用一高压塔和一或多个低压塔生产高压氮的方法

文档序号:4793686阅读:176来源:国知局
专利名称:用一高压塔和一或多个低压塔生产高压氮的方法
技术领域
本发明涉及一种低温蒸馏空气进给的方法。这里所用的术语“空气进给”一般是指常压空气但也包括任何至少含有氧和氮的气体混合物。
本发明的目标市场是各种高纯度的高压氮(压力大于60磅/平方英寸面积),从中等高纯度(99.9%氮)变化到超高纯度(少于十亿份之一氧),例如用于化学和电子工业各个部门的氮。有些应用可能需要直接从蒸馏塔系统供给高压和高纯度氮以防止杂质涉及与低压下生产的压缩氮相结合。本发明的一目的是设计一有效的低温循环以适应这些需要。
在生产氮的工艺中有些方法是已知的。这些方法可按蒸馏塔数来分类,例如单塔循环、单塔具有预分馏器或后分馏器、双塔循环和包含两蒸馏塔以上的循环。
美国专利4,222,756使人得知一传统的单塔氮循环。汽化空气被进给至一精馏器的底部,在该处被分离成塔顶馏出汽化氮和一底液,这样就使压力下降,而在塔顶沸腾通过与塔顶馏出蒸汽的间接换热形成必要的回流。来自顶部重沸器/冷凝器的富氧蒸汽则作为一废物流被排出。
一种有利的单塔氮发生器在于其简单性。该循环的一大缺点是限制氮回收。各种其他类型单塔氮发生器则提出增加氮回收。美国专利4,594,085在该塔底部使用一辅助重沸器以相对于空气汽化一部分底液,对该塔形成附加液态空气进给。在美国专利5,325,674和5,373,699中使用压缩氮,而不用空气作该辅助重沸器内的一加热介质。该氮在辅助重沸器内冷凝以后作为附加回流被进给至塔顶,因而增加产物回收。美国专利5,037,462使人得知一类似仅用一空气压缩扩展器的浓化循环。美国专利4,662,916使人得知一具有两重沸器的单塔循环。还有被描述在美国专利4,966,002中的另一单塔循环,在该处一部分富氧废物流被压缩并再循环返回该塔以进一步增加氮回收。同样在美国专利5,385,024中将一部分富氧废物流冷压缩扩展并用进给空气再循环返回该塔。
一单塔系统内的氮回收通过附加第二个蒸馏装置而有显著改进。该装置可以是一全蒸馏塔或设一小预/后分馏器做为一闪蒸装置或一仅有几个级的小塔。美国专利4,604,117使人得知一包含一单塔具有一预分馏器的循环,在该处一部分进给空气被分离形成至该主塔的新进给。美国专利4,927,441使人得知一氮发生循环,该循环具有一固定在精馏器顶部的后分馏器,在该处富氧底液被分离成甚至多个富氧液和一具有相似于空气组分的蒸汽流。该合成空气流被再循环至精馏器使产物回收和循环效率大有改进。还有两次使用两重沸器在不同压力下汽化富氧液更进一步地提高循环效率。
美国专利4,222,756使人得知传统的产氮双塔循环。在该专利中可知新型蒸馏配置由具有一设在低压塔顶部的附加重沸器/冷凝器的双塔组成,由汽化富氧废液提供至低压塔的回流。由膨胀来自高压塔的氮气来产生冷冻。
英国专利1,215,377和美国专利4,453,957使人得知一相似的蒸馏配置(对冷冻用不同液体膨胀)。在美国专利4,617,036中使用一侧重沸器/冷凝器来替代低压塔上顶部的换热器。美国专利5,006,139使人得知一具有中间重沸器在低压塔内的双塔循环。一生产中压氮以及氧和氩副产品的循环在美国专利5,129,932内作了描述。
欧洲专利0701099A1使人得知一不同的双塔高压氮方法。主要区别在于整个空气进给是进给至低压塔(不用高压塔)以便从空气进给中分离氮,并且接着将该氮整个部分压缩(需要在高压下)并再循环返回至高压塔,在该处对其附加净化去除较重组分和可能是由再循环压气机引入的杂质。
美国专利4,439,220使人得知的双塔高压氮方法可以视为两个串联的标准单塔氮发生器(这一配置也被称为一分离塔循环)。美国专利4,448,595不同于一分离塔循环在于其低压塔附加地备置一重沸器。在美国专利4,717,410和5,098,457中还示有该分离塔循环的另一变型,该循环将来自低压塔顶部的氮液产物泵回至高压塔,以增加高压产物的回收一产氮的三塔循环被描述在美国专利5,069,699内,该循环除了有一具有一双重沸器的双塔系统以外还使用一特高压蒸馏塔以增加氮产量。美国专利5,402,647使人得知另一生产大量高压氮的三塔系统。在该发明中附加塔是在一相当于高压塔和低压塔中间的压力下工作。而且在该专利和美国专利4,717,410和5,098,457中要将所有的氮处在来自该高压塔的高压下时,一来自该低压塔的液氮流则被泵至该高压塔,并且代替该高压,氮蒸汽是由该高压塔收集的。用泵将液氮从一塔抽至另一塔产生的问题是使总的氮回收显著地下降。所有已知技术的氮循环具有下列缺陷即从塔系统回收高压氮是有限的而且还不能增加。
本发明是一种方法以低温蒸馏一空气进给来生产各种纯度的高压氮,从中等高纯度(99.9%氮)变化至超高纯度(小于10亿份之一氧)。该法特别适合于下列情况,即需要直接来自蒸馏塔系统的高压氮以防止杂质涉及与低压下生产的压缩氮相结合。该法使用一高压塔,该塔是在某一压力下工作,直接生产所要求高压下的氮,还使用一或多个低压塔在一低压下生产一部分氮产物。将至少一部分低压氮压缩并在一位置进给至高压塔,该位置低于高压氮的提取位置。


图1为本发明一综合实施例的一示意图。
图2为本发明第二个综合实施例的一示意图。
图3为本发明第三个综合实施例的一示意图。
图4为图1一实施例的一示意图,说明怎样可以将本发明各种实施例与一主换热器、辅助换热器和一冷冻发生膨胀器相结合的一实例。
本发明是一种方法使用一蒸馏塔系统以低温蒸馏空气进给来产生一高压氮产物,该系统包含一高压塔和一或多个低压塔。按其最广的实施例并参阅任何或图1至4全部,该法包含(a)进给至少一部分该空气进给[10]至该高压塔[D1]的底部;(b)从该高压塔顶部提取一富氮塔顶馏出物[20],收集第一个部分[22]作为高压氮产物,在第一个重沸器/冷凝器[R/C1]内冷凝第二个部分,并将该冷凝第二部分的至少其中第一个部分作为回流进给至该高压塔内一上部位置;(c)从该高压塔底部提取一原始液氧流[30],对其至少第一个部分减压[经阀V1],并将所述第一部分进给至进一步处理的蒸馏塔系统;(d)从各低压塔顶部提取一富氮塔顶馏出物,将一或多个所述塔顶馏出物的至少第一个部分压缩并接着在一位置进给至该高压塔,该位置低于(b)步该高压氮产物[22]的提取位置;和(e)从该蒸馏塔系统提取一富氧废物流。
在本发明中将该高压塔的压力设成稍高于从该塔中提取氮产物的压力规格以便计及压力降。在该系统中至少其中一剩余蒸馏塔的压力设成低于该高压塔的压力以保证在塔和/或工艺流之间有一适当的热综合。该(这些)低压蒸馏塔也生产氮,但其压力一般太低,而且对某些用户不能满足所需的规格,特别是对电子工业。这些用户需要直接由塔系统来生产所有高压和高纯度氮,而且因为涉及杂质不许可对该低压氮作后压缩。因此直到现在低压氮还不能作为一可接受产物交付使用。本发明将该不用的低压氮转换成一高压高纯度产物。为此将低压氮压缩并返回到该高压塔。再循环氮物流在提取该高纯度产物位置的下方进入该高压塔,在该再循环圈内清除出所有可能存在的杂质(如微粒子或烃)。应该注意的是因为该再循环低压氮是在该高压塔内附加净化的,该低压塔不必用手生产很高纯度的氮,这样就可使与该低压塔高度有关的投资费用减少本发明可用于任何多蒸馏塔产氮系统。下列实施例只是用于说明目的。
在本发明其中一综合实施例中,特别是参阅图1(i)蒸馏塔系统包含一单低压塔[D2];(ii)第一重沸器/冷凝器[R/C1]设在该单低压塔底部内;(iii)在(c)步将该原始液氧流[30]更确切地进给到该单低压塔内一中间位置;(iv)在(d)步将从该单低压塔提取的全部富氮塔顶馏出物[40]压缩[在压气机C1内]并且接着进给至该高压塔;(v)在(e)步从该单低压塔一下部位置更确切地提取富氧废物流[50];和(vi)从该高压塔一中间位置提取一部分该高压塔下降的富氮液[34],减压[经阀V2]并且作为回流进给至该单低压塔的顶部。
在图1中应该注意到物流34最好是从该高压塔的一位置提取,该位置在该高压氮产物[22]的提取点下面,因为该回流物流的纯度不必具有象该高压氮产物那样高的纯度。但是若有需要可以将该回流物流从该高压塔[D1]的顶部提取。
在本发明的第二个综合实施例中,特别参看图2(i)该蒸馏塔系统包含两低压塔,即第一个低压塔[D2]和第二个低压塔[D3];(ii)第一重沸器/冷凝器[R/C1]是设在该第一低压塔的底部;(iii)在(c)步,将该原始液氧流[30]更确切地进给至该第一低压塔的顶部;(iv)在(d)步将从该第一低压塔提取的全部富氮塔顶馏出物[40]进给至该第二低压塔的一中间位置,而只有第一个部分[62]来自该第二低压塔的富氮塔顶馏出物[60]被压缩[在压气机C1内]并且接着被进给至该高压塔;(v)将来自该第二低压塔的第二个部分富氮塔顶馏出物在位于该第二低压塔顶部的第二个重沸器/冷凝器[R/C2]内冷凝,将该冷凝第二部分的其中第一个部分[64]作为回流进给至该第二低压塔的顶部,而该冷凝第二部分的其中第二个部分[66]则作为一可选用的产物流被收集;(vi)从该第一低压塔内紧接在该第一重沸器/冷凝器[R/C1]上方的一位置提取第一个富氧蒸汽流[50a],从该第一低压塔的底部提取第二个富氧液流[50b],并将第一和第二两富氧流进给至该第二低压塔的底部;和(vii)从该第二低压塔的底部提取一富氧液流[70],减压[经阀V2],在第二重沸器/冷凝器[R/C2]内汽化,并作为富氧废物流[80]被提取。
在第三个本发明的综合实施例中,并特别参阅图3(i)该蒸馏塔系统包含两低压塔,即第一个低压塔[D2]和第二个低压塔[D3];(ii)第一重沸器/冷凝器[R/C1]是设在该高压塔的顶部;(iii)在(c)步将原始液氧流[30]更确切地进给至该第一重沸器/冷凝器,在该处将其汽化,并且接着[作为物流40]被进给至该第一低压塔的底部;(iv)在(d)步来自该第一低压塔的富氮塔顶馏出物[60]只有第一个部分[62]被压缩[在压气机C1内],并且接着被进给至该高压塔,同样来自该第二低压塔的富氮塔顶馏出物[100]只有第一个部分[102]被压缩[在压气机C2内]并且接着被进给至该高压塔;(v)来自该第一低压塔的富氮塔顶馏出物的第二个部分[64]在位于该第一低压塔顶部的第二个重沸器/冷凝器[R/C2]内被冷凝,并且接着作为回流被进给至该第一低压塔的顶部;
(iv)从该第一低压塔底部提取一富氧液流[70],减压[经阀V2],在该第二重沸器/冷凝器[R/C2]内被汽化,并且接着[作为物流80]被进给至该第二低压塔的底部;(vii)将来自该第二低压塔的富氮塔顶馏出物的第二个部分[104]在位于该第二低压塔顶部的第三个重沸器/冷凝器[R/C3]内冷凝,并且接着作为回流进给至该第二低压塔的顶部;和(viii)从该第二低压塔底部提取一富氧液流[110],减压[经阀V3],在该第三重沸器/冷凝器[R/C3]内被汽化,并且作为富氧废物流[120]被提取。
应该指出,为简化起见,已将主换热器和冷冻发生膨胀器示意图从图1至3中删去。主换热器和各种膨胀器示意图可以很容易由专业人员来列入。要膨胀的类似可选用物流包含(i)至少一部分空气进给在膨胀后一般会被进给至该蒸馏塔系统的一适当位置;和/或(ii)各个实施例中产生的至少一部分一或多个废物流在膨胀后一般会相对于该进入空气进给在该主换热器内被加热(作为一实例这一配置示于下面讨论的图4内);和/或(iii)来自一或多个该低压塔顶部的一部分压缩低压氮在膨胀后一般会相对于该进入空气进给在该主换热器内被加热。
还要指出的是为简化起见已将一空气分离流程中其他正常的一些特征从图1至3中删去,这方面包含主压气机、前端清理系统和辅助冷却换热器。这些特征同样可以很容易由专业人员来列入。作为适用于图1的图4(共用的物流和设备采用图1相同的标号)就是可以怎样列入这些正常特征的一实例(包含该主换热器和一膨胀器示意图)。
参阅图4(i)在(a)步将该空气进给[10]进给至该高压塔底部以前,压缩该空气进给[在压气机C2内],清除[在一清理系统CS1内]在低温下要结冰的一些杂质(即水和二氧化碳)和/或其他不希望有的杂质(例如一氧化碳和氢),并将其在一主换热器[HX1]内冷却至一接近其露点的温度;(ii)在(d)步压缩富氮塔顶馏出物[40][在压气机C1内]以前,将所述塔顶馏出物在该主换热器内加热;(iii)接着在(d)步压缩富氮塔顶馏出物[40],可选用地提取一部分[42]所述塔顶馏出物作为一产物流,接着将剩余部分在该主换热器内冷却,并且进给至该高压塔;(iv)接着在(b)步从该高压塔提取该高压氮产物[22],所述产物是在该主换热器内被加热的;(v)接着在(e)步从该单低压塔提取富氧废物流[50],所述废物流是在该主换热器内被局部加热的,膨胀[在膨胀器E1内],并在该主换热器内被重热;和(vi)在该主换热器内加热富氮塔顶馏出物[40]以前,所述塔顶馏出物首先是在第一个辅助冷却换热器[HX1]内相对于从该高压塔内一中间位置被提取的富氮液[34]被加热,并且接着在第二个辅助冷却换热器[HX3]内相对于来自该高压塔底部的原始液氧液[30]被加热。
如图4中所示,对来自该低压塔的富氮塔顶馏出物的压缩是该物流在该主换热器(即热压缩)内被加热后进行的。应该指出本发明中对来自该(这些)低压塔的富氮塔顶馏出物压缩也可以在该物流在该主换热器内被加热以前来进行(即冷压缩)。还应指出有可能从该高压塔的不同位置提取不同纯度的多种氮产物流。
专业人员将懂得本发明有许多其他实施例,这些均在下面权利要求的范围内。
权利要求
1.一种方法使用一蒸馏塔系统以低温蒸馏一空气进给来产生一高压氮产物,该蒸馏塔系统包含一高压塔和一或多个低压塔,该法包含(a)进给至少一部分该空气进给至该高压塔的底部;(b)从该高压塔顶部提取一富氮塔顶馏出物,收集第一个部分作为高压氮产物,在第一个重沸器/冷凝器内冷凝第二个部分,并将该冷凝第二部分的至少其中第一个部分作为回流进给至该高压塔内一上部位置;(c)从该高压塔底部提取一原始液氧流,对其至少第一个部分减压,并将所述第一部分进给至进一步处理的蒸馏塔系统;(d)从各低压塔顶部提取一富氮塔顶馏出物,将一或多个所述塔顶馏出物的至少第一个部分压缩并接着在一位置进给至该高压塔,该位置低于(b)步该高压氮产物的提取位置;和(e)从该蒸馏塔系统提取一富氧废物流。
2.按权利要求1所述的方法,其中(i)蒸馏塔系统包括一单低压塔;(ii)第一重沸器/冷凝器是设在该单低压塔的底部;(iii)在(c)步将原始液氧流更确切地进给至该单低压塔的一中间位置;(iv)在(d)步从该单低压塔提取的全部富氮塔顶馏出物被压缩并且接着被进给至该高压塔;(v)在(e)步从该单低压塔的一下部位置更确切地提取该富氧废物流;和(vi)从该高压塔一中间位置提取一部分该高压塔下降的富氮液,减压并且作为回流进给至该单低压塔的顶部。
3.按权利要求1所述的方法,其中(i)该蒸馏塔系统包含两低压塔,即第一个低压塔和第二个低压塔;(ii)该第一重沸器/冷凝器是设在该第一低压塔的底部;(iii)在(c)步将原始液氧流更确切地进给至该第一低压塔的顶部;(iv)在(d)步将从该第一低压塔提取的全部富氮塔顶馏出物进给至该第二低压塔的一中间位置,而只有第一个部分来自该第二低压塔的富氮塔顶馏出物被压缩,并且接着被进给至该高压塔;(v)第二个部分来自该第二低压塔的富氮塔顶馏出物在位于该第二低压塔顶部的第二个重沸器/冷凝器内被冷凝,该冷凝第二部分的其中第一个部分作为回流被进给至该第二低压塔的顶部,而该冷凝第二部分的其中第二个部分则作为一产物流被收集;(vi)从该第一低压塔内一位置提取第一个富氧蒸汽流,该位置紧靠在该第一重沸器/冷凝器的上方,从该第一低压塔底部提取第二个富氧液流,并将该第一和第二两富氧流进给至该第二低压塔的底部;和(vii)从该第二低压塔底部提取一富氧液流,减压,在该第二重沸器/冷凝器内被汽化,并且作为富氧废物流被提取。
4.按权利要求1所述的方法,其中(i)该蒸馏塔系统包括两低压塔,即第一个低压塔和第二个低压塔;(ii)该第一重沸器/冷凝器是设在该高压塔的顶部;(iii)在(c)步将原始液氧流更确切地进给至该第一重沸器/冷凝器内,在该处被汽化,并且接着被进给至该第一低压塔的底部;(iv)在(d)步只有第一个部分来自该第一低压塔的富氮塔顶馏出物被压缩,并且接着被进给至该高压塔,同样,只有第一个部分来自该第二低压塔的富氮塔顶馏出物被压缩,并且接着被进给至该高压塔;(v)来自该第一低压塔的第二个部分富氮塔顶馏出物在位于该第一低压塔顶部的第二个重沸器/冷凝器内被冷凝,并且接着作为回流被进给至该第一低压塔的顶部;(vi)从该第一低压塔底部提取一富氧液流,减压,在该第二重沸器/冷凝器内被汽化,并且接着被进给至该第二低压塔的底部;(vii)来自该第二低压塔的第二个部分富氮塔顶馏出物在位于该第二低压塔顶部的第三个重沸器/冷凝器内被冷凝,并且接着作为回流被进给至该第二低压塔的顶部;和(viii)从该第二低压塔底部提取一富氧液流,减压,在第三重沸器/冷凝器内被汽化,并且作为富氧废物流被提取。
5.按权利要求2所述的方法,其中(i)在(a)步将该空气进给进给至该高压塔底部以前,压缩该空气进给,清除不要的杂质,并且在一主换热器内冷却至一接近其露点的温度;(ii)在(d)步压缩富氮塔顶馏出物以前,在该主换热器内加热所述塔顶馏出物;(iii)在(d)步接着压缩该富氮塔顶馏出物,将一部分所述塔顶馏出物作为一产物流来提取,接着将剩余部分在该主换热器内冷却,并且进给至该高压塔;(iv)在(b)步接着从该高压塔提取该高压氮产物,将所述产物在该主换热器内加热;(v)在(e)步接着从该单低压塔提取富氧废物流,将所述废物流在该主换热器内局部加热,膨胀并在该主换热器内重热;和(vi)在该主换热器内加热该富氮塔顶馏出物以前,首先将所述塔顶馏出物相对于从该高压塔内一中间位置提取的富氮液在第一个辅助冷却换热器内加热,并且接着相对于来自该高压塔底部的原始液氧流在第二个辅助冷却换热器内加热。
全文摘要
本发明对低温蒸馏空气进给来产生各种纯度高压氮提出一种方法,从中等高纯度(99.9%氮)变化到超高纯度(少于1亿份之一氧)。该法特别适用于一些情况,即那时需要直接来自蒸馏塔系统的高压氮,以防止杂质涉及与低压下生产的压缩氮相结合,该法使用一高压塔和一或多个低压塔,该高压塔是在某一压力下直接生产所要求高压下的氮,而低压塔则在某一低压下生产一部分氮产物;至少一部分低压氮被压缩,并且在一位置被进给至该高压塔,该位置是在高压氮提取位置的下方。
文档编号F25J3/04GK1190178SQ97119698
公开日1998年8月12日 申请日期1997年9月30日 优先权日1996年10月1日
发明者Z·T·菲德科斯基, R·阿格劳阿尔 申请人:气体产品与化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1