂温度降至_111°C,压力为1347kPa。
4.如权利要求2所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤2)中,进入膨胀机膨胀后的制冷剂温度降至_111°C,压力为1347kPa。
5.如权利要求1或2或3或4所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤3)中,进入节流阀节流后的制冷剂温度降低至-153.7V,压力为300kPao
6.如权利要求1或2或3或4所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤4)中,经节流阀节流后的天然气温度降低至-158.6°C、压力为120kPa。
7.如权利要求5所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤4)中,经节流阀节流后的天然气温度降低至-158.6°C、压力为120kPa。
8.如权利要求1或2或3或4或7所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤4)中,在天然气依次进入冷箱前,先进入一预处理装置,去除其中的泥沙、水、酸性气体、汞、苯类杂质。
9.如权利要求5所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤4)中,在天然气依次进入冷箱前,先进入一预处理装置,去除其中的泥沙、水、酸性气体、汞、苯类杂质。
10.如权利要求6所述的一种混合制冷剂-膨胀制冷循环的天然气液化方法,其特征在于:所述步骤4)中,在天然气依次进入冷箱前,先进入一预处理装置,去除其中的泥沙、水、酸性气体、汞、苯类杂质。
【文档编号】F25B9/10GK104315801SQ201410544881
【公开日】2015年1月28日 申请日期:2014年10月15日 优先权日:2014年10月15日
【发明者】王清, 谢彬, 李玉星, 喻西崇, 王春升, 王武昌, 朱建鲁, 程兵, 冯加果, 李阳, 王世圣, 谢文会, 朱小松 申请人:中国海洋石油总公司, 中海油研究总院, 中国石油大学(华东)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1