较高级氢化硅烷的制备方法

文档序号:5038154阅读:175来源:国知局
专利名称:较高级氢化硅烷的制备方法
较高级氢化硅烷的制备方法本发明涉及借助于较低级氢化硅烷的脱氢聚合反应制备较高级氢化硅烷的方法;按照该方法制备的较高级的氢化硅烷,以及该较高级的氢化硅烷在制造电子或光电子组件层和制备含硅层上的应用。在文献中,描述了作为产生硅层的可能的原料,氢化硅烷或其混合物,特别是较高级的氢化硅烷或其混合物。这时,氢化硅烷化合物被理解为基本上只含硅和氢原子。在本发明的意义上,氢化硅烷呈气态、液态或固态,并在固态的情况下基本上可溶于诸如甲苯或环己烷的溶剂或溶于诸如环戊硅烷的液体硅烷。作为示例可列举甲硅烷、乙硅烷、丙硅烷和环戊硅烷。较高级的氢化硅烷,亦即带有至少2个Si原子的那些可以具有直链的或分支的或带Si-H键的(任选二 /多)环结构,并允许用各自的一般式SinH2n+2 (直链或分支;n彡2),SinH2n(环状;n 彡 3)或 SinH2(^i) ( 二或多环;n^4;i= {环数}_1)描述。这样例如,EP I 087 428 Al描述硅膜的制备方法,其中使用带有至少3个硅原子 的氢化硅烷。EP I 284 306 A2特别描述了混合物,其包含带有至少三个硅原子的氢化硅烷化合物和选自环戊硅烷、环己硅烷和甲硅烷基环戊硅烷的至少一种氢化硅烷,所述混合物也可以用来制备硅膜。例如,较高级的氢化硅烷可以通过卤化硅烷与碱金属的脱卤和缩聚制备(GB2 077710 A)。然而,这个方法的缺点是,作为污染物产生部分卤化的硅烷,特别是对于确定用于半导体工业的硅,该产品进一步处理是个缺点,因为它们导致特性不利的硅层。氢化硅烷的其他制备方法基于氢化硅烷的脱氢聚合反应,其中通过I)热学方法(US 6,027,705 A用于不使用催化剂的情况)时和/或2)使用催化剂,如a)元素过渡金属时(多相催化作用;US 6,027,705A用于使用钼族金属,亦即,Ru, Rh, Pd,Os, Ir,Pt的情况;US 5,700,400 A用于3B-7B和8族金属,亦即,过渡金属/镧系,没有Cu和Zn族),b)非金属氧化物(多相催化作用;US 6,027,705 A用于使用Al2O3或SiO2的情况),c)钪、钇或稀土金属的氢化环戊二烯基络合物(均相催化作用;US 4,965,386A,US 5,252,766A),d)过渡金属络合物(均相催化作用;US 5,700, 400A用于3B-7B和8族金属,亦即,过渡金属/镧系,没有Cu和Zn族的络合物JP02-184513A)或者e)固定在载体上的一定的过渡金属(多相催化作用;US 6,027,705A用于使用钼族金属在载体例如,SiO2的情况;US5,700,400A用于固定在碳、SiO2或者Al2O3上的钌、铑、钯或钼上)或者过渡金属络合物(多相催化作用,US 6,027,705A用于使用钼族金属络合物在载体例如SiO2上的情况),从较低级的氢化硅烷,特别是SiH4,形成较高级的氢化硅烷,形式上是H2的脱除。然而,至今已知的较高级的氢化硅烷的制备方法都有缺点纯热学方法,亦即,不加催化剂进行的脱氢聚合反应具有热负载高,有利于副反应和分解反应的缺点。虽然采用均相催化剂可以避免要求较高的反应温度,并因此避免所要求高的热负载,然而这个催化剂也有缺点,必须以过高成本才能清除和还出现聚娃类(polysilinartiger)固体,特别是不溶于溶剂和环戊硅烷中的含(SiH)n的聚合物固体,其中n值巨大,这导致加工反应产物的缺点和减少产率。至今已知的应用元素过渡金属、纯非金属氧化物或施加在载体上一定的过渡金属或过渡金属络合物的多相方法还有采用后无法达到足够高的转化率的缺点。
因此,本发明的任务是,避免所描述的现有技术的缺点。按照本发明,这个任务通过较高级的氢化硅烷的制备方法来完成,其中使-至少一种较低级的氢化硅烷和-至少一种多相催化剂发生反应,其中该至少一种催化剂包括-施加在载体上的Cu,Ni,Cr和/或Co-和/或施加在载体上的Cu,Ni,Cr和/或Co的氧化物。如前所述,较高级的氢化硅烷理解为基本上只含有硅和氢的化合物,它具有直链的、分支的或带Si-H键的(任选二/多)环结构,并且它可以用各自的一般式SinH2n+2(直链或分支;n彡2), SinH2n(环状;n彡3)或SinH2(Jri) ( 二或多环;n彡4 ;i = {环数}_1)来描述。较低级的氢化硅烷理解为只包含硅和氢的化合物,其具有直链的、分支的或带有Si-H键的(任选二 /多)环结构,并可以用各自的一般式SinH2n+2 (直链或分支;n> 1),SinH2n(环状;n彡3)或SinH2(n_i) (二或多环;n彡4 ;i = {环数}_1)来描述,其前提条件是,所采用的较低级的氢化硅烷的数均分子量小于所生成的较高级的氢化硅烷的数均分子量。特别适宜的是按照本发明制备较高级的氢化硅烷或其混合物的方法,该混合物由
2^ n ^ 20的较高级的氢化硅烷组成或基本上包含该种氢化硅烷。但还可以根据反应的进行,获得n > 20的较高级的氢化硅烷。更特别适用的是基本上满足2 < n < 10的上述式的较高级的氢化硅烷的混合物的制备方法。这样的混合物一般含有Si2H6, Si3H8, n-Si4H10,n-Si5H12,Ii-Si6H14 作为主组分,以及任选地 n-Si7H16,n-Si8H18,n-Si9H2Q 和 n_Si1(lH22 作为副组分。如何测出产品的数均分子量,和按照本发明的方法在达到相应的数均分子量时停止的方法,是本领域技术人员已知的。这时,按照本发明的方法特别适用于制备直链氢化硅烷。其他的一般可以在差的产率下制备的产品/副组分可以是例如i_Si6H14的分支氢化硅烷和例如环戊氢化硅烷 (环-Si5Hltl)的环状氢化硅烷。还可能出现少量二或多环氢化硅烷。这种副组分的比例,分别按氢化硅烷和该副组分总和计算,总计一般为最大10重量%。多相催化剂当前被理解为处于不同于反应物的另外相中的催化剂。在按照本发明的方法中所采用的催化剂,包括施加在载体上的金属或金属氧化物,理解为这样一种催化齐U,它具有在对于这个化学反应本身呈惰性的或(与催化剂材料相比)呈现较小活性的物质(“载体”)上或与之混合,基本上在载体物质表面上通过涂敷、沉淀、浸溃或混合施加的多相催化剂材料。这时,催化剂材料可以是元素或化合物在载体上和/或在原子结合的情况下存在于载体材料的晶体结构或层状结构中。在按照本发明的方法中所采用的多相催化剂材料包括铜、镍、铬和/或钴,它I)施加在各自的载体上,亦即作为金属元素存在于载体上和/或在原子结合的情况下存在于载体材料的晶体或层状结构中,和/或2)作为施加于载体上的氧化物,亦即,a)作为确定的氧化级的金属氧化物,b)作为不同价的氧化物的混合价复合物,或者c)至少一种氧化物与金属元素的结合,上述物质各自作为化学化合物存在于载体上和/或结合在载体材料的晶体或层状结构中。可优选采用的提供容易获得的优点的较低级的氢化硅烷是甲硅烷、乙硅烷和丙硅烷化合物。由于它们在室温下呈气态和由此得出的作为气体处理的可能性,故特别优选甲硅烷和乙硅烷。更特别优选的是甲硅烷和乙硅烷混合物,它导致特别优异的产率。作为载体优选表面积大的物质,特别是活性炭、氧化铝(特别是矾土)、二氧化硅、硅石、硅酸盐、硅藻土、滑石、高岭土、粘土、二氧化钛、氧化锆和沸石,因为它们同时作为“应用的(aufgezogenen) ”催化剂起促进剂的作用,并因此可以进一步提高反应速率。用氧化铝作为载体可以达到特别良好的反应速率。所述至少一种多相催化剂,特别是施加在载体上的多相催化剂材料,除了上述金属铜、镍、铬或者钴以外,为了取得特别良好的产率,优选不包括其他元素形式或作为化合物的过渡金属、镧系元素或锕系元素(Actinoide)。可优选使用的催化剂可以通过下列方法制备1)用铜、镍、铬和/或钴的盐的水溶液浸溃载体,2)干燥,和3)煅烧,其中不仅浸溃、干燥而且煅烧任选地也可以在还原或氧化条件下进行。这时,包括施加在载体上的Cu,Ni, Cr或Co的催化剂,特别适宜在选择还原条件下制备,反之包括施加在载体上的Cu,Ni,Cr或Co的氧化物的催化剂,特别适宜可在选 择氧化条件下制备。此外,还原之前金属盐化合物,特别是硝酸盐首先可以转变为氧化物形式。这时,干燥优选在80-150°C的温度下进行。煅烧优选在300-600°C温度下进行。还原优选在150°C _500°C的温度下进行。施加在载体上的Cu,Ni,Cr或Co或者Cu,Ni,Cr或Co的氧化物的重量百分比含量优选为催化剂(载体+催化剂材料)总质量的0.5 65重量%。这时,这个重量百分比含量可以通过把已知浓溶液施涂在煅烧过的载体上,接着进行干燥和第二次煅烧(任选地在还原或氧化条件下和假定在这时不损失金属)之后称重测定。若反应在液相中分批进行,则催化剂的比例优选为液相质量的0. 001-0. 5,特别优选0. 01-0. 1,更特别优选0. 02-0. 06重量%。若反应连续地在气相中进行,则定义为GHSV =在STP条件下每小时/催化剂体积流过的气体体积的GHSV (气体每小时空间速度)优选为0. HOOOh'特别优选1-300( '更特别优选IO-IOOOh'按照本发明的方法进行的温度并不关键。然而,按照本发明制备较高级的氢化硅烷的方法优选在0-400°C温度下进行。优选在35-170°C温度下,更特别优选在140-160°C温度下进行。另外,这时,绝对压力优选使用1-200巴,特别优选10-160巴,更特别优选50-150巴。低于I巴转化率通常不能令人满意,而超过200巴绝对压力,不能证明投资成本与材料技术要求相称。反应时间可以是几小时直至几天。这时,较高级的硅烷的比例随着反应时间增大。这时,分离在反应混合物中在此期间生成的所希望的较高级的硅烷,而且使用的或任选地在反应过程中生成的较低级的硅烷,特别是使用的或生成的乙硅烷,在希望作为产品的硅烷带有至少3个硅原子的情况下,再次引入该反应可是有利的。此外,按照本发明的方法可以在溶剂存在或不存在的情况下进行。但优选在溶剂存在的情况下进行。原则上既不与原料反应,也不与产品反应的所有溶剂都适用。可优选采用的是直链、分支和环状脂族和取代的或未取代的芳族烃(特别是环烷、苯和甲苯)、醚(特别是二烷基醚、呋喃或二氧六环)以及二甲基甲酰胺、乙酸乙酯或乙酸丁酯。按照本发明的方法可以在支持反应过程的气体存在或不存在的情况下进行。这样例如,甚至非反应性气体,特别是氮、氩或氦可以用来稀释反应混合物。此外,为了支持反应过程,特别是为了避免逆反应,放出生成的氢。然而,不仅不排除生成的氢,而且在反应时甚至加入氢这虽然可以导致反应速度的降低,但是减小高分子固体的形成,这可能还是有优点的。这时,首先不限制氢的比例。根据投料(较低级的氢化硅烷和催化剂)以及反应条件(压力和温度)进行调整。使用气态娃烧时,氢的分压优选为所米用的氢化娃烧压力的1-200*%。一般地,氢的比例这样选择,使得氢分压相当于总压力的至少5%。其范围优选为5%至80%,特别优选范围为5%至 50%。若在反应时会出现对于其它使用目的不利的较高分子副组分(特别是大于20个Si原子的较高级的氢化硅烷),则这可以通过本领域技术人员已知的方法,特别是通过蒸馏或者通过采用吸附方法清除。还可以在采用横流薄膜方法下用至少一个薄膜分离步骤通过应用渗透膜提纯。本发明的主题还在于按照本发明的方法制备的较高级的氢化聚硅烷或其混合物。 按照本发明制备的这种较高级的氢化聚硅烷或其混合物适用于多种应用。特别适宜用来制备电子或光电子组件层。因此,本发明的主题还在于按照本发明的方法获得的较高级的氢化硅烷在产生光电子或电子组件层的应用。按照本发明的方法可获得的较高级的氢化硅烷优选适用于制备光电子或电子零件中的电荷输送组件。此外,按照本发明的方法可获得的较高级的氢化硅烷适用于制备含硅层,优选元素硅层。下文中,现将举例描述一般的反应过程优选应用不锈钢反应器,配有玻璃管线、热电偶、压力接收器、液体采样器、气体或液体原料引入和引出装置以及催化剂篮。用催化剂填充反应器篮之后,对催化剂进行多次惰性化,接着,用溶剂填充。通过气体引入管道向反应器加入原料。接着,把反应器加热至希望的温度,并通过启动搅拌器来起始反应。反应时间自然取决于原料的选择和反应参数。一般地,在40°C的反应温度和60巴压力下反应时间为约1-24小时。所生成的由形成的较高级的氢化硅烷,任选地溶剂和任选地未转化的原料组成的产品混合物,可以在除去催化剂篮之后用于半导体或光伏领域,因为在给定的投料纯度下预期没有干扰性副组分的污染。若反应时产生对于其它使用目的起干扰作用的较高分子的副组分(特别是Si原子数多于20的较高级的氢化硅烷),则可用本领域技术人员已知的方法在应用反应产物之前,特别是通过蒸馏或通过应用吸附方法分离。还可能应用横流薄膜方法用至少一个薄膜分离步骤通过应用渗透膜提纯。以下的实施例说明本发明的主题,对本发明没有限制作用。
实施例配有玻璃管线、热电偶、压力接收器、液体取样、气体引入和气体引出装置和催化剂篮的不锈钢反应器(MRS500 Parrlnstruments)用各自的多相催化剂以表I所列的数量进行填充(催化剂篮)。此后该反应器惰性化三次(氩和真空交替)并用30ml干燥的甲苯填充。通过气体引入管道在室温下在60bar下给反应器(内部容积70ml)加入SiH4并加热至各自给出的温度。通过启动搅拌器(700转/分)启动该反应。反应时间20h之后进行液体采样。用气相色谱法检验采出的液体。按照内部标准方法(在这种情况下庚烷)进行样品的数据处理。给出的物料量相应于检测的硅烷的总和。k在环戊硅烷和庚烷之间测定。
权利要求
1.较高级的氢化硅烷的制备方法,其中使 -至少一种较低级的氢化娃烧,和 -至少一种多相催化剂发生反应,其特征在于, 该至少一种催化剂包括 -施加在载体上的Cu,Ni,Cr和/或Co -和/或施加在载体上的Cu,Ni,Cr和/或Co的氧化物。
2.按照权利要求I的方法, 其特征在于, 该至少一种较低级的氢化硅烷选自由甲硅烷、乙硅烷和丙硅烷组成的组。
3.按照权利要求2的方法, 其特征在于, 作为至少一种较低级的氢化娃烧米用甲娃烧和乙娃烧的混合物。
4.按照上述权利要求中任一项的方法, 其特征在于, 该载体由选自由活性炭、氧化铝、二氧化硅、硅石、硅酸盐、硅藻土、滑石、高岭土、粘土、二氧化钛、氧化锆和沸石组成的组的至少一种物质。
5.按照上述权利要求中任一项的方法, 其特征在于, 该至少一种催化剂除了所述金属铜、镍、铬或者钴以外,不包括其他元素形式或作为化合物的过渡金属,镧系元素或锕系元素。
6.按照上述权利要求中任一项的方法, 其特征在于, 该多相催化剂可以通过I)用铜、镍、铬和/或钴的盐的水溶液浸溃载体,2)干燥和3)煅烧制备。
7.按照上述权利要求中任一项的方法, 其特征在于, 施加在载体上的Cu,Ni ,Cr或Co或其氧化物的重量百分比含量为载体总质量的0. 5 65重量%之间。
8.按照上述权利要求中任一项的方法, 其特征在于, 该至少一种的较低级的氢化硅烷和该至少一种多相催化剂在溶剂存在的情况下进行反应。
9.氢化娃烧或氢化娃烧的混合物,其可以按照权利要求I至8中任一项的方法制备。
10.可按照权利要求I至8中任一项制备的至少一种氢化硅烷在制造电子或者光电子组件层上的应用。
11.可按照权利要求I至8中任一项制备的至少一种氢化硅烷在制备含硅层,优选元素硅层上的应用。
全文摘要
本发明涉及较高级氢化硅烷的制备方法,其中使至少一种较低级的氢化硅烷和至少一种多相催化剂发生反应,其中该至少一种催化剂包括施加在载体上的Cu、Ni、Cr和/或Co和/或施加在载体上的Cu、Ni、Cr和/或Co的氧化物;按照该方法制备的氢化硅烷及其应用。
文档编号B01J23/755GK102639235SQ201080044156
公开日2012年8月15日 申请日期2010年8月13日 优先权日2009年10月2日
发明者G·施托赫尼奥尔, N·布劳施, T·夸特 申请人:赢创德固赛有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1