一种p-n结空心球的制备及在光催化分解水制氢中的应用的制作方法

文档序号:4975248阅读:166来源:国知局

专利名称::一种p-n结空心球的制备及在光催化分解水制氢中的应用的制作方法
技术领域
:本发明属于纳米复合材料的制备及其在新能源领域中的应用。具体涉及一种p-n结空心球NiO-CdS纳米复合材料的制备方法及其制备的p_n结空心球NiO-CdS纳米复合材料作为光催化剂应用于太阳能可见光催化分解水制氢。
背景技术
:近年来,由于能源短缺及使用化石能源引起的温室效应给全球经济的可持续发展带来了新的挑战。因此,加强能源科技创新,开发新能源,不仅影响人类当今的生存环境,更关乎于人类的未来发展。开发清洁能源、提高能源效率,促进节约能源、减少排放,正成为各国的共同目标。太阳能是人类取之不尽,用之不竭的永久性能源,氢能以其清洁燃烧、绿色环保,可再生无污染而成为国际社会关注的焦点。将太阳能最大限度的转化为氢能有诸多途径,利用太阳能光催化分解水制氢是循环经济,绿色制氢的最有效途径之利用太阳能光催化分解水制氢的关键技术是光催化剂[l,2]。CdS以其窄带隙(Eg=2.3eV),理想的可见光吸收谱带,是太阳能可见光催化分解水制氢不可或缺的光催化剂。但由于CdS的光腐蚀性而限制了它的发展,人们利用多种方法对其进行修饰,以改善其光稳定性[3-8]。而将CdS包覆于NiO中制成p-n结空心球Ni0-CdS纳米复合材料是改善CdS光稳定性的一种新尝试。经对国内外专利的系统査新,检索到较多的有关纳米空心球制备的专利报导[9-55],而直接的p-n结空心球NiO-CdS纳米复合材料的制备以及将该复合空心球用于太阳能光催化分解水制氢未见文献及专利报导。以下是发明人给出的参考文献MMatsuoka,M.Kitano,M.Takeuchi,K.Tsujimaru,M.A叩o,J.M.Thomas,Photocatalysisfornewenergyproductionrecentadvancesinphotocatalyticwatersplittingreactionsforhydrogenproduction,CatalysisToday122(2007)51-61。J.R.Bolton,Solarphotoproductionofhydrogen:areview,SolarEnergy57(1996)37-50。BuhlerN,MeierK,ReberJ.Photochemicalhydrogenproductionwithcadmiumsulfidesuspensions.JPhyChem1984;88:3261—8。FoxMA,PettitTL.Photoactivityofzeolite-supportedcadmiumsulfide:hydrogenevolutioninthepresenceofsacrificialdonors.Langmuir1989;5:1056-61。HiraiT,NanbaM,KomasawaLDithiol-mediatedincorporationofCdSnanoparticlesfromreversemicellarsystemintoZn-dopedSBA-15mesoporoussilicaandtheirphotocatalyticproperties.JColloidInterfaceSci2003;268:394-9。HiraiT,BandoY.ImmobilizationofCdSnanoparticlesformedinreversemicellesontoaluminosilicatesupportsandtheirphotocatalyticproperties.JColloid.InterfaceSci2005;288(2):513-6。GuanG,KidaT,KusakabeK,KimuraK,FangX,MaT,AbeE,YoshidaA.PhotocatalyticH2evolutionundervisiblelightirradiationonCdS/ETS-4composite.ChemPhyLett2004:385:319-22。GuanG,KidaT,KusakabeK,KimuraK,AbeE,YoshidaA.PhotocatalyticactivityofCdSnanoparticlesincorporatedintitaniumsilicatemolecularsievesofETS-4andETS-IO.ApplCatalAGen2005;295(1):71-8。[9].李亚栋,彭卿,董亚杰,一种微米级硒化锌空心球的合成方法,公开号CN1424248。.廖川平,顾明元,碳纳米空心球及其制备方法,公开号CN143S174。[ll].刘会洲,羊彬,郭晨,十二烷基磺酸钠调控合成具有介孔孔道的二氧化硅空心球的方法,公开号CN101143724。[12].郭奋,庞利萍,一种纳米氧化铝空心球的制备方法,公开号CN101134586。.刘小鹤,吴泓毅,邱冠周,导电聚吡咯纳米空心球的制备方法,公开号CN101165092。.李春忠,刘杰,胡彦杰,一种空心球结构二氧化钛的制备方法,公开号CN101215004。.王霞,杨光智,杨俊和,陈敏,徐日升,以聚甲基丙烯酸甲酯/聚丙烯腈核壳聚合物为前驱体制备炭纳米空心球的方法,公开号CN101219785。.谢荣国,李东升,杨德仁,制备单分散硫化镉空心球的方法,公开号CN1559911。.寇华敏,王静,潘裕柏,郭景坤,一种以湿化学法为基础的氧化铝空心球的制备方法,公开号CN1673085。[18].贾殿赠,曹亚丽,刘浪,一种固相化学反应制备草酸锌纳米空心球及空心链的方法,公开号CN1493559。[19].寇华敏,王静,潘裕柏,郭景坤,以锌粉为原料的氧化锌空心球的制备方法,公开号CN1706774。[20].夏兴华,丁娅,碳纳米空心球负载金属纳米粒子催化剂的制备方法,公开号CN172術5。[21].包建春,张杰,戴志晖,纳米级硫化镉空心球的制备方法,公开号CN1792811。.邱介山,孙天军,赵宗彬,氧化锌纳米/微米空心球的批量合成方法,公开号CN1803624。[23].俞书宏,万勇,一种二氧化硅空心球的制备方法,公开号CN1931718。[24].俞书宏,闵宇霖,一种内含贵金属纳米颗粒的二氧化硅空心球的合成方法,公开号CN19機7。[25].曹艳霞,王经武,王万杰,二氧化锡空心球的制备方法,公开号CN101012067。.朱俊杰,缪建军,姜立萍,一种CdTe纳米空心球或CdTe纳米管的制备方法,公开号CN101049916。[27].朱海涛,王继鑫,张灿英,一种硫化铜空心球的制备方法,公开号CN101054197。.李村,吴振玉,徐洪耀,一种纳米硫化镉空心球的液相制备方法,公开号CN101058437。[29].高濂,陈志涛,一种通过碱腐蚀反应制备氧化锌纳米空心球的方法,公开号CN101254939。[30].孙予罕,高恋,徐耀,一种双孔道介孔氧化硅空心球的制备方法,公开号CN101264892。[31].陆安慧,农谷珍,钱华光,一步合成空心炭壳的方法,公开号CN101314467。.祝华云,张孝彬,糜裕宏,周胜名,周丽娜,牛强,谭俊军,崔白雪,程继鹏,刘芙,许国良,一种制备空心球状硫化镉纳米晶的方法,公开号CN101319404。[33].邓勇辉,刘嘉,刘猁,赵东元,一种磁性无机空心复合微球及其制备方法,公开号CN101345112。[34].曹霞,制备金属镍纳米空心球的方法,公开号CN101417341。[35].高濂,宋雪峰,无需模板的氧化镍空心微球的湿化学制备方法,公开号CN101417823。.王晗,吴爱军,耿可明,朱德先,张涛,胡飘,谭清华,石鹏坤,一种含氧化镁的氧化铝空心球制品,公开号CN101429044。.S.Roland,B.Alexander,S.Guenter,B.Frank,Publicationnumber:DE10160640(A1)。.N.Takayuki,Expandedhollowmicrospherecompositebeadsandmethodfortheirproduction,Publicationnumber:US6225361(Bl)。[39].K.Koji,M.Kuniteru,S.Yoshimasa,Producionofhollowfinemetalsphere,Publicationnumber:JP2305970(A)。[40].俞书宏,闵宇霖,一种内含金纳米颗粒的二氧化钛空心球的制备方法,公开号CN101085465;[41].朱俊杰,缪建军,姜立萍,CdS、CdSe或CdTe空心纳米环及其制法,公开号CN101049958;'[42].王昭群,孔璇凤,李云兴,吴倩,纳米级交联聚苯乙烯中空微球的制备方法,公开号CN101125903;[43].宋立民,张淑娟,陈斌,氟化铅中空纳米球的溶剂热合成方法,公开号CN101391805;.王志林,陈志明,一种制备复合稀土氟化物纳米空心球的方法,公开号CN101386422。.余承忠,唐嘉伟,朱杰,王韵华,一种纳米二氧化硅空心球材料及其制备方法,公开号CN101343065。[46].张帆,吴强,马延文,胡征,一种制备A1N纳米空心球的原位模板方法,公开号CN101279723。[47].白玉俊,庞林林,朱慧灵,亓永新,毕见强,一种制备纳米空心碳球的通用技术,公开号CN101264878。[48].杨正龙,秦深,周光斌,浦鸿汀,袁俊杰,纳米中空二氧化硅微球/聚氨酯复合水性涂料及其制备方法,公开号CN101250374。[49].李辉,徐烨,李和兴,一种中空非晶态合金纳米球催化剂及其制备方法和应用,公开号CN101380577。[50].杨德仁,杜宁,张辉,一种制备金属氧化物空心纳米球的方法,公开号CN101310851。.王茗,曹雪丽,方明,张立德,网状纳米孔氧化锌微米空心球及其制备方法,公开号CN101311119。[52].李春忠,胡彦杰,顾峰,姜海波,一种纳米氧化铝空心球结构的制备方法,公开号CN讓083。[53].高濂,陈名海,一种通过置换反应制备银纳米空心球的方法,公开号CN1762622。.梁汉璞,万立骏,白春礼,一种纳米金属和双金属空心球的制备方法,公开号CN1616165。[55].胡劲松,万立骏,白春礼,一种无机半导体复合纳米级空心球及制备方法,公开号CN1600674。
发明内容为了提高太阳能利用效率以及可见光催化分解水制氢产率。本发明的一个目的是提供一种P-n结空心球Ni0-CdS纳米复合材料的制备方法,该方法采用模板法及四步浸渍法制备P-n结空心球NiO-CdS纳米复合材料;本发明的另一个目的是将制备的p-n结空心球NiO-CdS纳米复合材料作为光催化剂用于太阳能可见光催化分解水制氢的探索性应用研究。为了实现上述任务,本发明的P_n结空心球NiO-CdS纳米复合材料的制备采取如下的技术解决方案一种p-n结空心球NiO-CdS纳米复合材料制备方法,其特征在于,该方法采用水热法及四步浸渍法及焙烧制备P-n结空心球NiO-CdS纳米复合材料,具体包括下列步骤1)称取适量蔗糖配制成蔗糖水溶液,放入高压反应釜中,适宜的温度下水热合成纳米碳球,作为硬模板剂;2)称取适量Cd(N03)2.4H20配制成水溶液;3)称取适量Na2S,9H20配制成水溶液;4)在室温下,将步骤l)的碳纳米球分散在无水乙醇中,进行超声波分散,烘干;将步骤2)中的Cd(N03)"H20的水溶液浸渍于步骤l)所制备的纳米碳球中,室温晾干,制得镉离子包裹的纳米碳球C-Cd2+,其中,纳米碳球用量为0.83mol,Cd(N03)2.4H20用量为0.023mol;5)在室温下,将步骤3)中的Na2S.9H20的水溶液缓慢滴加至步骤4)所制备的C-C(T中,浸渍,洗涤,烘干,得到硫化镉包裹的碳纳米球C-CdS,其中,所述的Na2S.9H20用量0.028mol;6)称取适量的Ni(N03)2*6H20配制成水溶液;7)将步骤6)制得的Ni(N03)2.6H20水溶液缓慢滴加至步骤5)所制备的C-CdS中,浸渍,室温晾干,制得镍离子包覆的硫化镉碳纳米球C-CdS-Ni2+。其中,Ni(N03)2.6H20用量0.012mol;8)称取适量NaOH配制成水溶液,缓慢滴加至步骤7)所制备的硫化镉碳纳米球C-CdS-Ni2+中,其中,NaOH用量0.029mol,浸渍过夜,洗涤,烘干,即制得碳核上依次包裹硫化镉和NiOH核壳结构的复合材料C-CdS-NiOH;9)将步骤8)所制备的核壳结构复合材料C-CdS-NiOH,在马弗炉中于40(TC焙烧2h,得到p-n结空心球Ni0-CdS纳米复合材料。本发明将制备的P-n结空心球Ni0-CdS纳米复合材料作为光催化剂,能够用于太阳能可见光催化分解水制氢研究。应用过程以氙灯作为模拟太阳能光源,采用滤光片滤掉紫外光,评价太阳能可见光催化分解水制氢产率,具体包括下列步骤1)分别定量称取Na2S和Na2S03溶入盛有50mL蒸馏水的100mL光照一侧为平面的Prex玻璃平底反应瓶中。称取一定量的p-n结空心球NiO-CdS纳米复合材料粉体加入混合液中。2)将反应瓶放在磁力搅拌器上,将三通进样玻璃瓶塞插入反应瓶中,打开氤灯稳流电源,用滤光片滤去i〈420mn的紫外光,光源透过滤光片后照射至反应瓶侧面。3)采用气相色谱仪配备的TCD检测器,TDX-01填充柱的对生成的气相产物进行检测,评价太阳能可见光催化分解水制氢活性。本发明制备的P-n结空心球Ni0-CdS纳米复合材料及其在太阳能光催化分解水制氢中的应用带来的技术效果是(1)能够利用廉价的镍源和镉源制备P-n结空心球NiO-CdS复合材料,工艺过程简单易行,可实现规模化制备。(2)将该p-n结空心球NiO-CdS复合材料作为太阳能可见光催化分解水制氢的光催化剂,受太阳能可见光辐照后,n-CdS半导体产生的光生电子通过p-n结快速传输到p-NiO半导体表面,改善了光生电子的传输效率,提高了制氢产率。本发明的创新之处在于(1)提出了利用廉价的镍源和镉源,利用反应中生成的P-Ni0半导体及n-CdS半导体界面耦合制备p-n结空心球NiO-CdS复合材料的新方法。(2)提出了将p-n结空心球NiO-CdS复合材料作为光催化剂用于太阳能可见光催化分解水制氢,该制氢过程无污染,绿色环保。图1.制备p-n结空心球NiO-CdS纳米复合材料技术路线;图2.核壳结构C-CdS-MOH复合材料的SEM照片;图3.p-n结空心球NiO-CdS纳米复合材料SEM照片;以下是发明人结合附图给出的实施例对本发明作进一步的详细说明。具体实施例方式本发明制备的P-n结空心球NiO-CdS纳米复合材料的制备方法,采用水热法合成法,四步浸渍法及焙烧等技术路线。在制备方法中,纳米碳球的用量为0.83mol,Cd(N03)2.4H20的用量为0.023mol,Na2S.9H20的用量为0.028mol,Ni(N03)2.6H20的用量为0.012mol,NaOH的用量为0.029mol。制备的技术路线如图l所示。以下是发明人给出的实施例,需要说明的是,这些实施例仅为了更好的诠释本发明,本发明不限于这些实施例。实施例中涉及的化学试剂均为分析纯试剂。实施例1:称取15g的葡萄糖固体粉末,量取150mL去离子水,将葡萄糖溶于去离子水中,均匀搅拌10min。将形成的均匀溶液倒入聚四氟乙烯内衬的高压反应釜(容积为200mL)中,放入烘箱中加热至165°C,并在165°C下保温反应5h,取出自然冷却至室温。过滤,分别用去离子水和无水乙醇洗涤三遍,固体放入干燥箱60"C干燥5h,制得的棕色纳米碳球。称取制备的纳米碳球10g(0.83mol),放入烧杯中,在频率为31Hz条件下超声波超声30min,50。C烘干;称取7g(0.023mol)的Cd(N03)2.4H20固体,加入到20mL去离子水中,配制成水溶液。将该溶液浸渍于10g的碳纳米球中,浸渍2h,室温晾干,制得碳纳米球包裹镉离子的复合物(C-Cd2+)。称取6.72g(0.028mol)Na2S.9H20固体,加入到20mL去离子水中,配制成水溶液。用滴管吸取该溶液缓慢滴加至碳纳米球包裹镉离子的复合物(C-Cd2+)样品表面(滴加过程中应避免光源直射),浸渍2h,过滤,洗涤,放入干燥箱40'C恒温干燥,制得碳球包裹的硫化镉(C-CdS)复合材料样品。称取4.65g(0.012mol)的Ni(N03)2'6H20,溶入7mL去离子水中,配制成水溶液。将该溶液缓慢滴加至C-CdS样品中,浸渍2h,室温晾干,制得镍离子包覆的硫化镉纳米碳球(C-CdS-N:T)。称取l.16g(0.029mol)NaOH,溶入7mL去离子水中,配制成水溶液。将该溶液缓慢滴加至C-CdS-Ni2+样品中,浸渍过夜,过滤,洗涤,50。C烘干,,制得C(核)包裹CdS(次壳)再包裹MOH(外壳)的核壳结构C-CdS-NiOH复合材料,扫描电子显微镜(SEM)照片如图2所示。将所制备的核壳结构C-CdS-NiOH复合材料,在马弗炉中400T焙烧2h,制备出一种p-n结空心球NiO-CdS纳米复合材料。扫描电子显微镜(SEM)照片如图3所示。实施例2:分别称取空穴牺牲剂1.25g的Na2S和0.25g的化2503溶入盛有50mL蒸馏水的100mL光照一侧为平面的Prex玻璃平底反应瓶中。称取实施例1中制备的p-n结空心球NiO-CdS纳米复合材料0.10g加入反应瓶中。将反应瓶放在磁力搅拌器上搅拌,将三通进样玻璃瓶塞插入反应瓶中,以氙灯作为模拟太阳光源,打开氙灯稳流电源,滤光片滤去?i<420nm的紫外光,光源经滤光片滤光后照射至反应瓶侧面,检测可见光照射6h后,P-n结空心球Ni0-CdS纳米复合材料光催化分解水制氢活性。氢气的检测采用气相色谱仪,TCD检测器,TDX-01填充柱,太阳能可见光催化分解水产H2结果如表l所示。<table>tableseeoriginaldocumentpage13</column></row><table>权利要求1、一种p-n结空心球NiO-CdS纳米复合材料的制备方法,其特征在于,该方法采用水热法合成法及四步浸渍法制备p-n结空心球NiO-CdS纳米复合材料,具体包括下列步骤1)称取适量蔗糖配制成蔗糖水溶液,放入高压反应釜中,适宜的温度下水热合成纳米碳球,作为硬模板剂;2)称取适量Cd(NO3)2·4H2O配制成水溶液;3)称取适量Na2S·9H2O配制成水溶液;4)在室温下,将步骤1)的碳纳米球分散在无水乙醇中,进行超声波分散,烘干;将步骤2)中的Cd(NO3)2·4H2O的水溶液浸渍于步骤1)所制备的纳米碳球中,室温晾干,制得镉离子包裹的纳米碳球C-Cd2+,其中,纳米碳球用量为0.83mol,Cd(NO3)2·4H2O用量为0.023mol;5)在室温下,将步骤3)中的Na2S·9H2O的水溶液缓慢滴加至步骤4)所制备的C-Cd2+中,浸渍,洗涤,烘干,得到硫化镉包裹的碳纳米球C-CdS,其中,所述的Na2S·9H2O用量0.028mol;6)称取适量的Ni(NO3)2·6H2O配制成水溶液;7)将步骤6)制得的Ni(NO3)2·6H2O水溶液缓慢滴加至步骤5)所制备的C-CdS中,浸渍,室温晾干,制得镍离子包覆的硫化镉碳纳米球C-CdS-Ni2+。其中,Ni(NO3)2·6H2O用量0.012mol;8)称取适量NaOH配制成水溶液,缓慢滴加至步骤7)所制备的镍离子包覆的硫化镉碳纳米球C-CdS-Ni2+中,其中,NaOH用量0.029mol,浸渍过夜,洗涤,烘干,即制得碳核上依次包裹硫化镉和NiOH核壳结构的复合材料C-CdS-NiOH;9)将步骤8)所制备的核壳结构复合材料C-CdS-NiOH,在马弗炉中于400℃焙烧2h,得到p-n结空心球NiO-CdS纳米复合材料。2、权利要求1方法制备的p-n结空心球NiO-CdS纳米复合材料作为光催化剂用于太阳能可见光催化分解水制氢的应用。3、权利要求2所述的应用,其特征在于,采用氙灯作为模拟太阳能光源,采用滤光片滤去紫外光,评价太阳能可见光催化分解水制氢产率。4、权利要求2所述的应用,其特征在于,包括下列步骤1)分别定量称取Na2S和Na2S03溶入盛有50mL蒸馏水的lOOmL光照一侧为平面的Prex玻璃平底反应瓶中,称取适量的P-n结空心球MO-CdS纳米复合材料粉体加入混合液中;2)将反应瓶放在磁力搅拌器上,将三通进样玻璃瓶塞插入反应瓶中,打开氙灯稳流电源,用滤光片滤去i〈420nm的紫外光,光源透过滤光片后照射至反应瓶侧面;3)采用气相色谱仪配备的TCD检测器,TDX-Ol填充柱,对生成的气相产物进行检测,评价太阳能可见光催化分解水制氢产率。全文摘要本发明公开了一种p-n结空心球NiO-CdS纳米复合材料的制备及在光催化分解水制氢中的应用,该方法利用廉价的镍源和镉源,采用水热法合成法,四步浸渍法将n-NiO半导体与p-CdS半导体复合,制备出一种p-n结空心球NiO-CdS复合纳米材料,该制备工艺过程简单易行,可实现规模化生产。将该p-n结空心球NiO-CdS复合材料作为太阳能可见光催化分解水制氢的光催化剂,加速了光生电子的输送速率,大幅度提高了制氢产率。文档编号B01J27/04GK101623645SQ20091002354公开日2010年1月13日申请日期2009年8月10日优先权日2009年8月10日发明者张耀君,圣李,李学进,王亚超,超闵申请人:西安建筑科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1