连续液体空气进料的低温精馏系统的制作方法

文档序号:4761399阅读:161来源:国知局
专利名称:连续液体空气进料的低温精馏系统的制作方法
通常本发明涉及进料空气的低温精馏,并且特别用于生产提高压力的气体产品的进料空气低温精馏。
工业化大量生产氧和氮是借助于进料空气的低温精馏,如采用双柱系统,其中产品是由低压柱取出的。然而不时地要求生产的产品压力要超过从低压柱取出时的压力。在这样的情况下,就需要把气体氧加压到预定的压力。但出于投资费用的目的通常产品最好以液体的形式从低压柱排出,泵压至较高的压力,然后蒸发加压的液体的生产出预定提高压力的产品气体。
在这样的一种系统中,通常称作产品的沸腾系统,使液体通过与冷凝流体,一般为加压进料空气间接热交换在产品蒸发器中蒸发。使所得到的液体进料空气再进入低温空气分离装置中进行分离。已知有两种液体进料空气的配置。在其中一种配置中,所有的液体进料空气都进入高压柱进行低温精馏的处理。在另一种配置中,液体进料空气被分成进入高压柱的第一部分和进入低压柱的第二部分。后一种配置是优选的,因为进来的液体进料空气在柱内分布适宜,所以能使低温精馏整套装置的操作更有效。
进料空气的低温精馏,尤其是用于生产提高压力的气体产品,是大量耗能的操作,因此在能量使用效率方面上的任何改进都是希望的。
由此,本发明的一个目的是提供进料空气低温精馏的系统,其中至少一些进料空气在进入低温空气分离整套装置的一个柱或多个柱之间先被液化,这样做可以改进效率,使之超过在此之前已有的这种系统。
通过本发明可达到上述和其他的目的,基于阅读本说明书这些目的对所属技术领域的技术人员来说将是明显的,本发明的一个方面是进行进料空气低温精馏的方法,包括(A)冷凝进料空气以产生液体进料空气并使所有的液体进料空气在高于高压柱底部的液体空气进料高度上进入高压柱;(B)取自高压柱的第一液流在液体空气进料高度或低于此高度的高度上进入低压柱;(C)取自高压柱的第二液流在低于第一液流排出高度的高度上进入低压柱;(D)通过在低压柱内的低温精馏生产富氮流体和富氧流体;和(E)作为产品回收富氮流体和富氧流体中的至少一种。
本发明另一方面是进行进料空气低温精馏的设备,包括(A)产品蒸发器和使进料空气进入产品蒸发器的装置;(B)高压柱和使来自产品蒸发器的进料空气在高于高压柱底部液体空气进料高度上进入高压柱的装置;(C)低压柱和使在高压柱的液体空气进料高度或低于此高度出来的第一流体进入低压柱的装置;(D)使从低于来自高压柱的第一流体的排出高度出来的第二流体进入低压柱的装置;和(E)使从低压柱回收产品的装置。
本文所用术语“进料空气”指主要包含氧、氮和氩的混合物,如环境空气。
本文所用术语“柱”指的是蒸馏或分馏柱或区,即接触柱或区,其中液相和气相逆流接触以进行流体混合物的分离,例如,通过气相和液相在一系列垂直放置的塔盘或安装在柱内的塔板和/或填料元件如结构或无规填料上接触。为了进一步讨论蒸馏柱,可参阅化学工程师手册,第五版,R.H.佩里和C.H.奇尔顿编,麦格劳一希尔图书公司,纽约,第13章,连续蒸馏工艺过程(Chemical Engineer’s Handbook,fifth,edited by R.H.Perry and C.H.chilton,MCGraw-Hill BookCompany,New York,section 13,The continuous DistillationProcess)。本文使用的术语“双柱”指具有其上部与低压柱下部呈热交换关系的高压柱。双柱的进一步讨论登载在鲁曼的“气体分离”中,牛津大学出版社,l949,Ⅶ节,工业空气分离中(in Ruheman“TheSeparation of Gases”, Oxford University Press,1949,Chapter Ⅶ,Commercial Air Separation)。
气液接触分离工艺过程取决于各组分蒸汽压之差。高蒸汽压(或易挥发或低沸点)的组分倾向在气相中浓集而低蒸汽压(或不易挥发或高沸点)的组分倾向于在液相中浓集。部分冷凝是一种分离方法,借此把蒸汽混合物的冷却用于浓集挥发组分一种或多种于气相中,由此减少液相中的挥发性组分一种或多种。精馏或连续蒸馏,也是一种分离方法,这种方法是把逆流处理气液相时所形成的连续部分蒸发和冷凝结合起来。通常气液相逆流接触是绝热的并且包括相间的积分(阶段式)或微分(连续)接触。利用精馏原理分离混合物的分离工艺的设置经常可互换地称作精馏柱、蒸馏柱或分馏柱。低温精馏是一种至少部分在或低于150度开氏温度(K)下进行的精馏方法。
本文所用术语“间接热交换”意指使两股流体进入热交换关系而没有任何物理接触或流体彼此的混合。
本文所用术语“涡轮膨胀”和“涡轮膨胀机”分别指用于高压气体流过涡流机以降低气体的压力和温度由此产生冷冻作用的方法和设备。
本文所用术语“上部”和“下部”分别指柱中点以上和以下柱的那些部分。
本文所用术语“平衡段”指的是气液接触段,借此离开该段时的蒸汽和液体是处于传质平衡态,例如具有100%效率的塔盘或相当于一块理论塔板的填料元件高度(HETP)。
本文所用术语“氩柱”意指处理含氩的进料且产生氩浓度超过进料氩浓度的产品。
本文所用术语“底部”,当涉及柱时,意指在该柱内传质内部构件之下的柱的那部分。
本文所用术语“产品蒸发器”意指热交换器,进料空气在其中与蒸发液体的间接热交换而被冷凝。产品蒸发器可以是独立的热交换器也可以是被装入大热交换器中的热交换器。
本文所用术语“过热器”意指热交换器,其中来自低压柱的含氮流体在冷却一种或多种流体的同时在其饱和温度以上加热。过热器可以是独立的热交换器也可被并入较大的热交换器中。
附图
的简述单一附图用来图示本发明低温精馏系统的一个最佳实施方案。
本发明体现了这样的反直觉发现,即假若产品蒸发器中产生的所有液化进料空气首先被送入高压柱,随后有部分从该高压柱放出进入低压柱,进行低温精馏的能量和分离效率较至今已知的使用产品蒸发器的系统要高。
现在参照附图对本发明作详细地描述。参看附图,已被加压至通常在80-700磅/英寸2绝对压力(psia)范围内压力且已清除掉高沸点杂质如二氧化碳、水蒸气和烃的气体进料空气11,被分成进料空气流15和进料空气流12,前者由通过气流11表示的总进料空气约20-35%组成,后者由气流11的约65-80%组成。进料空气流12通过流经主热交换器1与返回流体进行间接热交换被冷却,所得到的冷却进料空气流13经涡轮膨胀机8被涡轮膨胀,再作为流体14进入第一或高压柱5,优选在高压柱5的底部进入。
进料空气流15通过流经增压压缩机10把压力升到通常在150-800psia的范围内,再使所得到的加压流体16流经作为产品蒸发器的主热交换器1的部分80,它在其中被冷却并且通过与加压的富氧液体的间接热交换而被冷凝,正如在下文将更充分地描述,产生液体进料空气。所有在产品蒸发器80中产生的液体进料空气都作为流体17从产品蒸发器80中出来经调节的阀门18再以液流19在称作液体空气进料高度的高度上进入高压柱5,该高度在该柱底部的上面,优选在高压柱5底部上方4-7个平衡段。
送入高压柱5的液体进料空气具有的氧浓度约21摩尔%。在实施本发明时,第一液流21在液体空气进料高度或低于该高度的高度上从高压柱排出,优选在与液体空气进料高度相同的高度上,即相同的平衡段。当用于本发明中时,术语“高度”与平衡段同义。第一液流21的氧浓度从约21摩尔%到不大于35摩尔%。优选方案是,第一液流21具有的成分基本上与液体进料空气19相同,第一液流从高压柱排出的高度称液体空气排出高度。液流21的流量低于液体进料空气流19的流量,液流21的流量一般为液流19的40-80%。由此可以看出液流19和21都可看成是连续液体进料空气流。第一液流21由于流经过热器2而被过冷而所得到的过冷流22流经阀门23再作为液流24进入低压柱3。
高压柱5是在压力范围为75-90psia下操作的。在高压柱5内,进料空气通过低温精馏被分成富氮蒸汽和富氧液体。富氮蒸汽作为流体50从高压柱5的上部排出再进入主冷凝器4,它在其中通过与低压柱3的底液间接热交换被冷凝。所得到的富氮液体51被分成部分52,它作为回流液体返回高压柱5,分成的另一部分53,通过过热器2的部分穿过而被过冷。所得到的过冷流体54流过阀门56再作为流体57进入低压柱3。如需要,流体54的部分58流经阀门59后作为高压液体氮60回收。
具有氧浓度一般在约35-约40摩尔%范围内的富氧液体,作为第二液流25在第一液流21的排出高度下面的高度上,即低于液体空气排出高度,从高压柱5的下部排出,并且优选从柱5的底部排出。流体25通过在热交换器2中的部分穿过过冷,过冷过的流体26分成第一部分27和第二部分30。第一部分27流经阀门28再作为流体29进入低压柱3。第二部分30流经阀门31再作为流体32进入氩柱顶部冷凝器6,它在那里至少部分,优选基本上完全被汽化。所得到的富氧蒸汽以流体33的形式自顶部冷凝器6经阀34再作为流体35在距离低于流体29进入低压柱3的那一点5-7全平衡段的高度上流入低压柱3。剩余的液体作为液流36从顶部冷凝器6经阀门37再作为液流38流进低压柱3。
第二或低压柱3是包括高压柱5在内的双柱中的低压柱,并且在低于高压柱5的压力下操作,通常压力范围在15-25psia。在低压柱3内各种进入该柱的进料通过低温精馏被分离成富氮蒸汽和富氧液体。富氮蒸汽作为气流61从低压柱3的上部排出,通过流经过热器2和主热交换器1受热,再以氮浓度至少为99摩尔%的低压气体氮回收的气流63排出系统。废气64在低于流体61的排出高度的高度上排出低压柱3,通过流经过热器2和主热交换器1受热再以气流66排出系统。
富氧液体以液流67从低压柱3的下部排出再加压以产生压力范围一般在50-450psia的高压富氧液体。在用图说明的本发明实施方案中,借助于流体67流经液体泵9完成加压作用以产生高压富氧液流68。液流68流入产品蒸发器80,它在那里通过与上述冷凝的进料空气间接热交换而至少部分被蒸发。如需要求,一些富氧液体以液流71从液流68取出,流经阀门72再作为液氧产品73回收。蒸发过的富氧流体以流体70从产品蒸发器段80排出再作为一般压力范围在50-450psia且氧浓度范围一般在99.5-99.9摩尔%的高压氧气体产品回收。
主要含氧和氮的流体以流体48从低压柱3流入氩柱7,它在其中通过低温精馏分离成更富氩蒸汽和更富氧液体。更富氧液体以流体49从氩柱7流入低压柱3。更富氩蒸汽作为流体39流入顶部冷凝器6,它在那里通过与上述蒸发的富氧液体间接热交换被冷凝。所得到的更富氩液体作为流体44流出顶部冷凝器6再作为回流液进入氩柱7。流体39的部分40流经阀门41再作为气体粗氩42排出。液氩以流经阀门46的液流45从柱7排出再作为液氩47回收。
可以预期如果需要提供即进入高压柱又进入低压柱的冷凝进料空气的话,则把液体进料空气分成分别进入高压柱和低压柱的两股液流,而事实上,这样的系统在工业上已实施。出乎意料是,已经发现,和传统实施方式不同,如果所有的液体进料空气先被引入高压柱然后部分这种液体进料空气以串行方式从高压柱进入低压柱,就可以获得某些效率。尽管不希望受任何理论的约束,但相信在本发明下所获得的有益结果是由于高压柱的液体进料空气流压力降低造成的,这也降低了进入过热器液流的压力。这不仅减少了过热器的费用,而且还降低了过热器中加热侧的压力降,所以减少了能耗。况且,由于送入低压柱的液体进料空气,即第一液流是在低压下,所以很少闪蒸出,借此提高了分离效率。更进一步,高压柱还能起到液化进料空气相分离器的作用,因此可进一步提高系统的效率。
尽管参阅具体的优选实施方案对本发明进行了更详细地说明,但所属技术领域的技术人员将会认识到在权利要求书的精神和范围内还存在着本发明的其它实施方案。例如,液体进料空气进入高压柱之前可流经两相或液体涡轮机。第一液流,即液流21,不经过冷进入低压柱。来自高压柱的全部富氧液流可流入氩柱顶部冷凝器由此出来的液体再作为第二液流流入低压柱。另一可替代方式是,本发明无须实施氩柱,且在该情况下,全部来自高压柱的富氧液体流都将作为第二液流进入低压柱。此外,如上所述,产品蒸发器可从主热交换器中分离出来。
权利要求
1.一种对进料空气实行低温精馏的方法,包括(A)冷凝进料空气以产生液体进料空气,再使所有的液体进料空气在高压柱底部之上的液体空气进料高度上进入高压柱;(B)取自高压柱的第一液流在液体空气进料高度或低于此高度的高度上进行低压柱;(C)取自高压柱的第二液流在低于第一液流排出高度的高度上进入低压柱;(D)在低压柱内通过低温精馏生产富氮流体和富氧流体;和(E)作为产品回收富氮流体和富氧流体中的至少一种。
2.权利要求1的方法,其中第一液流在液体空气进料高度上从高压柱中取出。
3.权利要求1的方法,其中第一液流具有基本上与流入高压柱的液体进料空气相同的组成。
4.权利要求1的方法,其中第一液流在进入低压柱之前过冷。
5.权利要求1的方法,其中富氧流体先作为液体从低压柱排出,然后提高压力,再通过与所述冷凝进料空气的间接热交换而蒸发,以产生所述液体进料空气和产生作为产品回收的提高压力的气态氧。
6.一种对进料空气实行低温精馏的设备,包括(A)产品蒸发器和用于进料空气进入该产品蒸发器的装置;(B)高压柱和使来自产品蒸发器的进料空气在高压柱底部之上的液体空气进料高度进入高压柱的装置;(C)低压柱和使来自在高压柱液体空气进料高度或低于此高度出来的第一流体进入低压柱的装置;(D)使来自高压柱第一流体排出高度之下的第二流体进入低压柱的装置;和(E)从低压柱回收产品的装置。
7.权利要求6的设备,其中液体空气进料高度是在高压柱底部之上4-7个平衡段。
8.权利要求6的设备,其中使来自高压柱的第一流体流入低压柱的装置与高压柱在液体空气进料高度上连通。
9.权利要求6的设备,还包括过热器,且其中使来自高压柱的第一流体进入低压柱的装置包括过热器。
10.权利要求6的设备,其中从低压柱回收产品的装置包装液体泵,使来自低压柱的流体流入液体泵的装置、使来自液体泵的流体进入产品蒸发器的装置,以及从产品蒸发器回收流体的装置。
全文摘要
一种用于进料空气分离的低温精馏系统,其中至少一些进料空气在进入分离柱之前被液化,所有液化的进料空气都被引入高压柱,然后,从高压柱排出部分之这种液化进料空气再以串接方式引入低压柱。
文档编号F25J3/04GK1232166SQ9910186
公开日1999年10月20日 申请日期1999年2月4日 优先权日1998年4月14日
发明者E·O·米勒, D·P·波纳奎斯特, D·R·帕斯尼克, C·A·恩格尔斯, J·P·里科塔 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1