涂覆的造粒模具及涂覆方法

文档序号:5006686阅读:414来源:国知局
专利名称:涂覆的造粒模具及涂覆方法
技术领域
本发明涉及造粒模具,并且更具体地涉及涂覆的造粒用环形挤出模具,并涉及对其进行涂覆的方法。
背景技术
常规的造粒方法总体上使用具有许多不同形状的孔的ー个板或环,这些孔被用于由一种被迫使进入这些孔中的材料来形成粒料。该材料行进穿过这些孔并且在另一端离开,其中它被刀切割成一定的尺寸。材料的此类挤出总体上要求大量的力,因为材料在进入面上并且然后在这些孔的侧面上拖过,从而由于这个动作而产生了一定程度的加热作用。该造粒过程依赖于原料与模具表面之间一定程度的摩擦,以便将该原料压缩到在其被挤出时的更高密度。然而,过度的摩擦导致了过度的热,这可能导致该材料的烧损或者氧化,从而导致废料。一种类型的造粒操作使用了一个旋转挤出机来将这些材料混合并且输送到ー个含有成型孔的模具板中,这些孔形成了粒料。另ー种类型的造粒操作使用了ー个环形模具,该环形模具具有多个相匹配的辊,这些辊迫使该材料从该环形模具的内侧至外侧径向穿过这些造粒孔。当被挤出的材料离开该模具时,这些股可以被一把刀或被一组刀切割,从而在离开该模具时立即沿着该模具面的表面穿过。这些类型的模具的形状典型地是圆柱形的,其中直径的范围是例如从约16到72英寸。该模具的本体包括遍及各处的成百上千个孔以便协助该挤出过程。这些孔的直径的范围可以是例如从约Imm到约25mm。这些环形挤出模具可以用于多种应用中,例如对宠物和动物饲料造粒以及用于生物燃料应用的木材造粒。然而,与这些类型模具有关的ー个关键问题是在径向方向上穿过壁厚时随着循环的增多导致粒料品质的损失以及由于开裂导致该模具的过早的机械失效。虽然此类失效有可能解释为是该环和孔的内表面磨损的結果,但对这些模具的失效分析已经掲示出,虽然可能发生该模具环和这些孔的内表面的磨损,但这并不是粒料品质损失或者模具由于开裂而失效的原因。已经发现这些失效的非预期的原因与摩擦有关,如下面更全面地说明的。在常规的造粒用环形挤出模具的操作过程中,摩擦引起温度升高,这使得浆料中的挥发性组份更快地汽化或者蒸发。这造成浆料中的粘度变化,进而造成了不一致的流动并且最終造成了差的粒料品质。这种不一致的浆料流动使该材料积聚在模具内部并且増大了将浆料挤出穿过这些通道所需的压迫力。温度和应カ的増大加速了该模具中疲劳裂纹的生长。因此粒料品质损失和模具过早开裂的根本原因主要是由于在通向这些造粒孔的进入倒角处的摩擦。在引入式倒角区段上摩擦的减小会将与该升高的温度相关联的这些问题减到最少并且增加了模具寿命和粒料品质。存在着几种对不同类型表面的摩擦进行控制的途径。这些包括自我润滑的表面,其中ー种液体或固体润滑剂被截留在这些表面孔或特征中。可以通过不同的涂覆/包覆技术来沉积不同的低摩擦陶瓷或者金属陶瓷涂层。然而,以不使基底的特性降级而同时维持在这种应用中所需要的低摩擦特性的ー种方式来修饰或者增强该表面是ー种挑战。将自润滑表面施加在环形模具中的ー个主要的问题是,该软润滑材料将被该挤出浆料快速消耗,或者该钢表面上的需要用于保留润滑剂的这些孔降低了该钢的机械强度并且因此可能造成该模具的过早失效。虽然有几种涂覆/包覆技术可用于沉积低摩擦涂层,但这些技术具有其自身的问题,包括基底特性的降级和差的尺寸控制。例如,诸如热喷涂和等离子体转移电弧等技术不起作用,因为,这种高的热量输入使这些部件扭曲,然后必须进行校正,从而导致了高价的解决方案。化学气相沉积(CVD)和物理气相沉积(PVD)技术不被考虑,因为这种现有技术的厚度有限并且高的沉积温度引起了尺寸变形。传统的CVD技术被局限于大于800° C的沉积温度。其他技木,如包覆或浸溃涂覆也是不成功的,因为它们堵塞了这些孔和/或使这些部件变形,这是由于在该方法的过程中的高的热量输入。高度希望的是提供一种改进的造粒模具以及其制造方法,这种造粒模具展示了改进的特性,诸如,在该倒角区域上更低的摩擦、以及足够的耐磨损以便维持该倒角的轮廓。

发明内容
本发明提供了具有改进的寿命的多种涂覆的造粒用环形挤出模具。多个低摩擦涂层被提供在该模具的内表面和入口处以及这些挤出孔的一部分表面处。这些涂层限制了在该模具的使用过程中表面温度的升高。本发明的ー个方面提供了一种造粒用环形挤出模具,该模具包括一个模具本体,该本体具有多个挤出孔,其中每个孔包括ー个表面,该表面具有沉积在其上的低摩擦涂层。本发明的另ー个方面提供了一种对造粒用环形挤出模具进行涂覆的方法,该方法包括在小于520° C的温度下将ー个低摩擦涂层施加在该造粒用环形挤出模具的一部分上,其中该造粒模具包括多个挤出孔,并且该低摩擦涂层被施加到每个孔的表面的至少ー部分上。本发明的这些以及其他方面将从下面的说明中变得更清楚。


图1是根据本发明的一个实施方案处于操作中的造粒用环形挤出模具的局部示意性俯视图。图2是根据本发明的一个实施方案的一个可以被涂覆的造粒用环形挤出模具的等距视图。图3是根据本发明的一个实施方案的一种造粒用环形挤出模具组件的一部分的截面视图。图4是根据本发明的一个实施方案的一种涂覆有低摩擦涂层的造粒用环形模具的挤出孔的截面视图。
具体实施例方式本发明提供了在其至少一部分上具有低摩擦涂层的造粒模具。该造粒模具可以由任何适合的材料制成。例如,该造粒模具可以是由不锈钢、碳钢、或者超耐热合金制成的。在一些实施方案中,该模具可以是由以下这些制成的CA6匪、300或400系列的不锈钢、4140、4340或类似的合金、铬镍铁合金、或哈氏合金(Hastealloy)、或者一种类似的镍基合金。该造粒模具典型地硬度为45-55RC、强度为1. 3-2. lGPa、韧度为大于27N_m,并且耐久极限为至少680MPa。该造粒模具可以通过本领域普通技术人员所认可的任何方法来制造,如浇注、焊接、从精制的材料进行机加工、或者粉末冶金法。图1和图2展示了一种用于常规挤出机的环形造粒模具10的实施方案,该模具可以根据本发明的一个实施方案而部分涂覆有ー种低摩擦涂层。如图2中最清楚地显示的,该环形造粒模具10包括一个圆柱形的模具本体12,该本体具有ー个顶部凹槽14、一个底部凹槽16、以及在它们之间的ー个模具工作区域18。该模具工作区域18包括多个小孔或洞20,它们在构形上可以是总体上类似的或者相同的。这些小孔20是用于这些材料进料的挤出通道。这些小孔20在径向方向上从该模具工作区域18的内面22到模具工作区域18的外面24延伸穿过该模具本体12。图1和图3展示了在一个粒料磨机50中使用本发明的造粒模具10。在该过程中,将材料进料到该造粒模具10的内部,并且使用多个滚轮组件辊54将该材料分布在该模具·本体12的内面22上。该材料从该模具工作区域18表面的内面22上被挤出穿过这些孔20并且被这些辊54向外推动穿过而到达模具本体12的外面24。如图3和图4中所展示的,这些小孔20包括ー个具有锥形部分或倒角30的入口端开ロ 26、以及由此延伸至出口端开ロ 34的一个总体上圆柱形的通道截面32。该挤出通道或通道截面32可以在形状上呈现出不同的几何构形,并且直径尺寸也可以在同一模具本体内呈现出不同的构形。根据本发明,这些小孔20的内表面36在其上的至少一部分上具有ー个低摩擦涂层40。该低摩擦涂层40可以是至少沿着该孔20的内表面36的锥形部分30。在其他实施方案中,该低摩擦涂层40可以在这些小孔20的内表面36上延伸超过该锥形部分30。在还其他实施方案中,该低摩擦涂层40可以位于这些孔20的整个内表面36上。该低摩擦涂层40还可以覆盖该模具10的整个内面22。该低摩擦涂层40可以包括任何显示出低摩擦同时具有足够的磨损和腐蚀以及侵蚀特性的材料。在一些实施方案中,该低摩擦涂层40可以包括碳化钨材料。在其他实例中,该低摩擦涂层可以是ー种超低摩擦的类金刚石碳(DLC)、ニ硫化钥、基于T1-S1-Cr-C-N的涂层、或者基于WC/W的涂层。该低摩擦涂层40可以在这些孔20的内表面36上是至少20微米厚的。例如,该涂层厚度可以是至少25微米、至少50微米、至少100微米、或者至少200微米厚。在本发明的多个方面,该低摩擦涂层的厚度可以是25到75微米、或35到55微米。这些按施加原样的涂层可以具有这样的韧性特性允许它在操作过程中不展现出在弹性变形的基底区域上的可见的剥落。根据ASTM G65测试,该涂覆的部件的耐磨损特性可以比未涂覆的基底大出30倍或40倍。本发明的多个方面中,该低摩擦涂层40可以由ー个单层或多个层来构成。在具有多个层的一个实施方案中,每个层可以是金属、陶瓷、或复合材料中的ー种。金属层的实例包括T1、Cr、Zr或Hf。陶瓷层的实例可以包括TiN、TiCN、TiAlN、TiAlSiCN或者WC。复合材料层的实例包括WC-W、TiSiCN纳米复合材料结构、SiCN、WC-Co、WC-N1、N1-金刚石等。低摩擦涂层40可以如下施加到这些小孔20的内表面上,通过本领域的普通技术人员所认识的方法将该涂层冶金地粘合到ー个基底上。可以使用化学气相沉积、化学淀积、或自液体介质(像浆料或化学溶液)的沉积。本发明的多个方面中,该涂层可以通过ー种PVD技术在该沉积过程中使该环内部的一个阴极旋转来进行施加。PVD技术的实例包括磁控溅射、电弧沉积、或者等离子体增强的PVD-CVD混合形式,如等离子体增强的磁控溅射等等。作为替代方案,该涂层可以通过低温或者等离子体增强的CVD技术来沉积。在某些实施方案中,该涂层的PVD和/或CVD沉积不在大于600° C的温度下发生,而可以在约500° C发生,如450° C-520。C。在这些小孔20的内表面上的按施加原样的涂层优选产生了与该孔的没有涂层的内表面相类似的表面光洁度。优选地,该低摩擦涂层没有产生任何可见的缺陷,诸如可见的瑕疵、剥落或者暴露的表面,并且在这些小孔的内表面的被涂覆的部分上具有顔色一致性。在多个实施方案中,在施加该涂层之后,这些小孔20的被涂覆的部分可以经受进ー步的加工,诸如抛光。一个优选的实施方案是这样的ー个环形模具其中该基底是由不锈钢制成的,在450° C-520。C的温度下涂覆有ー个20 - 200 iim厚的TiSiCN或WC/W涂层,其中摩擦系数是处于0. 2到0. 6的范围内。优选地,该沉积温度是〈490° C而该涂层厚度是30 - 70 ii m。该涂层优选是位于该孔的倒角部分上并且延伸了一定长度而进入该通道中并且还位于该模具的内表面上。该低摩擦涂层40优选具有的摩擦系数是小于0. 6,典型地小于0. 5。例如,该摩擦系数可以是从0. 05到0. 4或0. 5。根据本发明,该涂层是ー种低摩擦的材料,作用为在造粒过程中减少热量的积聚。该模具中热量积聚的减少可以用于延长其寿命,因为该模具的金属的强度被維持在更高的水平,从而提供了改进的对疲劳裂纹发生的抵抗性以及从疲劳相关的失效来看更长的使用寿命。该低摩擦涂层提供了一种用于減少摩擦负荷和降低操作温度的装置,从而产生了改进的材料流动以及延长了疲劳寿命的金属強度。这种更低的摩擦水平伴随有对应的耐磨蚀和侵蚀性。另外,该涂层将被过快磨掉而不能提供一种适当的手段来达到更长的寿命跨度。施加到这些造粒孔的入口部分上的涂层的次级作用是,更低的摩擦可以减少该孔堵塞的量,由于该材料被阻挡进入模具的一个已经发生了阻塞的区段或区域中所经受的更高应力,孔堵塞可以导致寿命減少。这些更高的应カ是由更厚的原料层不能穿过被堵塞的孔而引起的,从而造成环形模具上的径向压力増加,这导致了该模具金属中更高的箍应力。针对ー个基准测试了两个涂层,该基准是ー种未经涂覆的420C不锈钢。涂层A是ー种TiSiCN涂层-基于PVD (等离子体增强的磁控溅射)的PEMS涂层,如在公开申请US2009/0214787A1中说明的,将该申请通过引用结合在此。该涂层是大于50微米厚的。该涂层在约450 ° C沉积在SS420钢的ASTM G65和ASTM G99试样上。涂层B是WC/W -基于CVD的涂层,如美国专利号4,427,445中说明的,将该专利通过引用结合在此。该涂层厚度在该基底上是大于50微米。该涂层是ー个低温CVD炉中在约500° C被沉积在SS420钢的ASTM G65 和 ASTM G99 试样上。通过将这些样品浸没在HC1、H2SO4以及HF中来测试其对酸的耐受性。使用ASTMG99测试方法用ー种氧化铝球(具有约IGPa的应力)来测试摩擦系数。耐磨损性是使用ASTMG65测试方法来确定的。结果在表I中给出。如该表中所见,涂层A和B显示了低温度沉积、低摩擦、和良好耐磨损性的ー种良好组合。表I未涂覆的钢和两个涂层(TiSiCN和WC/W)的测试结果
权利要求
1.一种造粒用环形挤出模具,该模具包括具有多个挤出孔的一个模具本体,其中每个孔包括一个表面,该表面具有沉积在其上的一个低摩擦涂层。
2.根据权利要求1所述的造粒用环形挤出模具,其中,该低摩擦涂层具有的摩擦系数是小于O. 5。
3.根据权利要求1所述的造粒用环形挤出模具,其中,该孔在该模具本体的内面上具有一个锥形入口并且延伸穿过而到达该模具本体的一个外面。
4.根据权利要求3所述的造粒用环形挤出模具,其中,该低摩擦涂层是位于至少该锥形入口上。
5.根据权利要求1所述的造粒用环形挤出模具,其中,该低摩擦涂层被施加在该孔的内表面上。
6.如权利要求1所述的造粒用环形挤出模具,其中,该模具本体包括钢、不锈钢或者超耐热合金。
7.如权利要求1所述的造粒用环形挤出模具,其中,该低摩擦涂层包括金属、陶瓷、或者复合材料。
8.根据权利要求1所述的造粒用环形挤出模具,其中,该低摩擦涂层具有的厚度为20到200微米。
9.一种对造粒用环形挤出模具进行涂覆的方法,包括 在小于520° C的温度下将一个低摩擦涂层施加到该造粒用环形挤出模具的一部分上,其中该造粒模具包括多个挤出孔,并且该低摩擦涂层被施加到每个孔的表面的至少一部分上。
10.根据权利要求9所述的方法,其中,该造粒模具包括钢、不锈钢、或超级热合金。
11.根据权利要求9所述的方法,其中,该低摩擦涂层包括金属、陶瓷、或者复合材料。
12.根据权利要求9所述的方法,其中,该低摩擦涂层具有的摩擦系数是大约O.5。
13.根据权利要求9所述的方法,其中,该低摩擦涂层被施加在该造粒模具的内面上的一个锥形部分的内表面上。
全文摘要
本发明涉及造粒用环形挤出模具及对其进行涂覆的方法。造粒用环形挤出模具包括一个具有多个孔的模具本体,其中每个孔具有一个至少部分地被涂覆有低摩擦涂层的表面。这些低摩擦涂层在模具的操作过程中降低了表面温度,这减少了正在被挤出的材料的挥发和不一致的流动。这些造粒用环形挤出模具由于这些低摩擦涂层而具有改进的工具寿命。
文档编号B01J2/22GK103007823SQ201210359898
公开日2013年4月3日 申请日期2012年9月25日 优先权日2011年9月27日
发明者S·布拉曼达姆, D·R·希德尔, I·斯皮特斯伯格 申请人:钴碳化钨硬质合金公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1