用于烷烃氧化的催化剂的制作方法

文档序号:4905842阅读:348来源:国知局
专利名称:用于烷烃氧化的催化剂的制作方法
技术领域
本发明涉及在制备不饱和醛和酸中使用的催化剂。本发明特别是涉及能使烷烃有效转化成不饱和醛和羧酸的催化剂以及使用所述催化剂制备不饱和醛和羧酸的方法。
不饱和醛和羧酸是重要的工业化学品。特别重要的是(甲基)丙烯酸。(甲基)丙烯酸的高活性双键和酸官能使之尤其适用作可以单独聚合或与其它单体聚合以生产工业上重要的聚合物的单体。这些不饱和酸也用作酯化作用的原料,以便生产工业上重要的(甲基)丙烯酸酯。由(甲基)丙烯酸或(甲基)丙烯酸的酯衍生的材料可用作颜料片材和塑料部件,色漆或其它涂料,粘合剂,填缝料,密封剂和去污剂以及其它的用途。
通过烯烃氧化生产不饱和羧酸在现有技术中是熟知的。例如可以借助丙烯的气相氧化而在工业上制备丙烯酸。另外还已知的是,不饱和羧酸也可以借助烷烃的氧化来制备。由于烷烃通常比烯烃的成本更低,因此,这样的方法是特别希望的。工业上可使用的、将烷烃氧化成不饱和醛或羧酸的合适的催化剂和方法是(甲基)丙烯酸制造商们持续的目标并且必须实现。
烷烃催化氧化成不饱和醛或羧酸的工业上可使用的生产方法的一个障碍是对于具有适当转换和合适选择性的催化剂的鉴定,借此提供不饱和羧酸或醛最终产物足够的得率。US5,380,933披露了一种烷烃气相氧化成不饱和羧酸用的催化剂的制备方法。在所披露的方法中,借助将偏钒酸铵,碲酸和对钼酸铵混合得到均匀水溶液而制备催化剂。向该溶液中添加草酸铵铌,从而得到一浆液。该该浆液中除去水并得到固体催化剂前体。将该固体催化剂前体模制成片剂,筛选成希望的粒径,然后在氮气流下于600℃进行煅烧,从而得到希望的催化剂。并断言,最终的催化剂对于将丙烷转换成丙烯酸是有效的。
共同待批美国专利申请US09/316,007披露了一种丙烷转换成丙烯酸中使用的催化剂的改进的制备方法。该方法的特征在于使用借助各种方法进行汽提并在惰性气氛下进行煅烧的混合金属氧化物溶液。
本发明者发现了一种用于将烷烃催化氧化成不饱和醛或羧酸的新颖的催化剂。
一方面,本发明提供了一种催化剂,包括式AaMmNnXxOo的混合金属氧化物;和至少一种选自下列的酸(ⅰ)杂多酸,(ⅱ)氧化铝,(ⅲ)氧化锆,(ⅳ)氧化钛,(ⅴ)沸石,和(ⅵ)其酸混合物;其中0.25<a<0.98,0.003<m<0.5,0.003<n<0.5,0.003<x<0.5;以催化剂总重量计酸的含量从0.05-5重量%;o取决于其它元素的氧化态;而A选自Mo,W,Fe,Nb,Ta,Zr,Ru,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb,Se,及其混合物;X选自Nb,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,Sb,Bi,B,In,Ce,及其混合物。
第二方面,本发明提供一种催化剂的制备方法,包括(A)将金属化合物与水混合以形成水溶液,其中至少一种金属化合物为含氧化合物;(B)从该水溶液中除去水,以便得到混合金属氧化物催化剂前体;和(C)在惰性气氛下,于400-800℃的温度对该催化剂前体进行煅烧;(D)与选自下列的至少一种酸混合,以便形成催化剂材料,该材料包括有式AaMmNnXxOo的混合金属氧化物和酸;其中所述酸选自(ⅰ)杂多酸,(ⅱ)氧化铝,(ⅲ)氧化锆,(ⅳ)氧化钛,(ⅴ)沸石,和(ⅵ)其酸混合物;其中0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,0.005<x<0.35;以催化剂总重量计酸的含量从0.05-5重量%;o取决于其它元素的氧化态;而A选自Mo,W,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb及其混合物;X选自Nb,Ta,Zr,及其混合物。
本发明的第三方面包括催化剂的制备方法,该方法包括(A)将金属化合物,至少一种选自下列的酸,以及水混合以形成水溶液,其中至少一种金属化合物为含氧化合物,所述酸选自(ⅰ)杂多酸,(ⅱ)氧化铝,(ⅲ)氧化锆,(ⅳ)氧化钛,(ⅴ)沸石,和(ⅵ)其酸混合物;(B)从该水溶液中除去水,以便得到混合金属氧化物催化剂前体;和(C)在惰性气氛下,于400-800℃的温度对该催化剂前体进行煅烧,以便形成催化剂,所述催化剂包括式AaMmNnXxOo的混合金属氧化物和酸;其中0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,0.005<x<0.35;以催化剂总重量计酸的含量从0.05-5重量%;o取决于其它元素的氧化态;而A选自Mo,W,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb及其混合物;X选自Nb,Ta,Zr,及其混合物。
另外,本发明还提供选自不饱和醛和羧酸这样的化合物的制备方法,包括在上述催化剂存在下,使烷烃进行催化氧化。
在本发明中使用的措辞“(甲基)丙烯酸”不仅包括甲基丙烯酸而且还包括丙烯酸。同样地,措辞“(甲基)丙烯酸酯”不仅包括甲基丙烯酸酯而且还包括丙烯酸酯,而措辞“(甲基)丙烯醛”不仅包括甲基丙烯醛而且还包括丙烯酸醛。
在本发明中使用的术语“(C3-C8)烷烃”意指每个烷烃分子带3-8个碳原子的直链或支链的烷烃。
在本发明中使用的术语“混合物”指的是所有形式的混合物,包括但不局限于简单混合物以及掺混物,合金等。
就本申请而言,“%转换率”等于(消耗的烷烃摩尔数/供给的烷烃摩尔数)×100;“%选择性”等于(所形成的希望的不饱和羧酸或醛的摩尔数/消耗的烷烃的摩尔数)×100;“%得率”等于(所形成的希望的不饱和羧酸或醛的摩尔数/供给的烷烃的摩尔数)×(所形成的希望的不饱和羧酸或醛的碳原子数/供给的烷烃的碳原子数)×100。
就本申请而言,“溶液”指的是添加至溶剂中的95%以上的金属固体被溶解。应理解的是,一开始不溶解于溶液中的金属固体的数量越多,由此得到的催化剂的性能就越差。
就本申请而言,“催化剂材料”意指包括任何形式的催化剂,包括但不局限于粉末,颗粒,结晶状,承载的催化剂等。
如上所述,披露了催化剂以及催化剂的制备方法。在所述方法的第一步骤中,借助将至少一种包含氧的金属化合物,和至少一种适量的溶剂混合而形成一溶液,以便形成本发明所述的溶液。通常,金属化合物包含元素A,M,N,X,和O。在一实施方案中,A选自Mo,W,Fe,Nb,Ta,Zr,Ru及其混合物;M选自V,Ce,Cr及其混合物;N选自Te,Bi,Sb,Se及其混合物;而X选自Nb,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,Sb,Bi,B,In,Ce及其混合物。在优选的实施方案中,A选自Mo,W及其混合物;M选自V,Ce,Cr及其混合物;N选自Te,Bi,Sb及其混合物;而X选自Nb,Ta,Zr及其混合物。在更为优选的实施方案中,A为Mo,M为V,N为Te而X为Nb。
合适的溶剂包括水,醇类,包括但不局限于甲醇,乙醇,丙醇,二醇等,以及本领域已知的其它极性溶剂。通常优选的是水。所述水是适用于化学合成的任何水,包括但不局限于蒸馏水和去离子水。所存在的水量为足以使各元素基本保持在溶液中以避免在制备步骤中的组成和/或相的分离或使之最小化所需的量。因此,水量将根据复合的材料的量和溶解性而改变。然而,正如上面所述,水量必须足以保证能形成水溶液,而不是在混合时的浆液。
一旦形成水溶液之后,立即通过本领域已知的任何合适的方法除去水份,以便形成催化剂前体。所述方法包括但不局限于真空干燥,冷冻干燥,喷雾干燥,旋转蒸发,和空气干燥。真空干燥通常在10-500毫米汞柱的压力下进行。冷冻干燥通常需要对溶液进行冷冻,例如利用液氮,然后在真空下对冷冻的溶液进行干燥。喷雾干燥通常在惰性气氛如氮或氩气氛下进行,其中进口温度从125℃-200℃,而出口温度从75℃-150℃。旋转蒸发通常在25℃-90℃的浴温下以及10-760毫米汞柱的压力下进行,优选在40℃-90℃的浴温下以及10-350毫米汞柱的压力下进行,更优选在40℃-60℃的浴温下以及10-40毫米汞柱的压力下进行。空气干燥可以在25-90℃的温度下进行。旋转蒸发或空气干燥通常是优选的。
在得到催化剂前体之后,在惰性气氛下对其进行煅烧。惰性气氛可以是基本惰性的任何材料,即不与催化剂前体反应或相互作用的任何材料。合适的例子包括但不局限于氮,氩,氪,氦,或其混合物。优选惰性气氛为氩或氮,更优选的是氩。惰性气氛可以流经催化剂前体的表面,或可以不流动(静态环境)。特别需要理解的是,不流动气氛指的是不让惰性气体流经催化剂前体的表面。优选的是,惰性气氛不流经催化剂前体的表面。然而,当惰性气氛流经催化剂前体的表面时,流速可以大范围内改变,例如空间速度从1-500小时-1。
煅烧通常在350-850℃,优选在400-700℃,更优选在500-640℃的温度下进行。煅烧通常以适合形成催化剂的时间来进行。在一实施方案中,煅烧时间从0.5-30小时,优选从1-25小时,更优选从1-15小时。
借助煅烧,形成了具有下式的混合金属氧化物AaMmNnXxOo式中A,M,N,和X如上所述。摩尔比a,m,n,和x通常为0.25<a<0.98,0.003<m<0.5,0.003<n<0.5,和0.003<x<0.5;优选的是,0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,和0.005<x<0.35。
摩尔比o,即所存在的氧(O)量取决于催化剂中其它元素的氧化态。然而,以存在于混合金属氧化物中其它元素计,o通常从3-4.7。
在催化剂的两种制备方法中,酸均与混合金属氧化物催化剂混合。在本发明的一个实施方案中,所述酸与金属和水混合,然后如上所述除去水,以便形成混合金属氧化物催化剂前体,然后如上所述对该前体进行煅烧,以形成催化剂。
在本发明另一实施方案中,将金属和水混合并除去水,以便形成混合金属氧化物催化剂前体。然后对催化剂前体进行煅烧,以便形成催化剂。在本发明的这个实施方案中,酸然后与催化剂混合。可以借助本领域已知的方法对混合物进行搅拌,振荡,或研磨,以保证良好的混合。
所使用的酸可以选自如下的至少一种杂多酸,氧化铝,氧化锆,氧化钛,沸石或其酸混合物。
本发明中使用的杂多酸是带基本的、通常是中心定位原子的笼形结构,所述中心定位原子被笼形骨架所包围,所述笼形骨架包含许多相同或不同的、连接氧原子的金属原子。杂多酸的中心元素与骨架的金属原子不同,并且有时称之为“杂”元素或原子;稠合配位元素被称为“骨架”元素或金属,并且通常为过渡金属。绝大多数杂多酸具有通常通过四个氧原子以四面体的形式连接至“骨架”金属(“M”)上的中心定位杂原子(“X”)。骨架金属依次(ⅰ)通常通过氧(“O”)以八面体的形式连接至中心原子上,(ⅱ)通过氧原子连接至另外四个骨架金属上,(ⅲ)具有称为“末端氧”原子的第六非桥接氧原子。所述结构由结构式(Ⅲ)来说明。 基本骨架金属M是具有适当阳离子半径并且是良好的氧pπ-电子受体的任何金属。通常,骨架金属选自钼,钨,钒,铌或钽。优选的是,骨架金属是钼,钨或钒。
常规的杂多酸(及其聚氧阴离子)可通过通式He(XkMnOy)-e来描述。在该通式中,X,中心原子,通常为第3-16族元素,优选为第13-16族元素。合适的第13-16族元素包括但不局限于磷,锑,硅和硼。优选中心原子X为磷。下标“k”通常从1-5,优选为1或2。M通常为钼,钨,或钒。下标“n”通常从5-20。下标“y”通常从18-62,优选约40-62。标志“e”为(XkMnOy)聚氧阴离子的负电荷并且将根据各种情况而改变,但“e”总是平衡通式所需的质子数。
杂多酸已知存在于包括Keggin,Dawson和Anderson结构的各种结构中。这些不同的结构相应于具体杂多酸组合物特定的几何构形,并且根据所存在金属的配位化学和原子半径而改变。这些结构的任一个,或其混合物均适用于本发明。
另外,骨架被取代的杂多酸也适用于本发明。这些化合物是其中某些骨架原子M(和双键连接至其上的氧原子)被过渡金属取代的杂多酸。所述取代例如可以是单取代,无规-或配向-双取代,无规-或配向-三取代,或更多的取代,所有这些均将产生用作被多金属氧酸盐载体承载的杂多酸的有效组分。所述多金属氧酸盐在本领域中的已知的并且例如描述于US5,705,685和US09/002,816中。在此将所述专利中有关多金属氧酸盐的内容引入作为参考。另外,还可以借助下述的各种方法进一步促进本发明的催化剂。本发明包括承载在未取代和取代多金属氧酸盐上的未取代和取代的杂多酸。
用于制备骨架被取代的组合物的典型的杂多酸具有如下结构式H3PMo12O40。当三个Mo=O单元被例如铁(Fe)替代时,最终骨架被取代的杂多酸的结构式为H6PMo9Fe3O37。因此,如上所述特定选择的骨架被取代的杂多酸的通式为He(XkMnM1mOy)-e式中k从1-5,n从5-19,m从1-6,y从18-62。在该结构式中,M1包含一个或多个锌或任何过渡金属,即元素周期表第3-10族的金属。优选的过渡金属选自第8-10族或第4-7族的第一排,例如但不局限于铁,钴,镍,钌,铑,钯,锇,铱,铂(第8-10族)或钛,钒,铬,锰(第4-7族,第一排)。更优选的M1中,金属为铁,锰,钒和镍和铁或其它过渡金属的混合物。三个M1原子不必相同。然而,三个M1原子必须与三个替代的M不同。
用于本发明的杂多酸通常溶于水和极性有机溶剂如乙腈和醇如甲醇。这类杂多酸具有以下结构H(e’-bz’)Gb(Xk’Mm’-x’M1x’M2n’Oy’)-e’(Ⅰ)式中G为选自1-16族的元素或其氧离子;X为选自3-16族的元素;M=钼,钨或其组合;M1=钒;M2是不同于M和M1的过渡金属;z’=G上的电荷;b=0-12;k’=1-5;m’=5-20;x’=0-6;n’=0-3;y’=18-62;e’是多金属氧酸盐阴离子的电荷。用于G的合适的元素包括但不局限于钛,锆,铪,钒,铌,钽,铬,钼,钨,锰,铼,铁,钴,镍,钌,铑,钯,锇,铱,铂,铜,锌,或其组合。合适的用于G元素的氧阴离子包括但不局限于钛氧基,氧钒基,铌氧基,或其组合。用于X的合适的过渡元素包括但不局限于磷,硅,镓,铝,砷,锗,硼,钴,铈,镨,铀,钍,或其混合物。用于M2的合适的过渡元素包括但不局限于钛,锆,铪,钒,铌,钽,铬,钼,钨,锰,铼,铁,钴,镍,钌,铑,钯,锇,铱,铂,铜,锌,或其组合。优选的是,当M为钼和钨的混合物并且该化合物为Keggin离子时,x’=0。还优选,当M为钼并且化合物为Keggin离子时,x’=0-3。另外还优选的是,当M为钨且化合物为Keggin离子时,x’=0-6。
在上面结构式中,(e’-bz’)描述了存在于催化剂的杂多酸组分中质子(“H+”)的数量。(e’-bz’)最小时优选大于或等于0.1。在本发明的一个实施方案中,(e’-bz’)大于或等于0.5,在另一实施方案中,(e’-bz’)大于或等于1。在某些实施方案中,bz’等于零,杂多酸中的质子数等于e’。在另一实施方案中,(e’-bz’)为0,因而借助用另外的酸,如硫酸对该体系进行处理而添加质子。
用于本发明的杂多酸的具体例子包括但不局限于H3PMo12O40,H3PW12O40,(VO)1.5PMo12O40,(VO)1.5PW12O40,(TiO)1.5PMo12O40,H(VO)PMo12O40,H(VO)PW12O40,H6PV3Mo9O40,H5PV2Mo10O40,H5PV2W10O40,H4PVMo11O40,H4PVW11O40,RhPMo12O40,BiPMo12O40,HCrPVMo11O40,HBiPVMo11O40,或其组合。优选的是,杂多酸为H3PMo12O40,H3PW12O40,(VO)1.5PMo12O40,H(VO)PMo12O40,H5PV2Mo10O40,H4PVMo11O40,RhPMo12O40,HCrPVMo11O40,或HBiPVMo11O40。更优选的是,杂多酸为H3PMo12O40或H3PW12O40。当杂多酸例如为(VO)1.5PMo12O40,(TiO)1.5PMo12O40,RhPMo12O40,或BiPMo12O40时,所需的酸通常来自独立的酸源,如用来制备(VO)1.5PMo12O40的于VOSO4中的硫酸。所述酸的用量足以满足本发明。
用于本发明的杂多酸可从市场得到或可以通过本领域已知的各种方法来制备。用于本发明的多金属氧酸盐和杂多酸的一般合成描述于Pope等人的杂多和异多金属氧酸盐中(Springer-Verlag,NeWYork(1983))。通常,借助将希望的金属氧化物溶解于水中;用酸如盐酸将pH值调节至约1-2,以提供所需的质子;然后蒸发掉水直至得到希望的杂多酸沉淀物为止;而制备杂多酸。作为例子,杂多酸H3PMo12O40可借助将Na2HPO4和Na2MoO4进行混合;用硫酸将调节pH;用醚进行萃取;并使水中的最终杂多酸进行结晶而制备。另外,钒取代的杂多酸也可以根据V.F.Odyakov等人于Kinetics and Catalysis(1995,第36卷,第733页)中描述的方法来制备。正如在下面描述的那样,借助用碳酸铯对上述杂多酸进行处理并收集所得到的沉淀产物,可制备Cs3PMo12O40载体。
用于本发明的氧化铝可以是适用于混合金属氧化物以形成催化剂材料的任何氧化铝,并且包括但不局限于γ-氧化铝和无定形氧化硅氧化铝或其酸混合物。
用于本发明的氧化锆可以是适用于混合金属氧化物以形成催化剂材料的任何氧化锆,并且包括但不局限于硫酸盐化的氧化锆,氧化钨锆,氧化钼锆,和氧化硅氧化锆或其酸混合物。
用于本发明的氧化钛可以是适用于混合金属氧化物以形成催化剂材料的任何氧化钛,并且包括但不局限于锐钛矿,金红石,和氧化硅氧化钛或其酸混合物。
用于本发明的沸石可以是适用于混合金属氧化物以形成催化剂材料的任何沸石,并且包括但不局限于Y,ZSM-5,和β型沸石或其混合物。
以催化剂的总重量计,酸量可以从0.05-5%重量,优选从0.1-5%重量,更优选从0.5-5%重量。
借助本发明的方法,本发明的催化剂可用来由烷烃制备不饱和醛或羧酸。所述催化剂可以借助下面所述的催化剂制备方法的任一实施方案来制备。此外,该催化剂可以单独作为固体催化剂使用,或可以与合适的载体一起使用,所述载体包括但不局限于二氧化硅;硅藻土(也称之为粘土),如层状和/或成柱状的高岭土或Thiele;氧化锰及盐;等等。催化剂的形状可以是任何合适的形状,这将取决于催化剂特定的用途。同样地,催化剂的粒径可以是任何合适的粒径,这取决于催化剂特定的用途。
因此,本发明的另一方面是选自不饱和醛和羧酸的化合物的制备方法,包括在根据本发明制备的催化剂的存在下使烷烃进行催化氧化。
原料通常是烷烃气体和至少一种含氧气体。优选的是,原料还包括蒸汽。因此,将原料气体供至包括至少一种烷烃和水蒸汽的气体混合物的体系中。至少一种含氧气体可以包括在该混合物中或单独地提供。此外,也可以包括稀释气体如惰性气体,它们包括但不局限于氮,氩,氦,水蒸汽,或二氧化碳。所述稀释气体可以用来稀释原料和/或调节原料的空间速度,氧分压,以及蒸汽分压。
原料气体混合物中,烷烃/氧/稀释气体/水合适的摩尔比在本领域中是已知的,烷烃/空气/蒸汽的供料速率也是已知的。例如,合适的范围披露于US5,380,933中。
原料烷烃通常是适合于气相氧化成不饱和醛或羧酸的任何烷烃。通常,所述烷烃为C3-C8烷烃,优选为丙烷,异丁烷或正丁烷,更优选为丙烷或异丁烷,最优选为丙烷。此外,在另一实施方案中,烷烃可以是烷烃的混合物,它们包括C3-C8烷烃,以及低级烷烃如甲烷和乙烷。
所使用的至少一种含氧气体可以是纯氧气体,含氧气体如空气,富氧气体,或其混合物。
在优选的实施方案中,原料为丙烷,空气,和水蒸汽的气体混合物。在本发明催化剂的存在下使原料气体混合物经受催化氧化作用。催化剂可以处于流化床或固定床反应器中。反应通常在大气压下进行,但也可以在升压或减压下进行。反应温度通常从200-550℃,优选从300-480℃,更优选从350-440℃。气体的空间速度通常从100-10000小时-1,优选从300-6000小时-1,更优选从300-3000小时-1。
另外,在本发明的方法中,应理解的是,另外还形成不饱和醛。例如,当丙烷为原料烷烃时,可形成丙烯醛,而当异丁烷为原料烷烃时,可形成甲基丙烯醛。
在该申请中所使用的缩略语如下℃=摄氏度 mm=毫米Hg=汞g=克 cm=厘米mmole=毫摩尔%=重量百分数 ml/min=毫升/分N2=氮气 Wt%=重量百分数下面的实施例说明本发明的方法。以所使用原料的量计,如果没有任何组成的分离,或在制备步骤期间没有任何元素的损失,那么,除非另有说明,如下制得的所有混合金属氧化物试样的理论结构式应为MO1V0.3Te0.23Nb0.10-0.12On,式中,n由其它元素的氧化态所确定。借助对于水中的适当的化合物于25-95℃进行加热而制备包含希望金属元素的溶液或浆液。当需要时,将溶液或浆液冷却至25-60℃。然后,借助适当的干燥方法,在760mm/Hg至10mm/Hg的压力下,从溶液或浆液中除去水份。
实施例1本实施例描述在实施例2-4中使用的含水氧化锆的制备。借助将300克ZrOCl28H2O溶解于4.5升去离子水中而制备Zr(OH)4。添加10M的NH4OH溶液,使目标pH为9,以便沉淀出Zr(OH)4。对沉淀物进行过滤,用水进行洗涤,然后于120℃干燥过夜,以便提供干燥的Zr(OH)4。
实施例2本实施例描述硫酸盐化氧化锆(“SZ”)固体酸的制备。借助利用硫酸(0.9克)或硫酸铵(0.9克)的初期湿润而对实施例1的干燥的Zr(OH)4(10克)进行浸渍。在空气中使浸渍的氧化锆干燥过夜并在700℃于空气中煅烧3小时,从而提供SZ固体酸。
实施例3本实施例描述氧化钨锆(“W/Zr”)固体酸的制备。借助利用溶解于10毫升水中的偏钨酸铵[(NH4)6H2W12O40nH2O](24克)的初期湿润而对实施例1的干燥的Zr(OH)4(10克)进行浸渍。在空气中使浸渍的氧化锆干燥过夜并在825℃于空气中煅烧3小时,从而提供W/Zr固体酸。
实施例4本实施例描述氧化钼锆(“Mo/Zr”)固体酸的制备。借助利用钼酸铵溶液(3.6克溶解于5毫升水中)的初期湿润而对实施例1的干燥的Zr(OH)4(10克)进行浸渍。在空气中使浸渍的氧化锆干燥过夜并在825℃于空气中煅烧3小时,从而提供Mo/Zr固体酸。
实施例5本实施例描述混合金属氧化物的制备。在加热至80℃的同时,将25.7克七钼酸铵四水合物(Aldrich化学公司),5.1克偏钒酸铵(Aldrich化学公司)和7.7克碲酸(Aldrich化学公司)溶解在包含420克水的烧瓶中。在冷却至39℃之后,混入包含17.34毫摩尔铌的草酸铌水溶液114.6克,得到一溶液。通过旋转式汽化器,借助50℃的热水浴和28毫米汞柱的压力,除去该溶液中的水,从而得到44克前体固体。在非流动环境下,在用氩预清洗的加盖的坩埚中,于600℃将20克催化剂前体固体煅烧2小时;得到混合金属氧化物(“MMO”)催化剂。事先将炉子加热至200℃并保温1小时,然后猛升至600℃。在煅烧期间,加盖的坩埚处于加盖的烧杯中,其中Ar空间速度为57小时-1。由于加盖的坩埚,因此氩不流经前体的表面,而是起保证在坩埚外的气氛保留氩气的作用。在坩埚内的气氛保留氩气并从催化剂中排出气体。
实施例6将实施例2中描述的SO4/ZrO2与实施例5的混合金属氧化物按下述重量进行物理混合0.0%重量,0.5%重量1.0%重量,5.0%重量,10%重量,和100%重量。将实施例3的氧化钨锆与实施例5的混合金属氧化物以2.5%重量混合物的形式进行混合。利用1%重量的丙烷,3%重量水,96%重量空气,在380℃和2.5秒停留时间的条件下,就丙烷氧化成丙烯酸而对催化剂进行测试。借助FTIR对产物进行分析。结果列于表1中。
表1催化剂 丙烯酸得率(%)100%MMO 7.8MMO+0.5%SZ9.7MMO+1%SZ 8.1MMO+5%SZ 2.6MMO+10%SZ 0.9100%SZ 0.35MMO+25%W/Zr 9.9
这些数据表明对于包含更低含量酸催化剂(~2.5%重量酸性催化剂),它们具有优于混合金属氧化物基催化剂的得率优点。此外,相对于得率而言,高含量酸催化剂是有害的。当酸性组成与混合金属氧化物催化剂进行物理混合时,这些结果提出了一种改进的丙烷氧化催化剂。
实施例7将实施例所述的氧化钼锆与以下列重量的实施例5的混合金属氧化物进行物理混合0.0%重量,1.0%重量,5.0%重量,10%重量,和100%重量。在实施例6所述的条件下,就丙烷氧化成丙烯酸对催化剂进行测试。结果列于表2中。
表2催化剂 丙烯酸得率(%)100%MMO9.6MMO+1%Mo/Zr 10.9MMO+5%Mo/Zr 9.6MMO+10%Mo/Zr6.5100%Mo/Zr 0这些数据表明在催化剂中低含量酸组分(~1%重量)时可见得率优点。此外,相对于得率而言,高含量酸催化剂是有害的。当酸性组成与混合金属氧化物催化剂进行物理混合时,这些结果还提出了一种改进的丙烷氧化催化剂。
实施例8根据实施例1的方法制备另一批Zr(OH)4。在825℃,于空气中将该材料煅烧3小时。将煅烧的Zr(OH)4材料(1%重量)与实施例5的MMO材料(99%重量)混合。然后,在实施例6所述的条件下,就丙烷氧化成丙烯酸对催化剂进行测试。结果列于表3中。
表3催化剂 丙烯酸得率(%)100%MMO 14.1MMO+1%Zr19.0
结果表明锆是有助于丙烷至丙烯酸的氧化作用的良好催化剂。
实施例9制备承载在多金属氧酸铯上的包含混合金属氧化催化剂和杂多酸(“HPA”)催化剂混合物的试样。所述试样包含0.14克作为混合金属氧化物催化剂的Mo1.00V0.30Te0.23Nb0.08Ox和1克作为多金属氧酸盐载体的Cs3PMo12O40。借助将1225克去离子水中的33.31克Cs2CO3加至于50℃的800克去离子水中的159.47克Cs3PMo12O40中。所述的添加过程用时2小时,然后将该混合物在50℃再保温30分钟。在冷却至室温之后,对该混合物慢慢地搅拌约70小时。然后,借助蒸发除去水份,并且在真空炉中或在高温下(例如300℃)对所得到的固体产物进行干燥,得到约150克所希望的多金属氧酸盐载体。
借助利用煅烧的混合金属氧化物对多金属氧酸盐进行干研磨,然后利用20%摩尔的磷钼酸如HPA进行干研磨,而制备试样A。如上所述制备第二试样,所不同的是不包括HPA。借助用煅烧的混合金属氧化物对多金属氧酸盐进行干研磨而制备试样B。
在实施例5中所述的条件下,就丙烷在微反应器中转化成丙烯酸的转化率,对试样A-B进行评估。结果列于表4中。
表4试样AA%得率A 1.5R 0.权利要求
1.一种催化剂,包括式AaMmNnXxOo的混合金属氧化物;和至少一种选自下列的酸(ⅰ)杂多酸,(ⅱ)氧化铝,(ⅲ)氧化锆,(ⅳ)氧化钛,(ⅴ)沸石,和(ⅵ)其酸混合物;其中0.25<a<0.98,0.003<m<0.5,0.003<n<0.5,0.003<x<0.5;以催化剂总重量计酸的含量从0.05-5重量%;o取决于其它元素的氧化态;而A选自Mo,W, Fe,Nb,Ta,Zr,Ru,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb,Se,及其混合物;X选自Nb,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,Sb,Bi,B,In,Ce,及其混合物。
2.根据权利要求1的催化剂,其中催化剂包含0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,0.005<x<0.35;以催化剂总重量计酸的含量从0.1-5重量%。
3.根据权利要求1的催化剂,其中A选自Mo,W,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb及其混合物;X选自Nb,Ta,Zr,及其混合物;以催化剂总重量计酸的含量从0.5-5重量%。
4.根据权利要求1的催化剂,其中A是Mo,M是V,N是Te,而X是Nb。
5.一种催化剂的制备方法,包括(A)将金属化合物与水混合以形成水溶液,其中至少一种金属化合物为含氧化合物;(B)从该水溶液中除去水,以便得到混合金属氧化物催化剂前体;(C)在惰性气氛下,于400-800℃的温度对该催化剂前体进行煅烧;(D)与选自下列的至少一种酸混合,以便形成催化剂,所述催化剂包括有式AaMmNnXxOo的混合金属氧化物和酸;其中所述酸选自(ⅰ)杂多酸,(ⅱ)氧化铝,(ⅲ)氧化锆,(ⅳ)氧化钛,(ⅴ)沸石,和(ⅵ)其酸混合物;其中0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,0.005<x<0.35;以催化剂总重量计酸的含量从0.05-5重量%;o取决于其它元素的氧化态;而A选自Mo,W,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb及其混合物;X选自Nb,Ta,Zr,及其混合物。
6.根据权利要求1的催化剂,其中所述催化剂根据权利要求5的方法制备。
7.根据权利要求6的催化剂,其中催化剂包含0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,0.005<x<0.35;以催化剂总重量计酸的含量从0.1-5重量%。
8.根据权利要求6的催化剂,其中A是Mo,M是V,N是Te,而X是Nb。
9.一种催化剂的制备方法,该方法包括(A)将金属化合物,至少一种选自下列的酸,以及水混合以形成一水溶液,其中至少一种金属化合物为含氧化合物,所述酸选自(ⅰ)杂多酸,(ⅱ)氧化铝,(ⅲ)氧化锆,(ⅳ)氧化钛,(ⅴ)沸石,和(ⅵ)其酸混合物;(B)从该水溶液中除去水,以便得到混合金属氧化物催化剂前体;(C)在惰性气氛下,于400-800℃的温度对该催化剂前体进行煅烧,以便形成催化剂,所述催化剂包括式AaMmNnXxOo的混合金属氧化物和酸;其中0.35<a<0.87,0.045<m<0.37,0.020<n<0.27,0.005<x<0.35;以催化剂总重量计酸的含量从0.05-5重量%;o取决于其它元素的氧化态;而A选自Mo,W,及其混合物;M选自V,Ce,Cr,及其混合物;N选自Te,Bi,Sb及其混合物;X选自Nb,Ta,Zr,及其混合物。
10.一种选自不饱和醛和羧酸的化合物的制备方法,包括在权利要求1的催化剂的存在下使烷烃进行催化氧化作用。
全文摘要
本发明披露了一种用于烷烃气相氧化成不饱和醛和羧酸的催化剂。另外还披露了该催化剂的制备方法,以及使用该催化剂使烷烃转化成不饱和醛或羧酸的使用方法。
文档编号B01J35/00GK1287879SQ0012638
公开日2001年3月21日 申请日期2000年9月12日 优先权日1999年9月15日
发明者S·翰, D·H·N·莱, N·N·麦克尼尔 申请人:罗姆和哈斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1