多孔分离设备和试剂递送装置的制作方法

文档序号:20760112发布日期:2020-05-15 17:59阅读:121来源:国知局
多孔分离设备和试剂递送装置的制作方法

本申请是申请日为2015年02月18日、申请号为201580020466.0(pct/us2015/016435)、发明名称为“多孔分离设备和试剂递送装置”的专利申请的分案申请。

相关申请的交叉引用

本申请要求2014年2月18日提交的临时申请序列号61/941,368的优先权益,其通过引用以其全部并入于此。

本文描述了这样的装置、试剂盒、系统、和方法,所述装置、试剂盒、系统、和方法用于高效且可逆地将包括靶剂的组合物分离至多个体积中,而不需要将组合物单独分离至多个体积的每一个中,以便可对多个体积的每一个,以及对组合物作为整体有效地进行处理。本文还描述了这样的装置、试剂盒、系统、和方法,所述装置、试剂盒、系统、和方法用于将测试剂有效地递送至多个体积,而不需要将测试剂单独递送至多个体积的每一个中。



背景技术:

高通量筛选(high-throughputscreen)允许研究人员快速地平行进行大量的化学、生物学、或药理学试验并且是生物学和化学研究——例如,在新药研发中的重要方面。此类筛选可以手动进行或利用机器人技术或液体处理装置以自动方式进行,以处理感兴趣的样品。多孔板——也称之为微量滴定或微孔板——被通常用于在评估的情况下保持样品。此类多孔板——其通常是一次性的并且由塑料和/或玻璃制成——一般包括小的、敞开的洞(divot)或孔的网格(grid)。平行筛选大量的化学或生物学试样的需要导致了具有大量相同孔——如96、384、1536、或3456个单独孔——的多孔板的研发。

当进行筛选操作时,靶剂——例如,细胞或化合物——通常被放置在所使用的多孔板的每一个孔中。随后,也可将不同的试剂或测试剂添加至该板的不同孔,以便筛选试剂或测试剂对靶剂的效果。在将所有反应成分放置在多孔板的孔中和反应的必要条件已满足后,可以手动或通过横穿所有板的孔的机械分析反应结果。

虽然机器人设备出现用于这些过程,但是此类设备通常是昂贵的,并且如果液体处理器上的移液器通道少于待转移的孔的数量时其会变慢。另一方面,手动方法是缓慢、辛苦、和易出错的。而且,将试剂或测试剂混合至含有靶剂的孔中的传统方法具有局限性。传统混合涉及摇动或振动整个多孔板的振荡器。对于小体积孔,摇动或振动整个多孔板在单独孔中没有产生充分的混合;液体粘度越大以及孔越小,摇动或振动将会越低效。传统的替代方案是通过移液器尖端上和下、进和出该孔地移取每个单独孔中的部分液体。使用移液来混合孔内容物使得在孔的底部,尤其在移液器开口的正下方产生大的剪切应力。这些流体剪切应力可分离靶剂(例如,细胞)、损坏靶剂、或对靶剂施以过量的机械刺激,并且不均匀的剪切力和流动可在孔的底部表面上引起靶剂的非均匀分布。因此,期望用于筛选和相似过程的更高效并且准确的操作靶剂和测试剂的方法。

发明概述

本文描述的多孔分离装置允许包括靶剂的组合物被分离至多个孔中;被再分、重新组合至单一孔中;和/或被重新分离至相同或不同配置的孔中。这通过具有——与目前具有固定壁的多孔板不同——分离壁结构的装置实现,所述分离壁结构可从含有包括靶剂的组合物的容腔可逆地移除。照此,装置可允许可逆和重复地使体积分离和结合,而不需要通过移液器或类似物将组合物从一个孔转移至另一个孔。

本文同样描述了试剂装载装置,其被配置以将测试剂同时递送至多孔分离装置的每个单独孔。本文所描述的试剂装载装置允许将一种或多种测试剂同时递送至多个体积,而无需将一种或多种测试剂单独递送至多个体积的每一个。这是通过具有多个突起部(protrusion)的试剂装载装置实现的,每个所述突起部包括杆和适于保持试剂的封闭尖端。照此,封闭尖端均可在对应于多个体积的所期望递送配置的配置中各自装载有试剂。试剂装载装置可被配置以促进试剂与多个体积的混合,如通过配置以振动,和可包括被配置以保护装载于封闭尖端上的试剂的遏制元件(containmentelement)或其它设计。

共同地,这些装置允许高通量平行处理,而无需重复移取或液体处理机器人。但是,应该理解,在一些变化中,本文描述的多孔分离装置可与此处所描述的试剂装载装置分开使用。类似地,应该理解,在一些变化中,本文描述的试剂装载装置可与本文描述的多孔分离装置分开使用。本文同样描述了用于化学或生物学分析的试剂盒和系统,以及使用本文描述的多孔分离装置和试剂装载装置的方法。

通常,本文描述的多孔分离装置可包括基底和与基底耦接的可移除的分离孔结构。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁。在这些变化的一些中,基底和分离孔结构可形成多个孔。

在一些变化中,本文描述的多孔分离装置可包括基底、边界壁、和与基底耦接的可移除分离孔结构。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁。在这些变化的一些中,基底和分离孔结构可形成多个孔,并且边界壁和基底可形成容腔。

在一些变化中,本文描述的多孔分离装置可包括基底、边界壁、边界密封、和与基底耦接的可移除分离孔结构。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁,基底和分离孔结构可形成多个孔,并且边界密封可与边界壁和基底形成防漏密封以形成容腔。

在一些变化中,本文描述的多孔分离装置可包括基底、与基底耦接的可移除分离孔结构、和分离密封。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁。在这些变化的一些中,分离密封可在基底和分离孔结构之间形成防漏密封以形成多个孔。

在一些变化中,本文描述的多孔分离装置可包括基底、边界壁、边界密封、与基底耦接的可移除分离孔结构、和分离密封。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁。在这些变化的一些中,分离密封可在基底和分离孔结构之间形成防漏密封以形成多个孔。在这些变化的一些中,边界密封可在边界壁和基底之间形成防漏密封以形成容腔。在这些变化的一些中,边界密封可位于基底支持物和基底之间。

在一些变化中,本文描述的多孔分离装置可包括基底、与基底耦接的可移除分离孔结构、和位于基底和分离孔结构之间的集中孔结构。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁。在这些变化的一些中,基底和分离孔结构可形成多个孔。在这些变化的一些中,集中孔结构可包括多个开口,并且所述集中孔结构的多个开口的每一个可对应于由分离孔结构限定的多个开口之一。在这些变化的一些中,所述集中孔结构的多个开口的每一个可具有近端横截面积和远端横截面积,并且近端横截面积可大于远端横截面积。

在这些变化的一些中,分离孔结构可以可逆地可移除地与基底耦接。在这些变化的一些中,多个壁可限定至少约96个开口。在这些变化的一些中,多个壁可限定至少约480个开口。在其它变化中,多个壁可限定至少约6个开口、至少约12个开口、至少约24个开口、至少约48个开口、至少约384个开口、至少约1536个开口、至少约3456个开口、或多于3456个开口。在这些变化的一些中,多孔分离装置可进一步包括与基底耦接的边界壁。在这些变化的一些中,基底和边界壁可限定至少一个容腔。在这些变化的一些中,基底和边界壁可进一步在容腔内限定至少两个分离的区域。在这些变化的一些中,边界壁可以可移除地与基底耦接。在这些变化的一些中,多孔分离装置可进一步包括被配置以将基底耦接至边界壁的基底支持物。在这些变化的一些中,基底支持物可包括至少一个卡扣(clip),其中至少一个卡扣可被配置以附接于边界壁的一部分。在这些变化的一些中,边界壁可以可逆地可移动地与基底耦接。在这些变化的一些中,边界壁可固定地与基底耦接。在这些变化的一些中,边界壁可以与基底成一体。

在这些变化的一些中,分离孔结构可通过附接于边界壁与基底耦接。在这些变化的一些中,分离孔结构可包括至少一个卡扣,其中至少一个卡扣可被配置以附接于边界壁的一部分。在这些变化的一些中,多孔分离装置可进一步包括与基底耦接的第二可移除分离孔结构。在这些变化的一些中,第二分离孔结构可包括限定第二多个开口的第二多个壁。在这些变化的一些中,基底和第二分离孔结构可形成第二多个孔。在这些变化的一些中,第二分离孔结构可配合在由分离孔结构限定的多个开口之一内。在这些变化的一些中,第二多个孔的每一个可具有比由第一分离孔结构限定的多个孔的每一个更小的体积。

在这些变化的一些中,多孔分离装置可进一步包括位于分离孔结构和基底之间的集中孔结构。在这些变化的一些中,集中孔结构可包括多个开口,其中所述集中孔结构的多个开口的每一个可对应于由分离孔结构限定的多个开口之一。在这些变化的一些中,多个开口的每一个可具有近端横截面积和远端横截面积,并且近端横截面积可大于远端横截面积。在这些变化的一些中,远端横截面积可为零。在这些变化的一些中,由分离孔结构限定的多个开口的每一个可具有第一横截面积,和集中孔结构的多个开口的每一个可在远端具有第二横截面积,并且第一横截面积可大于第二横截面积。在这些变化的一些中,集中孔结构的多个开口的每一个可含有蛋白质。在这些变化的一些中,集中孔结构的多个开口的每一个可含有聚合物。在这些变化的一些中,集中孔结构的多个开口的每一个可含有水凝胶。在这些变化的一些中,集中孔结构中的多个开口的每一个可含有化学涂料。

在这些变化的一些中,集中孔结构可固定地附接于基底。在这些变化的一些中,集中孔结构可固定地附接于边界壁。在这些变化的一些中,多孔分离装置可进一步包括位于边界壁和基底之间的密封。在这些变化的一些中,密封可固定地附接于边界壁。在这些变化的一些中,密封可固定地附接于基底。在这些变化的一些中,密封可包括橡胶。在这些变化的一些中,密封可包括塑料。在这些变化的一些中,密封可包括聚合物。在这些变化的一些中,多孔分离装置可进一步包括位于分离孔结构和基底之间的分离密封。在这些变化的一些中,分离密封可固定地附接于边界壁。在这些变化的一些中,分离密封可固定地附接于基底。在这些变化的一些中,分离密封可固定地附接于分离孔结构。在这些变化的一些中,分离密封可包括橡胶。在这些变化的一些中,分离密封可包括塑料。在这些变化的一些中,分离密封可包括聚合物。

在这些变化的一些中,分离孔结构的多个开口的每一个可具有六边形横截面形状。在这些变化的一些中,分离孔结构的多个开口的每一个可具有矩形横截面形状。在这些变化的一些中,分离孔结构的多个开口的每一个可具有圆形横截面形状。在这些变化的一些中,分离孔结构可包括橡胶。在这些变化的一些中,分离孔结构可包括塑料。在这些变化的一些中,分离孔结构可包括硅。在这些变化的一些中,分离孔结构可包括金属。在这些变化的一些中,分离孔结构可包括聚合物。在这些变化的一些中,分离孔结构可包括玻璃。在这些变化的一些中,分离孔结构可包括橡胶。在这些变化的一些中,多个孔的每一个可具有约100μl至100ml的体积。在这些变化的一些中,多个孔的每一个的体积可为小于约100μl、约100μl至约200μl、约200μl至约400μl、约400μl至约600μl、约600μl至约800μl、约800μl至约1ml、约1ml至约10ml、约10ml至约20ml、约20ml至约40ml、约40ml至约60ml、约60ml至约80ml、约80ml至约100ml、或大于约100ml。在这些变化的一些中,多个孔的每一个的深度可为约1mm至约40mm。在这些变化的一些中,多个孔的每一个的深度可为约5mm至约15mm、约10mm至约20mm、约15mm至约25mm、约20mm至约30mm、约25mm至约35mm、约30mm至约40mm、或大于约40mm。

在这些变化的一些中,基底可为平面结构。在这些变化的一些中,基底可包括玻璃。在这些变化的一些中,基底可包括塑料。在这些变化的一些中,基底可包括硅。在这些变化的一些中,基底可包括陶瓷。在这些变化的一些中,基底可包括金属。在这些变化的一些中,基底可包括选自玻璃、塑料、硅、陶瓷、和金属的一种或多种材料的组合。在这些变化的一些中,基底可适于在固定位置保持靶剂。在这些变化的一些中,基底可用蛋白质涂布。在这些变化的一些中,基底可用水凝胶涂布。在这些变化的一些中,基底可用聚合物涂布。在这些变化的一些中,基底可固定有化合物。在这些变化的一些中,基底可固定有蛋白质。在这些变化的一些中,基底可固定有固定化的细胞。在这些变化的一些中,基底可固定有微生物。在这些变化的一些中,基底可具有小于约13cm的最大尺寸。在这些变化的一些中,基底可具有约11cm至约15cm的最大尺寸、约7.5cm的最大尺寸、约1cm至约30cm的最大尺寸、约5cm至约25cm的最大尺寸、约10cm至约20cm的最大尺寸、或大于约30cm的最大尺寸。

在这些变化的一些中,靶剂可包括细胞。在这些变化的一些中,靶剂可包括蛋白质。在这些变化的一些中,靶剂可包括化合物。在这些变化的一些中,靶剂可包括聚合物。在这些变化的一些中,多孔分离装置可进一步包括盖子。在这些变化的一些中,多孔分离装置可被配置用于一次使用。

本文同样描述了用于化学或生物学分析的试剂盒。通常,用于化学或生物学分析的试剂盒可包括基底和被配置以可逆地和可移除地与基底耦接的分离孔结构。在这些变化的一些中,分离孔结构可包括限定多个开口的多个壁。在这些变化的一些中,基底和分离孔结构可被配置以在耦接时形成多个孔。在这些变化的一些中,分离孔结构可被配置以可逆地和可移除地与基底耦接。在这些变化的一些中,多个壁可限定至少约96个开口。在这些变化的一些中,多个壁可限定至少约480个开口。在这些变化的一些中,多个壁可限定至少约6个开口、至少约12个开口、至少约24个开口、至少约48个开口、至少约384个开口、至少约1536个开口、至少约3456个开口、或多于3456个开口。

在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括被配置以与基底耦接的边界壁。在这些变化的一些中,基底和边界壁可被配置以在耦接时限定至少一个容腔。在这些变化的一些中,基底边和界壁可进一步被配置以在耦接时在容腔内限定至少两个分离的区域。在这些变化的一些中,边界壁可被配置以可移除地与基底耦接。

在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括被配置以将基底耦接至边界壁的基底支持物。在这些变化的一些中,基底支持物可包括至少一个卡扣,其中至少一个卡扣可被配置以附接于边界壁的一部分。在这些变化的一些中,边界壁可被配置以可逆地和可移除地与基底耦接。在这些变化的一些中,边界壁可固定地与基底耦接。在这些变化的一些中,边界壁可与基底成一体。在这些变化的一些中,分离孔结构可被配置以通过附接于边界壁与基底耦接。在这些变化的一些中,分离孔结构可包括至少一个卡扣,并且至少一个卡扣可被配置以附接于边界壁的一部分。

在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括与基底耦接的第二可移除的分离孔结构,其中第二分离孔结构可包括限定第二多个开口的第二多个壁。在这些变化的一些中,基底和第二分离孔结构可被配置以当耦接时形成第二多个孔。在这些变化的一些中,第二分离孔结构可被配置以配合(fit)在由第一分离孔结构限定的多个开口的一个内。在这些变化的一些中,第二多个孔的每一个可具有比由第一分离孔结构限定的多个孔的每一个更小的体积。

在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括被配置以位于分离孔结构和基底之间的集中孔结构。在这些变化的一些中,集中孔结构可包括多个开口,其中多个开口的每一个可对应于由分离孔结构限定的多个开口的一个。在这些变化的一些中,所述集中孔结构的多个开口的每一个可具有近端横截面积和远端横截面积,其中近端横截面积可大于远端横截面积。在这些变化的一些中,远端横截面积可为零。在这些变化的一些中,由分离孔结构限定的多个开口的每一个可具有第一横截面积,并且集中孔结构的多个开口的每一个可在远端具有第二横截面积,其中第一横截面积可大于第二横截面积。在这些变化的一些中,集中孔结构的多个开口的每一个可含有蛋白质。在这些变化的一些中,集中孔结构可固定地附接于基底。在这些变化的一些中,集中孔结构可固定地附接于边界壁。

在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括被配置以位于边界壁和基底之间的密封。在这些变化的一些中,密封可固定地附接于边界壁。在这些变化的一些中,密封可固定地附接于基底。在这些变化的一些中,密封可包括橡胶。在这些变化的一些中,密封可包括塑料。在这些变化的一些中,密封可包括聚合物。在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括被配置以位于分离孔结构和基底之间的分离密封。在这些变化的一些中,分离密封可固定地附接于边界壁。在这些变化的一些中,分离密封可固定地附接于基底。在这些变化的一些中,分离密封可固定地附接于分离孔结构。在这些变化的一些中,分离密封可包括橡胶。在这些变化的一些中,分离密封可包括塑料。在这些变化的一些中,分离密封可包括聚合物。

在这些变化的一些中,分离孔结构的多个开口的每一个可具有六边形横截面形状。在这些变化的一些中,分离孔结构的多个开口的每一个可具有矩形横截面形状。在这些变化的一些中,分离孔结构的多个开口的每一个可具有圆形横截面形状。在这些变化的一些中,分离孔结构可包括橡胶。在这些变化的一些中,分离孔结构可包括塑料。在这些变化的一些中,分离孔结构可包括硅。在这些变化的一些中,分离孔结构可包括金属。在这些变化的一些中,分离孔结构可包括聚合物。在这些变化的一些中,分离孔结构可包括玻璃。在这些变化的一些中,分离孔结构可包括橡胶。在这些变化的一些中,多个孔的每一个的体积可为约100μl至100ml。在这些变化的一些中,多个孔的每一个的体积可小于约100μl、约100μl至约200μl、约200μl至约400μl、约400μl至约600μl、约600μl至约800μl、约800μl至约1ml、约1ml至约10ml、约10ml至约20ml、约20ml至约40ml、约40ml至约60ml、约60ml至约80ml、约80ml至约100ml、或大于约100ml。在这些变化的一些中,多个孔的每一个的深度可为约1mm至约40mm。在这些变化的一些中,多个孔的每一个的深度可为约5mm至约15mm、约10mm至约20mm、约15mm至约25mm、约20mm至约30mm、约25mm至约35mm、约30mm至约40mm、或大于约40mm。

在这些变化的一些中,基底可为平面结构。在这些变化的一些中,基底可包括玻璃。在这些变化的一些中,基底可包括塑料。在这些变化的一些中,基底可包括硅。在这些变化的一些中,基底可包括陶瓷。在这些变化的一些中,基底可包括金属。在这些变化的一些中,基底可包括选自玻璃、塑料、硅、陶瓷、和金属的一种或多种材料的组合。在这些变化的一些中,基底可适于在固定位置保持靶剂。在这些变化的一些中,基底可用蛋白质涂布。在这些变化的一些中,基底可用水凝胶涂布。在这些变化的一些中,基底可用聚合物涂布。在这些变化的一些中,基底可固定有化合物。在这些变化的一些中,基底可固定有蛋白质。在这些变化的一些中,基底可固定有固定化细胞。在这些变化的一些中,基底可固定有微生物。在这些变化的一些中,基底可具有小于约13cm的最大尺寸。在这些变化的一些中,基底可具有约11cm至约15cm的最大尺寸、约7.5cm的最大尺寸、约1cm至约30cm的最大尺寸、约5cm至约25cm的最大尺寸、约10cm至约20cm的最大尺寸、或大于约30cm的最大尺寸。

在这些变化的一些中,靶剂可包括细胞。在这些变化的一些中,靶剂可包括蛋白质。在这些变化的一些中,靶剂可包括化合物。在这些变化的一些中,靶剂可包括聚合物。在这些变化的一些中,用于化学或生物学分析的试剂盒可进一步包括盖子。在这些变化的一些中,用于化学或生物学分析的试剂盒可被配置用于一次使用。

本文同样描述了用于化学或生物学分析的系统。通常,用于化学或生物学分析的系统可包括试剂装载装置和分离装置。在一些变化中,分离装置可为本文描述的多孔分离装置的任一种。在一些变化中,试剂装载装置可为本文描述的试剂装载装置的任一种。在一些变化中,试剂装载装置可包括多个突起部,其中每个突处部可包括杆和适于保持试剂的封闭尖端。在这些变化的一些中,多个突处部的每以个可被配置以配合在本文描述的多孔分离装置的任一种的多个孔的一个内。

本文同样描述了用于执行化学或生物学分析的方法。通常,用于执行化学或生物学分析的方法可包括将靶剂应用于基底;将第一分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和第一分离孔结构可形成第一多个孔,从而将靶剂分成第一多个亚群;和将第一多个测试剂应用于第一多个亚群,其中可分析第一多个测试剂对靶剂的效果。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的细胞悬浮液应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将细胞分成多个亚群;和将多个药物应用于多个亚群,和其中可分析多个药物对细胞的效果。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的细胞悬浮液应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将细胞分成多个亚群;和利用包括多个突起部的试剂装载装置同时将多个药物应用于多个亚群,其中可分析多个药物对细胞的效果。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的水凝胶应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将水凝胶分成多个亚群以及将细胞分成多个亚群;和将多个药物应用于多个亚群,其中可分析多个药物对细胞的效果。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的水凝胶应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将水凝胶分成多个亚群以及将细胞分成多个亚群;和同时地将多个药物应用于多个亚群,其中可分析多个药物对细胞的效果。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的细胞悬浮液应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将细胞分成多个亚群;使分离孔结构从基底去耦接;将药物应用于基底;使分离孔结构再次耦接至基底,从而将细胞再次分成多个亚群;将多个第一抗体应用于多个亚群;和将多个第二抗体应用于多个亚群。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的细胞悬浮液应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将细胞分成多个亚群;使分离孔结构从基底去耦接;将药物应用于基底;将分离孔结构再次耦接至基底;从而将细胞再次分成多个亚群;将多个第一抗体应用于多个亚群;将分离孔结构从基底去耦接;和将第二抗体应用于基底。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的细胞悬浮液应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将细胞分成多个亚群;将多个药物应用于多个亚群;将多个第一抗体应用于多个亚群;将分离孔结构从基底去耦接;和将第二抗体应用于基底。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括细胞的细胞悬浮液应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将细胞分成多个亚群;使分离孔结构从基底去耦接;将药物应用于基底;将分离孔结构再次耦接至基底,从而将细胞再次分成多个亚群,利用包括多个突起部的试剂装载装置同时将多个第一抗体应用于多个亚群,和利用包括多个突起部的试剂装载装置同时将多个第二抗体应用于多个亚群。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括药物的组合物应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将组合物分成多个亚群;和将细胞文库的一个应用于多个孔的每一个,其中可分析药物对细胞类型的效果。

在一些变化中,用于执行化学或生物学分析的方法可包括将包括药物的组合物应用于基底;将分离孔结构耦接至基底,其中分离孔结构可包括限定多个开口的多个壁,并且基底和分离孔结构可形成多个孔,从而将组合物分成多个亚群,和利用包括多个突起部的试剂装载装置同时将细胞文库的一个应用于多个孔的每一个,和其中可分析药物对细胞类型的效果。

在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括将第一分离孔结构从基底移除。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括用通用试剂处理靶剂。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括将第一分离孔结构再次耦接至基底。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括将第二分离孔结构耦接至基底,其中第二分离孔结构可包括限定多个开口的多个壁,并且其中基底和第二分离孔结构可形成第二多个孔,从而将所述靶剂分成第二多个亚群,其中第二多个亚群可与第一多个亚群不同;和将第二多个测试剂应用于第二多个亚群。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括将第二分离孔结构耦接至基底,其中第二分离孔结构可包括限定多个开口的多个壁,其中第二分离孔结构可被配置以配合在由第一分离孔结构限定的多个开口的一个内。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括将第二分离孔结构从基底移除。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括将第二分离孔结构再次耦接至基底。在这些变化的一些中,用于执行化学或生物学分析的方法可包括可逆地将基底耦接至分离孔结构以形成多个孔。

在这些变化的一些中,第一多个亚群可包括至少第一亚群和第二亚群,并且第一测试剂可被应用于第一亚群并且第二测试剂可被应用于第二亚群。在这些变化的一些中,可通过包括多个突起部的试剂装载装置应用第一多个测试剂,其中每一个突起部可包括杆和适于保持试剂的封闭尖端。在这些变化的一些中,多个突起部的每一个可被配置以配合在第一多个孔的一个内。在这些变化的一些中,用于执行化学或生物学分析的方法可进一步包括用第一多个测试剂装载试剂装载装置。在这些变化的一些中,可用第一多个测试剂预先装载试剂装载装置。

独立于上面所述的多孔分离装置,在另一方面,本发明提供试剂装载装置。在一些变化中,此处描述的多孔分离装置和本文描述的试剂装载装置可被使用或被配置以一起使用。在其它变化中,此处描述的多孔分离装置可被使用或被配置以独立于试剂装载装置使用。在还有其它的变化中,试剂装载装置可被使用或被配置以独立于多孔分离装置使用。

通常,试剂装载装置可包括多个突起部。在一些变化中,每一个突起部可包括杆和适于保持试剂的封闭尖端。在这些变化的一些中,每一个封闭尖端可装载有试剂。在这些变化的一些中,封闭尖端的至少两个可装载有不同试剂。在这些变化的一些中,封闭尖端的每一个可装载有不同试剂。在这些变化的一些中,多个突起部可被配置以振动。在一些变化中,试剂装载装置可包括多个突起部可附接的板。

在这些变化的一些中,多个突起部可包括塑料。在这些变化的一些中,多个突起部可包括硅。在这些变化的一些中,多个突起部可包括金属。在这些变化的一些中,多个突起部可包括聚合物。在这些变化的一些中,多个突起部的每一个可为至少约1mm长。在这些变化的一些中,多个突起部的每一个可为至少约5mm长。在这些变化的一些中,多个突起部的每一个可为至少约1cm长。在这些变化的一些中,突起部的长度可为约1mm至约2mm、约2mm至约4mm、约4mm至约6mm、约6mm至约8mm、约8mm至约1cm、约1cm至约2cm、约2cm至约4cm、约4cm至约6cm、或长于6cm。在这些变化的一些中,尖端的最大横截面尺寸可为约100微米。在这些变化的一些中,突起部的最大横截面尺寸可为约1μm至约10μm、约10μm至约100μm、约100μm至约1mm、约1mm至约5mm、约5mm至约1cm、约1cm至约2cm、或长于约2cm。

在这些变化的一些中,封闭尖端可具有方形横截面。在这些变化的一些中,封闭尖端可具有圆形横截面。在这些变化的一些中,封闭尖端可具有尖的形状。在这些变化的一些中,封闭尖端可包括凹陷。在这些变化的一些中,凹陷可以是线性的。在这些变化的一些中,封闭尖端可包括两个交叉线性凹陷。在这些变化的一些中,凹陷可为半球形。在这些变化的一些中,凹陷可为圆柱形。在这些变化的一些中,尖端可包括水凝胶或溶胶-凝胶。在这些变化的一些中,尖端可包括聚合物。在这些变化的一些中,尖端可包括塑料。在这些变化的一些中,尖端可大体上光滑。在这些变化的一些中,尖端可包括表面不平整。在这些变化的一些中,尖端可为可溶解的。在这些变化的一些中,多个突起部可被配置以振动。在这些变化的一些中,多个突起部的每以个可耦接至马达。在这些变化的一些中,多个突起部可耦接至马达。在这些变化的一些中,多个针的每一个可被配置以发射超声频率波。

在这些变化的一些中,试剂装载装置可进一步包括多个突起部可附接的板。在这些变化的一些中,板进一步可包括被配置以指示试剂装载装置的方向的指示器。在这些变化的一些中,指示器可进一步被配置以提供操作阵列的手柄,例如,箭头形状的手柄。

在这些变化的一些中,多个突起部的封闭尖端可通过遏制元件进行保护。在这些变化的一些中,遏制元件可包括被配置以隔离每个突起部的单独的孔。在这些变化的一些中,多个突起部的封闭尖端的每一个可被包围在多个盖子的一个中。在这些变化的一些中,试剂装载装置可包括延伸超过封闭尖端以保护封闭尖端不静止在平面上的腿。在这些变化的一些中,尖端的每一个可装载有试剂。在这些变化的一些中,试剂可为固体形式。在这些变化的一些中,试剂可为纯液体形式。在这些变化的一些中,试剂可为凝胶形式。在这些变化的一些中,试剂可为液体溶液。在这些变化的一些中,封闭尖端的每一个可能够装载至少约1pl的液体溶液。在这些变化的一些中,封闭尖端的每一个可能够装载至少约1nl的液体溶液。在这些变化的一些中,封闭尖端的每一个可能够装载至少约1μl的液体溶液。在这些变化的一些中,封闭尖端的每一个可能够装载约1pl至约10pl、约10pl至约100pl、约100pl至约1nl、约1nl至约10nl、约10nl至约100nl、约100nl至约1μl、约1μl至约10μl、或多于约10μl的液体溶液。在这些变化的一些中,封闭尖端的至少两个可预先装载有不同试剂。在这些变化的一些中,封闭尖端的每一个可预先装载有不同试剂。在这些变化的一些中,试剂可选自蛋白质、核酸、或化合物。在这些变化的一些中,试剂可选自细胞、微生物、或植物。

本文也描述了用于将试剂装载于试剂装载装置上的试剂盒。通常,用于将试剂装载于试剂装载装置上的试剂盒可包括多个突起部,其中多个突起部的每一个可具有适于保持试剂的封闭尖端、遏制元件、室、和至少一个盖子。在一些变化中,室可包括多个隔室。

本文也描述了将包括试剂的液体溶液装载至上述试剂装载装置的任一个的方法。通常,装载液体溶液的方法可包括在包括液体溶液的室中浸试剂装载装置,和提升试剂装载装置离开室。在一些变化中,室可包括多个隔室。在这些变化的一些中,多个隔室的至少两个可含有不同试剂。在这些变化的一些中,多个隔室的每一个可含有不同试剂。在这些变化的一些中,试剂可选自蛋白质、核酸、或化合物。在这些变化的一些中,试剂可选自细胞、微生物、或植物。在这些变化的一些中,装载液体溶液的方法可进一步包括用液体溶液装载室。在这些变化的一些中,装载液体溶液的方法可进一步包括将限定体积(definedvolume)的液体溶液应用至多个突起部的每一个的封闭尖端。在这些变化的一些中,多个突起部的至少两个可装载有包括不同试剂的液体溶液。在这些变化的一些中,多个突起部的每一个可装载有包括不同试剂的液体溶液。

本文还描述了将一种或多种试剂装载至基底上的多个隔离区域的方法。通常,装载一种或多种试剂的方法可包括用多个封闭尖端的一个接触多个隔离区域的每一个,和将多个封闭尖端从多个隔离区域移开。在一些变化中,多个封闭尖端可以阵列排列。在一些变化中,多个封闭尖端的每一个可装载有一种或多种试剂的一种。在这些变化的一些中,多个隔离区域可包括多个点。在这些变化的一些中,多个隔离区域可包括多个孔。在这些变化的一些中,多个隔离区域的每一个可含有靶剂。在这些变化的一些中,多个封闭尖端的至少两个可装载有不同的试剂。在这些变化的一些中,多个封闭尖端的每一个可装载有不同试剂。在这些变化的一些中,隔离区域的每一个可含有液体,并且装载一种或多种试剂的方法可进一步包括用多个突起部混合多个隔离区域的每一个中的液体。在这些变化的一些中,混合可包括搅动。在这些变化的一些中,混合可包括超声处理(sonication)。在这些变化的一些中,装载一种或多种试剂的方法可进一步包括在从多个隔离区域移开多个突起部后丢弃试剂装载装置。在这些变化的一些中,试剂装载装置可通过机器人装置进行操作。在这些变化的一些中,基底可通过机器人装置进行操作。

本文还描述了用于装载试剂的试剂盒,所述试剂盒包括包括多个突起部的试剂装载装置和多个突起部附接的板,其中每一个突起部包括杆和适于保持试剂的封闭尖端;和抗体文库。在一些变化中,抗体文库可被预先装载至试剂装载装置上。在一些变化中,试剂盒进一步包括接合器,其中接合器对应于试剂装载装置并且被配置以在多孔板周围配合。在这些变化的一些中,接合器可包括与试剂装载装置的槽口对应的楔(key)。在这些变化的一些中,当试剂装载装置被部分地装载至多孔板中时接合器可抵抗试剂装载装置的振动,但是当试剂装载装置被全部装载至多孔板中时可允许试剂装载装置振动。

附图简介

图1a是组装的多孔分离装置的一个实施方式的透视图。图1b是多孔分离装置的分解透视图。

图2a-2b分别是边界壁、基底、和基底支持物在耦接配置和去耦接配置的透视图。

图3是基底和基底支持物的透视图。

图4a-4b分别是基底支持物的透视图和侧视图。

图5是包括边界壁的多孔分离装置的容腔的透视图,所述边界壁固定地附接于基底。

图6a-6b是分离孔结构和分离密封的顶部和底部透视图。图6c是图6a-6b的分离孔结构和分离密封的侧视图。

图7a-7b是集中孔结构的透视图和顶部视图。

图8a-8b分别是集中孔结构的另一个实施方式的从顶部和侧面的特写视图。

图9是边界壁、集中孔结构、基底、和基底支持物的透视图。

图10a-10b分别是试剂递送装置的顶部和底部透视图。

图11是正在插入至图1a-1b的多孔分离装置的图10a-10b的试剂递送装置的透视图。

图12a-12h是试剂递送装置的突起部的封闭尖端的透视图。

图13是多孔分离装置的透视图。

图14a-14b是多孔分离装置的部分的透视图。

图15a-15b分别是具有处于第一配置和第二配置的分离孔卡扣的多孔分离装置的侧视图。

图16a-16b是多孔分离装置的不同实施方式的透视图,其中基底支持物和分离壁结构不可逆地耦接至边界壁。

图17a-17b分别是多孔分离装置处于第一配置和第二配置的侧视图,其中基底支持物通过铰链附接于边界壁。

图18是试剂递送装置的透视图。

图19a-19b分别是图18的试剂递送装置部分插入和全部插入至多孔分离装置中的透视图。

图20a是马达单元的透视图。图20b是具有图18的试剂递送装置的图20a的马达单元的透视图。图20c是分别具有图18的试剂递送装置和多孔分离装置的图20a的马达单元的透视图。

图21a是基底支持物和边界密封的透视图。图21b是与边界壁和基底耦接的图21a的基底支持物和边界密封的透视图。图21c是单独图21b的边界壁的底部透视图。图21d是图21b的边界壁和基底的底部透视图。

图22是多孔分离装置和接合器的透视图。

图23a和23b分别是对应于图22的多孔分离装置和接合器的试剂装载装置的透视图和顶部视图。

图24a-24b是试剂装载装置和多孔分离装置和接合器或单独接合器的部分的特写透视图。

图25a-25b是图22的试剂装载装置和接合器的部分的特写顶部视图,其中试剂装载装置被正确地定向(图25a)和不正确地定向(图25b)。

图26a-26b显示接合器的定向楔的实例。

图27显示另一个多孔分离装置和接合器的顶部视图。

图28a-28b分别是试剂装载装置相对于图27的组装的多孔分离装置和接合器在被降低前和完全降低的透视图。

图29是具有完整定向楔的另一个多孔分离装置的顶部视图。

图30a-30b分别是试剂装载装置相对于图29的多孔分离装置部分地降低和完全降低的透视图。

图31a显示96-孔板和接合器的透视图。图31b-31c显示被插入到图31a的板和接合器中的试剂装载装置的透视图。图31d显示被插入到板和接合器中的试剂装载装置的底部视图。

图32显示具有图22到25a-25b的试剂递送装置和多孔分离装置和接合器的另一个马达单元的透视图。

图33a-33b显示没有试剂递送装置和多孔分离装置和接合器的马达单元的透视图。

发明详述

本文描述的多孔分离装置允许包括靶剂的组合物被分离至多个孔中;被再分、重组至单一孔中;和/或被重新分离至相同或不同配置的孔中。这是通过具有——与目前具有固定壁的多孔板不同——分离壁结构的装置实现的,所述分离壁可从含有包括靶剂的组合物的容腔中可逆地移除。照此,装置可允许可逆地和重复地使体积分离和结合,而不需要通过移液器或类似物将组合物从一个孔转移至另一个孔。

本文描述的试剂装载装置允许一种或多种测试剂被同时递送至多个体积,而无需将一种或多种测试剂单独递送至多个体积的每一个。这是通过具有多个突起部的试剂装载装置实现的,每个所述突起部包括杆和适于保持试剂的封闭尖端。照此,封闭尖端均可在对应于多个体积所期望的递送配置的配置中装载有试剂。试剂装载装置可被配置以促进试剂与多个体积的混合,如通过配置以振动,和可包括被配置以保护装载于封闭尖端的试剂的遏制元件。

试剂装载装置可被配置以将测试剂同时递送至多孔分离装置的每一单独孔。共同地,这些装置允许高通量平行处理,而无需重复移取或液体处理机器人。但是,还应该理解,可单独使用该装置。本文也描述了用于化学或生物学分析的试剂盒和系统,以及使用本文描述的多孔分离装置和试剂装载装置的方法。

多孔分离装置

图1a示例了组装的多孔分离装置100的一个实施方式的透视图。图1b示例了多孔分离装置100的分解透视图。通常,多孔分离装置100可包括容腔450和可移除的分离孔结构602,所述可移除的分离孔结构602可在容腔450内配合。在容腔450中的组合物(例如,细胞悬浮液)可通过将分离孔结构602布置在容腔450内可逆地分离至不同孔中,如下面更详细的描述。通常,容腔450可由边界壁202和基底302形成,在一些变化中,其可通过基底支持物402耦接在一起以形成容腔450,或在其它变化中可固定地彼此附接或彼此成一体。这些元件的每一个将在下面更详细的描述。

边界壁

边界壁202可形成容腔450的侧面部分。在图2a和2b显示的变化中,边界壁202可包括四个正交部分——第一部分202a、第二部分202b、第三部分202c、和第四部分202d。这四个部分可限定矩形区域。在一些变化中,四个正交部分可以是一个整体组件。然而在其它变化中,四个正交部分可包括多于一个组件(例如,两个、三个、四个或更多),其可以任何合适方式附接(例如使用粘合剂(胶、粘合剂聚合物、和类似物)、焊接、机械固定件、化学结合、这些方法的组合、或类似方法)。

但是,应该理解,边界壁202不需限定矩形区域,并且此外,其不需要包括四个部分。在一些变化中,例如,边界壁202可限定任意多边形(例如,三角形、四边形(例如,平行四边形、梯形)、五边形、六边形等)。应该理解,边界壁202不需要是大体上平面的而是可以弯曲的以限定具有弯曲形状的区域(例如,圆形、椭圆形、卵形、环形、圆弓形等)。在一些变化中,边界壁202可包括少于四个部分(例如,一个、两个、或三个部分)或多于四个部分(例如,五个、六个、七个、八个、或更多个部分)。边界壁202也可限定多于一个区域。例如,在一些变化中,边界壁202可包括第五部分,其可附接到边界壁的相对部分(例如,在第一部分202a的第一端上和在第三部分202c的第二端上)。在此类变化中,边界壁202可限定两个矩形区域。

基底

基底302可形成容腔450的底部。因此,基底302可充当放置在容腔450内的组合物(例如,细胞悬浮液)的底部。在其中放置在容腔450内的组合物包括流体靶剂,如细胞的情况下,基底302可充当靶剂可沉降于其上的表面。一旦被沉降至基底302的近表面304上,基底302可适于在固定位置保持靶剂,如下面更详细的描述。在一些情况下,基底302可被配置以允许靶剂以大体上均一层位于基底302上。

如图3中所示,基底302可包括基本上平坦的表面。基底可包括任意适合的材料,诸如但不限于,玻璃、塑料、硅、陶瓷、金属、这些材料的组合、或类似材料。在一些变化中,基底可包括一块合适的通常可得的实验室设备,诸如但不限于载玻片或盖片。基底302的尺寸可与边界壁202适当地接合。即,基底302可具有与边界壁202的横截面形状大约相同尺寸的或比边界壁202的横截面形状大的横截面形状。在图3中所显示的变化中,基底302可包括具有与边界壁202相同的横截面形状的基本上平坦的矩形,以便基底302的外缘与边界壁202的外表面齐平(如图2a中所示)。

在一些变化中,基底可在其近表面上包括涂层。例如,基底可包括涂层,诸如但不限于,包括一种或多种化合物、蛋白质、凝胶(例如,水凝胶)、聚合物、共聚物、固定化细胞、微生物、导电表面、或类似物的涂层。作为一个实例,涂层可包括含有生长介质的凝胶(例如,琼脂凝胶)。在涂层包括凝胶的一些变化中,液体可被装载至容腔中并且随后被固化以聚合成为凝胶。在基底包括涂层的一些变化中,涂层可通过化学交联剂共价结合。例如,在基底包括玻璃或硅的变化中,基底可与硅烷共价结合,其反过来结合至包括一种或多种化合物、蛋白质、凝胶、或聚合物的涂层。在一些变化中,金属涂层可通过汽化进行沉积。在一些变化中,涂层图案可通过微细加工技术如微型印刷和摄影刻印产生。在一些变化中,涂层可提高基底在固定位置保持靶剂的适合性。在其它变化中,涂层可辅助检测、介电泳、迁移研究、趋化性(经孔之间的通道)。在一些变化中,基底可包括微流体或电极。

边界密封

多孔分离装置100可进一步包括边界密封204。当边界壁202和基底302耦接时,边界密封204可在边界壁202和基底302之间形成防漏密封(下面更详细的描述)。边界密封204可包括任意适合形成密封的材料,诸如但不限于,橡胶、塑料、或聚合物。边界密封204可包括此材料的细条,其具有对应于边界壁202的远侧206的形状。

在一些变化中,当边界壁202和基底302耦接时,边界密封204可位于边界壁202和基底302之间。在这些变化的一些中,边界密封204可被固定于边界壁202的远侧206。在这些变化中,边界密封204可以任何合适的方式固定于远侧206,所述合适的方式诸如但不限于,粘合剂(胶、粘合剂聚合物、和类似物)、化学结合、或类似方式。在这些变化中,边界密封204到边界壁202的远侧206的固定可在边界密封204和边界壁202之间生成防漏密封,同时在边界壁202和基底302之间的压缩力(如下所述)可将边界密封204和基底302压在一起,生成防漏密封。在其它变化中,边界密封202同样可以任何合适的方式被固定至基底302的近表面304。在这些变化中,边界密封204到基底302的近表面304的固定可在边界密封204和基底302之间生成防漏密封,同时在边界壁202和基底302之间的压缩力(如下所述)可将边界密封204和边界壁202压在一起,其可生成防漏密封。还在其它变化中,当边界壁202和基底302耦接时,边界密封204可不被固定至边界壁202或基底302,而是可代替地通过压缩力夹在边界壁202和基底302之间(下面更详细的描述)。还在其中边界壁202被固定地附接于基底302(下面更详细的描述)的其它变化中,边界密封204可被固定于基底302的近表面304和边界壁202的远侧206两者。

在其它变化中,边界密封可位于基底支持物和基底之间。此类变化的实例显示于图21a,其中边界密封2104可位于基底支持物2404的近侧上。在这些变化中,边界密封2104可被固定至基底支持物2404的近侧(例如,通过预先固定(pre-secured)或铸造),但未必如此。在这些其中边界密封2104位于基底支持物2404的近侧上的变化中,边界壁2202和基底2304可被放置在边界密封2014的顶部上,如图21b中所示。更具体地,边界壁2202(如图21c中的底部透视图所示)可包括沿着边界壁2202的每个部分的远边的凹陷区域2406。凹陷区域2406可被配置以保持基底2304,以便当基底2304被放置在凹陷区域2406中时,基底2304的远表面和边界壁2202的远表面是水平的(如图21d中的底部透视图所示)。如图21b中所示,当边界壁2202和基底2304被放置在边界密封2104和基底支持物2404上时,边界密封2104可通过边界壁和基底支持物耦接时它们之间的压缩力密封在基底2304和边界壁2202之间的任何空间(如下面更详细的描述)。在这些变化中,在基底支持物和基底之间(例如,基底的远端)——而不是基底和边界壁之间——的边界密封的位置可有助于在基底的近表面(例如,位于悬浮室中的表面)上更大的工作区域。

但是应该理解,本文描述的多孔分离装置不需包括边界密封。例如,在没有边界密封的情况下,如果边界壁和基底被配置以形成可以在其中适当地保持组合物(例如,细胞悬浮液)而没有泄露的容腔,则边界密封可为不必要的。例如,在其中边界壁被固定地附接于基底或与基底成一体的变化中,多孔分离装置可以不包括边界密封。作为另一个实例,在其中边界壁和基底不被固定地附接或不成一体但被配置以形成防漏密封的变化中,多孔分离装置可不包括边界密封。这可能是这样的情况,例如,如果边界壁包含材料如橡胶、塑料、或聚合物,其能够与基底的材料形成密封。在这些情况下,将边界壁和基底压在一起的压缩力可在边界壁和基底之间直接生成防漏密封。还在其它变化中,如果意图容腔保持凝胶、固体、或类似物——其可以不需要紧密的密封以防止泄露,则边界密封可为不必要的。

基底支持物

基底302可通过基底支持物402与边界壁202耦接,其在图3中与基底302一起以及在图4a中单独图解说明。基底支持物也可被配置以将分离孔结构602耦接至边界壁202,如下面更详细的描述。基底支持物402可具有任何适于耦接边界壁202和基底302的设计。在一些变化中,基底支持物402可以可逆地耦接边界壁202和基底302;在其它变化中,基底支持物302可以不可逆地耦接边界壁202和基底302。

为了耦接基底302和边界壁202,基底支持物可包括被配置以在基底302上施加近端力的第一部分,和被配置以在边界壁202上施加远端力的第二部分,从而生成将边界壁202和基底302压向彼此的压缩力。在图4a-4b中所示的实施方式中,基底支持物402可包括被配置以在基底上施加近端力的框架404。框架404的配置可为这样的,其对应于边界壁202的配置;即,框架404的横截面形状可与边界壁202的横截面形状基本上相同,以便基底支持物402可与边界壁202耦接。框架404可包括四个正交部分——第一部分404a、第二部分404b、第三部分404c、和第四部分404d。这四个部分可限定具有与由上面所述边界壁202的四个部分所限定的矩形区域相同的横截面的矩形区域。应该理解,为了与边界壁202的配置相对应,基底支持物402可具有更多或更少的部分(例如一个、两个、三个、五个、六个、七个、八个或更多个),如上所述的相对于边界壁202,所述部分不需要彼此正交,并且所述部分不需要是直的并且可以是弯曲的。

框架404可包括被配置以与基底302接合的部件,所述部件可帮助基底支持物402保持基底302。如中图4a所示,在一些变化中,此部件可包括沿着框架404的每个部分的凹陷区域406。凹陷区域406可限定在框架的外缘周围的凸缘(lip)414。此凸缘414可帮助通过阻止基底302相对于框架404的横向移动将基底302保持在框架404内。

在一些变化中,基底支持物402的第二部分——被配置以在边界壁202上施加远端力——可包括边界壁卡扣408。边界壁卡扣408可被配置以通过与部分边界壁202接合将基底支持物402和边界壁202耦接。在图3和4a-4b中所显示的变化中,边界壁卡扣408可包括细长部分410和接头412。细长部分410可从框架404近侧延伸并且可具有大体上平坦的形状,而接头412可位于细长部分410的近端并且可具有面向外的三角形状,如图4b中所示。

边界壁卡扣408可被配置以与部分边界壁202接合。如图2a-2b中所示,边界壁202可包括两个锁条(lockingstrip)208。锁条208可包括基底支持物锁210和分离孔锁212两者。锁条208可自边界壁202a的第一部分的外表面和自边界壁202c的第三部分侧向延伸。在一些变化中,锁条可与边界壁202成一体,或在其它变化中,它们可以任何合适的方式附接于边界壁202。在所示的实施方式中,基底支持物锁210和分离孔锁212可包括在边界壁202和锁条208之间形成的开口,其被配置以分别与基底支持物402和分离孔结构602接合。更具体地,边界壁卡扣408的细长部分410可在边界壁202和锁条208之间的基底支持物锁210的开口中配合,同时边界壁卡扣408的接头412可钩在锁条208的近表面上,如图2a中所示。接头412的远表面414(参见图4b)和锁条208的近表面之间的接合可抵抗基底支持物402相对于边界壁202的远端移动,从而其可将边界壁202和基底支持物402耦接在一起。反过来,在那些具有边界密封204的变化中,除了将边界密封204夹在边界壁202和基底302之间,还可将基底302夹在边界壁202和基底支持物402之间。

虽然所示的接头412具有三角形状,但是应该理解,接头412可具有其它适合的形状。此外,虽然图3和4a-4b中所示的变化包括四个边界壁卡扣408(在边界壁202的相对侧各两个),但是应该理解,基底支持物402可具有任何适合数目的边界壁卡扣408(例如,一个、两个、三个、四个、五个、六个、七个、八个、或更多),并且边界壁202可具有任何适合数目的相应基底支持物锁210。同样应该理解,基底支持物402上的边界壁卡扣408的数目不需要与边界壁202上的基底支持物锁210的数目相匹配,条件是该配置使得基底支持物402可与边界壁202耦接。同样应该理解,边界壁卡扣408(和锁条208上的相应基底支持物锁210)在基底支持物402的框架404上可具有不同的布置。

应该理解,基底支持物可具有其它设计。该设计应该能够在边界壁和基底之间产生充足的压缩力以生成容腔的防漏密封。具有边界壁1302、基底支持物1304、和分离孔结构1306的多孔分离装置1300的另一个实施方式如图13中所示。基底支持物1304可包括被配置以在基底上施加近端力的框架1308。框架1308的配置可为这样的,其对应于边界壁1302的配置;即,框架1308的横截面形状可与边界壁1302(其可具有与如上详细描述的多孔分离装置100的边界壁202相似的特征)的横截面形状大体上相同,以便基底支持物1304可与边界壁1302耦接。框架1308可具有与如上详细描述的多孔分离装置100的框架404相似的设计,包括被配置以与基底接合的其组件部分和/或部件。

如同以上所述的基底支持物402,基底支持物1304可包括被配置以在边界壁1302上施加远端力的部分,在一些变化中,其可包括边界壁卡扣1310。边界壁卡扣1310可被配置以通过与部分边界壁1302接合将基底支持物1304和边界壁1302耦接。在图13中所显示的变化中,边界壁卡扣1310可具有t型形状,其包括垂直部分1312和水平部分1314。垂直部分1312可从框架1308的近侧延伸并且可具有大体上平坦的形状。水平部分1314可位于垂直部分1314的近端并且可具有大体上平坦的形状,向外延伸越过垂直部分1312的侧向边缘。

边界壁卡扣1310可被配置以与部分边界壁1302接合。边界壁1302可包括对应于每一个边界壁卡扣1310的基底支持物锁1316。如图13中所示,基底支持物锁1316可各自包括两个突出部(projection)1318。两个突出部1318可具有从边界壁1302向外延伸的三角形状,其中三角形状定向以便突出部在突出部的远端最小并且在突出部的近端最大。两个突出部1318可被间隔开一定距离,所述距离大于边界壁卡扣1310的垂直部分1312的宽度,但小于边界壁卡扣1310的水平部分1314的宽度。照此,两个突出部1318均可形成近水平表面1320,所述近水平表面1320被配置以与边界壁卡扣1310的水平部分1314的远水平表面接合。如上关于多孔分离装置100的更详细描述的,在那些具有边界密封的变化中,除了将边界密封夹在边界壁1302和基底之间,突出部1318的近水平表面1320和边界壁卡扣1310的水平部分1314的远水平表面之间的接合还可抵抗基底支持物1304相对于边界壁1302的远端移动。边界壁卡扣1310的垂直部分1312可被配置以能够向外弯曲,从而允许基底支持物1304附接于边界壁1302,如下面更详细描述的。

虽然图13中所示的变化包括四个边界壁卡扣1310(在边界壁1302的相对侧各两个),但是应该理解,基底支持物1304可具有任何合适数目的边界壁卡扣1301(例如一个、两个、三个、四个、五个、六个、七个、八个、或更多),并且边界壁1302可具有任何适合数目的相应基底支持物锁1316。同样应该理解,基底支持物1304上的边界壁卡扣1310的数目不需要与边界壁1302上的基底支持物锁1316的数目相匹配,条件是该配置使得基底支持物1304可与边界壁1302耦接。同样应该理解,边界壁卡扣1310(和边界壁1302上的相应基底支持物锁1316)可在基底支持物1304的框架1308上具有不同的布置。

在图3和4a-4b和图13中所示的变化中,基底支持物可以可逆地将边界壁和基底耦接。但是应该理解,在其它变化中,基底支持物可以不可逆地将边界壁和基底耦接。即,一旦基底支持物将边界壁和基底耦接,它们可抵抗去耦接(即,在不损害部件的结构完整性的情况下可不能去耦接)。在一个此类变化中,可需要将所有或部分的边界壁卡扣分离(brokenoff)以便将基底支持物和边界壁(boundary)去耦接,其可导致不可逆的去耦接。图16a显示此类变化,其中基底支持物1602不可逆地将边界壁1604耦接至基底1606。边界壁卡扣1608可被配置以与以上关于图13所述的方式相似的方式与边界壁1604接合。边界壁1604可具有与图13的边界壁1302相似的部件。即,边界壁1604可包括对应于每个边界壁卡扣1608的基底支持物锁1616。如图16a中所示,基底支持物锁1616均可包括两个突出部1618。两个突出部1618可具有从边界壁1604向外延伸的三角形状,其中三角形状定向以便突出部在突出部的远端最小并且在突出部的近端最大。

边界壁卡扣1608可包括细长部分1610和弯曲部分1612,在细长部分1610和弯曲部分1612之间具有水平部分1614,并且具有的宽度比细长部分1610或弯曲部分1612更大。基底支持物锁1616的两个突出部1618可被间隔开一定距离,所述距离大于边界壁卡扣1608的细长部分1610的宽度,但小于边界壁卡扣1608的水平部分1614的宽度。照此,两个突出部1618均可形成近水平表面,其被配置以与边界壁卡扣1608的水平部分1614的远水平表面接合。在那些具有边界密封的变化中,除了将边界密封夹在边界壁1604和基底之间、或夹在基底和基底支持物1602之间,突出部1618的近水平表面和边界壁卡扣1608的水平部分1614的远水平表面之间的接合可抵抗基底支持物1602相对于边界壁1604的远端移动。一旦边界壁卡扣1608与边界壁1604接合,弯曲部分1612必须被折断以便边界壁1604从基底1606移除。照此,在弯曲部分1612被折断后,边界壁卡扣1608不再能够将边界壁1604耦接至基底1606。从而,边界壁1604和基底支持物1602仅可不可逆地去耦接。

图16b显示另一个此类变化,其中基底支持物1652不可逆地将边界壁1654耦接至基底1656。边界壁卡扣1658可被配置以与上述关于图13所描述的方式相似的方式与边界壁1654接合。边界壁1654可具有与图16a的边界壁1604相似的特征。即,边界壁1654可包括对应于每个边界壁卡扣1658的基底支持物锁1666。如图16b中所示,基底支持物锁1666均可包括两个突出部1668。两个突出部1668可具有从边界壁1654向外延伸的三角形状,其中三角形状定向以便突出部在突出部的远端最小并且在突出部的近端最大,或突出部1668可具有其它形状,如矩形形状。

边界壁卡扣1658可包括细长部分1660和垂直部分1662,在细长部分1660和垂直部分1662之间具有水平部分1664,具有的宽度比细长部分1660或垂直部分1662更大。垂直部分1662可垂直于细长部分1660,并且当边界壁1654与基底支持物1652耦接时,垂直部分1662可从边界壁1654垂直地向外延伸。基底支持物锁1666的两个突出部1668可被间隔开一定距离,所述距离大于边界壁卡扣1658的细长部分1660的宽度,但小于边界壁卡扣1658的水平部分1664的宽度。照此,两个突出部1668均可形成近水平表面,其被配置以与边界壁卡扣1658的水平部分1664的远水平表面接合。在那些具有边界密封的变化中,除了将边界密封夹在边界壁1654和基底之间,或夹在基底和基底支持物1652之间,突出部1668的近水平表面和边界壁卡扣1658的水平部分1664的远水平表面之间的接合可抵抗基底支持物1652相对于边界壁1654的远端移动。一旦边界壁卡扣1658与边界壁1654接合,垂直部分1662必须被折断以便边界壁1654从基底1656移除。照此,在垂直部分1662被折断以后,边界壁卡扣1658不再能够将边界壁1654耦接至基底1656。从而,边界壁1654和基底支持物1652仅可以不可逆地去耦接。在图16a-16b中所示的变化中,分离孔结构也可利用与图16a-16b中边界壁卡扣和锁具有相似结构的分离孔卡扣和锁不可逆地耦接至边界壁,其中在分离孔卡扣已被耦接至边界壁后,部分分离孔卡扣必须被移除以便将分离孔结构去耦接。

在其它的变化中,基底支持物可通过铰链附接于边界壁。铰链可将基底支持物的一个侧面的近表面连接至边界壁的相应侧面的远表面。为了形成容腔,基底支持物和边界壁可围绕铰链相对于彼此转动,以使侧面相对于彼此与铰链相对。随后,与铰链相对的侧面可被耦接,例如利用与以上描述的那些相似的卡扣和锁。在基底支持物被耦接至边界壁之前,基底可被放置在基底支持物和边界壁之间以将其夹在基底支持物和边界壁之间。图17a-17b显示具有与图16a的基底支持物1602的边界壁卡扣1608相似的边界壁卡扣1708的此类变化的实例。如所示,基底支持物1702可通过铰链1714附接于边界壁1704的一个侧面。基底支持物1702可围绕铰链1714从第一位置(图17a)转动至第二位置(图17b),以将基底夹在基底支持物1702和边界壁1704之间。

虽然图1-4中所示的多孔分离装置100的实施方式具有与基底302分离的边界壁202,但是在多孔分离装置的其它实施方式中,边界壁可不与基底分离。在这些变化的一些中,边界壁可被固定地附接于基底;在这些变化的其它中,边界壁可与基底成一体。例如,图5示例包括被固定地附接于基底506的边界壁504的多孔分离装置500的容腔502。即,在图5的实施方式,边界壁504与基底506结合,而不是通过基底支持物或类似物而耦接。边界壁504可直接或间接地与基底506结合。在其中边界壁504间接地与基底结合的变化中,边界壁的远侧508可与边界密封结合(未显示),其反过来可与基底506结合。在其中边界壁504直接与基底506结合的变化中,多孔分离装置500不需要包括边界密封。在其中边界壁504直接地与基底506结合的变化中,边界壁504可以任何合适的方式被结合,上述方式诸如但不限于将边界壁504的远侧与基底506的近侧粘接的粘合剂环(例如,硅酮胶)或可以与基底302结合的边界壁504上的铸造聚合物材料(例如,硬橡胶)。在其它变化中,边界壁可与基底成一体。即,边界壁和基底可由相同材料一体地形成,所述相同材料诸如但不限于聚丙烯酸、聚氨酯、或聚碳酸酯材料、或类似材料。

容腔

返回图1-4的多孔分离装置100的实施方式,当耦接时,基底302和边界壁202可形成容腔450。容腔450可提供被配置以保持组合物,如细胞悬浮液、凝胶、预凝胶溶液(其可随后固化为聚合凝胶)、粉末、或类似物的区域。应该理解,如上所述,通过在边界壁被固定地附接于基底或与基底成一体的实施方式中的边界壁和基底可形成相似的容腔,如通过以上所述和图5中所示的边界壁504和基底302形成的容腔502。

虽然图2a显示耦接的边界壁202和基底302形成一个成一体的容腔450,但是在其它变化中,耦接的边界壁和基底可形成具有多于一个区域的容腔。例如,在其中边界壁包括第五部分的上述变化中,所述第五部分可被附接于边界壁的相对部分(例如,在第一部分202a的第一端上和在第三部分202c的第二端上),容腔可包括两个矩形区域。这两个区域可通过边界壁分开,以便位于一个区域的组合物将不能够行进到另一个区域。

容腔450——和相应地形成它的组件——可具有任何适合的尺寸。在一些变化中,多孔分离装置100可被配置以使用标准载玻片作为基底302,并且因此,基底302、边界壁202、和基底支持物402的长度和宽度可分别为约75mm×25mm。在其它变化中,多孔分离装置100可被配置以接近标准的96-孔板,并且因此,基底302、边界壁202、和基底支持物402的长度和宽度的最大尺寸可小于约13cm,或约130mm×85mm。在一些变化中,容腔450的深度(并且因此边界壁202的近似高度)可为约1mm、约3mm、约5mm、约7mm、约9mm、约11mm、约13mm、约15mm、约17mm、约19mm、约25mm、约30mm、约35mm、约40mm、或大于约40mm。

分离孔结构

如上简要所述,多孔分离装置100可包括可被放置在容腔450内的分离孔结构602。图6a示例被配置以位于容腔450内的此类分离孔结构602。当分离孔结构602被放置在容腔450中时,所述分离孔结构602可将容腔450中的组合物(例如,细胞悬浮液)划分至分离的区域中。相比将组合物划分至分离的区域中的传统方式(如单独地移至单独孔中,与将组合物一次性转移至容腔中相对,其可需要重复转移组合物),这种将组合物划分至分离区域的方式可更简便和/或更有效。一旦内容物被划分至分离的区域中,其可允许分离的区域经受不同处理(例如,将不同试剂引入至每个区域中),如下面更详细的描述。此外,分离孔结构也可从容腔移除,其可允许分离的区域的内容物批量改变。当期望对分离的区域的每一个执行相同的处理(例如,清洗步骤)时,其与对分离的区域的每一个单独地执行处理相比更简便和更加有效。

如图6a中所示,分离孔结构602可包括多个分离壁604。在一些变化中,分离壁604可包括两组正交的平行壁并且可形成网格状或格子状结构,以便它们形成被分离壁604分离的开口606阵列或矩阵。当分离孔结构602在容腔450中耦接时,其可将容腔450分离成多个分离孔610。分离壁604可形成分离孔610的侧壁,同时基底302可形成分离孔610的底部。容腔450的内容物可被分离和划分至分离孔610中。分离孔结构602可包括任意适合的材料或材料,诸如但不限于橡胶、塑料、硅、陶瓷、金属、聚合物、玻璃、或类似材料。

虽然在图6a的变化中,分离壁604具有与边界壁202近似相同的高度(例如,在一些变化中,约1mm、约3mm、约5mm、约7mm、约9mm、约11mm、约13mm、约15mm、约17mm、约19mm、约25mm、约30mm、约35mm、约40mm、或更大),但是应该理解,分离壁604可具有小于边界壁202的高度,只要当分离壁604在腔中耦接时,分离壁604的高度(也就是分离孔的深度)大于容腔450中的组合物的深度,以便防止组合物在分离孔610之间越过分离壁604流动。同样应该理解,分离壁604可具有比边界壁202更大的高度。类似地,虽然在图6a-6b的变化中,分离孔结构602大体上充满容腔450(即,分离孔结构602的横截面尺寸大体上与容腔450的横截面尺寸相同),但是分离孔结构不需要充满容腔450。例如,分离孔结构602可具有比容腔450更小的横截面积,并且因此仅可将部分悬浮室(suspensionchamber)450再分成分离孔610。

开口606可具有任何适合的横截面积。在一些变化中,开口的横截面的最大尺寸可为约1μm至约20μm、约20μm至约40μm、约40μm至约60μm、约60μm至约80μm、约80μm至约100μm、约100μm至约200μm、约200μm至约400μm、约400μm至约600μm、约600μm至约800μm、约800μm至约1mm、约1mm至约2mm、约2mm至约4mm、约4mm至约6mm、约6mm至约8mm、约8mm至约1cm、大于约1cm、约1μm至约1cm、约100μm至约1mm、或约1mm至约1cm。但是,应该认识到,在一些变化中,为了对抗毛细管效应,可能期望开口606的高度和横截面积之间的比为特定值。所得分离孔610可具有任何适合的体积,诸如但不限于,小于约100μl、约100μl至约200μl、约200μl至约400μl、约400μl至约600μl、约600μl至约800μl、约800μl至约1ml、约1ml至约10ml、约10ml至约20ml、约20ml至约40ml、约40ml至约60ml、约60ml至约80ml、约80ml至约100ml、多于约100ml、约100μl至约100ml、或约1ml至约10ml。

虽然图6a-6b中所示的开口606具有正方形横截面形状,但是开口606可具有任何合适的形状,诸如但不限于三角形、矩形、任何其它四边形(平行四边形、梯形等)、五边形、六边形等的形状、任何圆形形状(圆形、椭圆形、卵形等)、或不规则形状。此外,虽然所示的开口606具有相等的横截面大小,但是应该理解,开口606不需要具有相同的大小或形状。而且,遍及开口606的开口横截面不需要相同。例如,在一些变化中,每一个开口606在其近端的横截面积可大于在其远端的横截面积;在其它变化中,每一个开口在其远端的横截面积可大于在其近端的横截面积。应该理解,在这些情况下,分离壁604的厚度可相应地改变以生成可变的横截面积(例如,对于前面的实例,分离壁604在远端的厚度可大于在近端的厚度,和对于后面的实例,在近端的厚度可大于在远端的厚度)。

在图6a-6b中所示的实施方式中,分离孔结构602可限定64个开口606,并且因此当在容腔450内耦接时,分离孔结构602可将容腔450分成64个分离孔610。但是,应该理解,分离孔结构602可限定任何数量的开口606,并且因此当与容腔450耦接时,分离孔结构602可将容腔450分成任何数量的分离孔610。例如,分离孔结构602可限定至少约6个、至少约12个、至少约24个、至少约48个、至少约96个、至少约384个、至少约480个、至少约1536个、至少约3456个、或更多个开口606,并且因此当与容腔450耦接时,可将容腔450分成至少约6个、至少约12个、至少约24个、至少约48个、至少约96个、至少约384个、至少约480个、至少约1536个、至少约3456个、或更多个分离孔610。应该理解,开口606和分离孔610的数目不应被此处列出的数目所限制。虽然在一些变化中,分离孔结构602可限定标准微量滴定实验室板中发现的开口606的数目,但是在其它变化中分离孔结构602可限定开口606的非标准数目,其可以或可以不是矩形数。

在一些变化中,可能期望将所给的横截面积(例如,容腔450的横截面积)中的分离孔610的数目最大化。为此,可能期望将分离壁604的厚度最小化。在一些变化中,分离壁的厚度可为约50μm至约2000μm。在这些变化的一些中,分离壁的厚度可为约200μm至约1800μm。在这些变化的一些中,分离壁的厚度可为约400μm至约1600μm。在这些变化的一些中,分离壁的厚度可为约600μm至约1400μm。在这些变化的一些中,分离壁的厚度可为约800μm至约1400μm。在这些变化的一些中,分离壁的厚度可为约1000μm至约1200μm。

多孔分离装置100可进一步包括第二分离孔结构。第二分离孔结构可被配置以在第一分离孔结构602的开口606的一个内配合。因此,第二分离孔结构可进一步将分离孔610再分成多个更小的分离孔,其中这些更小的分离孔的每一个具有小于由第一分离孔结构602生成的分离孔610的体积的体积。第二分离孔结构可具有与第一分离孔结构602相似的设计和功能,如上详细描述的,并且包括如下面详细所述的分离密封。第二分离孔结构可以任何合适的方式与多孔分离装置100的剩余部分耦接,所述方式诸如但不限于,通过连接至第一分离孔结构602或连接至边界壁202的卡扣、摩擦配合、或类似方式。应该理解,多孔分离装置100可进一步包括额外的分离孔结构,如第三、第四、第五等。

同样应该领会到,在一些变化中,本文所述的悬浮腔(suspensioncavity)可在没有分离孔结构的情况下被使用。例如,容腔可被用于保持凝胶或固体组合物,和如本文所述的试剂装载装置可被用于将一种或多种试剂或测试剂沉积在凝胶或固体组合物之上或沉积至凝胶或固体组合物中。凝胶或固体组合物可充分地使试剂或测试剂的迁移或扩散最小化,以便可不需要分离孔结构。另一方面,在某些情况下,当容腔被用于保持凝胶或固体组合物时,仍可使用分离孔结构。分离孔结构可被插入至液体组合物中,随后所述液体组合物可固化,以便每个分离孔的内容物被聚合成凝胶、或当组合物处于凝胶形式时可插入分离孔结构。在其中当组合物处于凝胶形式时插入分离孔结构一些情况下,分离孔结构的远端可包括尖锐的尖端以帮助促进凝胶分开至每个分离孔中。在某些情况下,分离孔结构可被配置以被部分地插入至凝胶中(即,以便凝胶的近端部分被分在单个分离孔中,但是凝胶的远端部分保持连续)。在其它情况下,分离孔结构可被配置插入以便远表面靠在凝胶或固体组合物的近表面上。

分离密封

多孔分离装置100可进一步包括分离密封608。当分离孔结构602和基底302被耦接时,分离密封608可在每个分离孔610的远端生成防漏密封。这可允许每个分离孔610成为隔离区域,以便其可经历与其相邻分离孔610不同的过程或处理,如下面更详细的描述。如图6a-6c中所示,当分离孔结构602和基底302被耦接时,分离密封608可位于分离孔结构602的分离壁604的远表面和基底302的近表面304之间。当分离孔结构602和基底302被耦接时,当分离密封608被压至基底302时,分离密封608可盖住每个分离孔610的底部边缘和可为每个分离孔610提供密封。分离密封608可包括任意适合的材料用于形成密封,诸如但不限于,橡胶、塑料、或聚合物。

在图6a-6c中所显示的变化中,分离密封608可与分离孔结构602的分离壁604的远表面耦接。分离密封608可以任何合适的方式附接于分离孔结构602,所述方式诸如但不限于,粘合剂(胶、粘合剂聚合物、和类似物)、化学结合、或类似方式。但是应该理解,在其它变化中,分离密封608可附接于基底302的近表面304。还在其它变化中,分离密封608可附接于边界壁202。在一些此类的变化中,分离密封608可与边界密封204成一体,或其可附接于边界密封204。

还应该理解,多孔分离装置不需要包括分离密封。在没有分离密封的情况下,如果分离孔结构和基底被配置以形成可以适当地将组合物(例如,细胞悬浮液)保持在其中而无泄漏的分离孔,则分离密封可不是必需的。例如,这可能是这样的情况,分离密封包括橡胶、塑料、或聚合物这样的材料以便可以能够与基底的材料形成密封。在这些情况下,将分离孔结构和基底压在一起的压缩力可在分离孔结构和基底之间直接生成防漏密封,而不需要中间的分离密封。作为另一个实例,在其中其包括集中孔结构的一些(但不是全部)变化中,多孔分离装置可不包括分离密封,如下面更详细的描述。作为另一个实例,在其中多孔分离装置被配置以保持凝胶或固体组合物的一些变化中,多孔分离装置可不包括分离密封。但是,在这些变化的一些中,分离孔结构的远端边缘可为薄的、尖的、斜的、或类似的以便帮助分离孔结构完全或部分地切过凝胶或固体组合物。

分离孔结构附件

如上所述,分离孔结构602可被配置在容腔450中耦接。分离孔结构602和容腔450可被配置以便当耦接时,在形成防漏分离孔610的分离孔结构602和基底302之间存在充分的压缩压力。在一些变化中,分离孔结构602可被配置以在容腔450中通过边界壁202进行耦接。在图6a-6c中所示的实施方式中,分离孔结构602可包括被配置以与边界壁202耦接的分离孔卡扣614。分离孔卡扣614可包括横向部分622、细长部分616、和接头618。横向部分622可附接在分离孔结构602的近表面的一端上并且远离分离孔结构602横向延伸。细长部分616可远离横向部分622延伸并且可具有大体上平坦的形状,同时接头618可位于细长部分616的远端并且可具有面向外的三角形状,如图6c中所示。

分离孔卡扣614可被配置以与部分边界壁202接合。如上参考图2a-2b所述,边界壁202可包括两个锁条208,其可包括分离孔锁212。分离孔锁212可包括在边界壁202和锁条208之间形成的开口,其被配置以与分离孔结构602的分离孔卡扣614接合。分离孔卡扣614的细长部分616可在边界壁202和锁条208之间的分离孔锁212的开口中配合,同时分离孔卡扣614的接头618可钩在锁条208的远表面上,如图1a中所示。接头618的近表面620(参见图6c)和锁条208的远表面之间的接合可抵抗分离孔结构602相对于边界壁202(和反过来耦接的基底支持物402和基底302)的近端移动。来自锁条208的远表面、在接头618的近表面620上的远端压力可在分离孔结构602和基底302之间产生压缩压力,将边界壁202和分离孔结构602耦接在一起并且将两者压在一起以形成防漏分离孔610(与分离密封608和/或集中孔结构702组合,以下更详细地描述)。

虽然图6a-6c显示的变化包括六个分离孔卡扣614,但是应该理解,分离孔结构602可具有任何适合数目的分离孔卡扣614(例如,一个、两个、三个、四个、五个、六个、七个、八个、或更多),并且边界壁202可具有任何合适数目的相应分离孔锁212。同样应该理解,分离孔结构602上的分离孔卡扣614的数目不需要匹配边界壁202上的分离孔锁212的数目,条件是该配置使分离孔结构602可与边界壁202耦接。同样应该理解,分离孔卡扣614(和边界壁202上的相应分离孔锁212)可在分离孔结构602上具有不同的布置。

同样应该领会到,分离孔结构可通过具有其它设计的分离孔卡扣与边界壁耦接。分离孔结构1306的另一个实施方式显示在图13中。分离孔结构1306可包括被配置以与边界壁1302耦接的分离孔卡扣1322。分离孔卡扣1322可具有t型形状,包括垂直部分1324和水平部分1326。垂直部分1324可具有大体上平坦的形状。水平部分1326可位于垂直部分1324的近端并且可具有大体上平坦的形状,向外延伸超越垂直部分1324的横向边缘。垂直部分1324的近端可通过横向延长器1328附接于分离孔结构1306,所述横向延长器1328可在第一端(外部)上附接于垂直部分1324和在第二端(内部)附接于分离孔结构1306的侧壁的外部。在其它变化中,第二端可附接于的分离孔结构1306近表面。

分离孔卡扣1322可被配置以与部分边界壁1302接合。边界壁1302可包括分离孔锁1330。如图13中所示,分离孔锁1330均可包括两个突出部1332。两个突出部1332可具有自边界壁1302向外延伸的三角形状,其中三角形状定向以便突出部在突出部的远端最小并且在突出部的近端最大。两个突出部1332可被间隔开一定距离,所述距离大于分离孔卡扣1322的垂直部分1324的宽度,但小于分离孔卡扣1322的水平部分1324的宽度。照此,两个突出部1332均可形成被配置以与分离孔卡扣1322的水平部分1326的近水平表面接合的远水平表面。突出部1332的远水平表面和分离孔卡扣1322的水平部分1326的近水平表面之间的接合可抵抗分离孔结构1306相对于边界壁1302(和反过来耦接的基底支持物1304和基底)的近端移动。来自分离孔锁1330的分离孔卡扣1322的水平部分1326的近表面上的远端压力可在分离孔结构1306和基底之间产生压缩压力,将边界壁1302和分离孔结构1306耦接在一起并且将两者压在一起以形成防漏分离孔(与分离密封和/或集中孔结构组合,以下更详细地描述)。

虽然图13中显示的变化包括六个分离孔卡扣1322,但是应该理解,分离孔结构1306可具有任何适合数目的分离孔卡扣1322(例如,一个、两个、三个、四个、五个、六个、七个、八个、或更多),和边界壁1302可具有任何适合数目的相应分离孔锁1330。同样应该理解,分离孔锁1330的数目不需要与边界壁1302上的分离孔锁1330的数目匹配,条件是该配置使分离孔结构1306可与边界壁1302耦接。同样应该理解,分离孔卡扣1322(和边界壁1302上的相应分离孔锁1316)可在分离孔结构1306上具有不同的布置。

分离孔卡扣设计的还另一个实施方式显示在图14a-14b中。显示存在分离孔结构1402,其可包括被配置以与边界壁1406耦接的分离孔卡扣1404。分离孔卡扣1404可包括水平部分1408和垂直部分1410,其均可具有大体上平坦的形状。水平部分1408可在第一(内部)端上附接于分离孔结构1402侧壁外部并且在第二(外部)端附接于垂直部分1410的内部端。在其它变化中,第一(内部)端可附接于分离孔结构1402的近表面。水平部分1408和垂直部分1410之间的附接关节可为可枢转的或可转动的,以便分离孔卡扣1404可以能够从第一位置移动至第二位置,其中所述第一位置水平部分1408和垂直部分1410可为平行的(如图14a中所示),其中所述第二位置水平部分1408和垂直部分1410可为正交的(如图14b中所示)。当分离孔卡扣1404处于第一位置时,水平部分1408和垂直部分1410两者可大体上垂直于边界壁1406。当分离孔卡扣1404处于第二位置,水平部分1408可大体上垂直于边界壁1406,并且垂直部分1410可大体上平行于边界壁1406。

分离孔卡扣1404可被配置以与部分边界壁1406接合。边界壁1406可包括分离孔锁1412。在一些变化中,分离孔锁1412可被配置以在接合时保持分离孔卡扣1404处于第二位置。如图14a-14b中所示,分离孔锁1412均可包括第一突出部1414和第二突出部1416。第一突出部1414可包括自边界壁1406的外表面延伸的水平档杆。第一突出部1414可被配置并且被定位以对应于自分离孔卡扣1404的垂直部分1410延伸的档杆1418。当分离孔卡扣1404位于第二位置时,档杆1418位于第一突出部1414的下面,以便档杆1418的远表面抵靠第一突出部1414的近表面按压。这可抵抗分离孔结构1402相对于边界壁1406的近端移动。档杆1418近表面上的远端压力可在分离孔结构1402和基底之间产生压缩压力,将边界壁1304和分离孔结构1402耦接在一起并且将两者压在一起以形成防漏分离孔(与分离密封和/或集中孔结构组合,以下更详细地描述)。第二突出部1416可被配置以将分离孔卡扣1404保持在第二位置。第二突出部1416可具有l型形状,并且可位于第一突出部1414的远端,以便当分离孔卡扣1404为第二位置时,垂直部分1410通过第二突出部1416的l型形状保持在适当位置,如图14b中所示。第二突出部1416可为可弯曲的,以便当分离孔卡扣1404被从第一位置移动到第二位置时,第二突出部1416可弯曲以使分离孔卡扣1404进入第二位置。一旦分离孔卡扣1404处于第二位置,第二突出部1416可返回图14a-14b中显示的位置。

虽然图14a-14b仅描述一个分离孔卡扣1404,但是应该理解,分离孔结构1402作为一个整体可具有任何合适数目的分离孔卡扣1404(例如,一个、两个、三个、四个、五个、六个、七个、八个、或更多),并且边界壁1406可具有任何合适数目的相应分离孔锁1412。例如,分离孔结构1402其每个长边可具有两个或三个分离孔卡扣1404。同样应该理解,分离孔锁1412的数目不需要匹配边界壁1406上的分离孔卡扣1404的数目,条件是该配置使分离孔结构1402可与边界壁1406耦接。同样应该理解,分离孔卡扣1404(和边界壁1406上的相应分离孔锁1412)可在分离孔结构1402上具有不同的布置。

分离孔卡扣设计的还另一个实施方式显示于图15a-15b。显示存在分离孔结构1502和边界壁1504。在所显示的变化中,分离孔结构1502和边界壁1504可被配置以通过附接于边界壁1504的分离孔卡扣1506进行耦接,并且其可与附接于分离孔结构1502的分离孔锁1508接合。分离孔卡扣1506在第一位置(图15a)和第二位置(图15b)之间可为可移动的,其中在第二位置时分离孔结构1502与边界壁1504耦接,并且在第一位置时从边界壁1504去耦接。在一些变化中,分离孔卡扣1506通过在附接点1510处可枢转或可转动在第一位置和第二位置之间可以是可移动的。在一些变化中,由于材料(例如,塑料)的弹性,分离孔卡扣1506围绕附接点1510是可枢转的或可转动的。在其它变化中,分离孔卡扣1506通过铰链围绕附接点1510是可枢转的或可转动的。

分离孔卡扣1506可包括主体1512和位于主体1152的近端1516的钩1514。主体1512可具有大体上平坦的形状。附接点1510可位于主体1512的近端1516和远端1518之间,以便当分离孔卡扣1506从第一位置移动至第二位置时,近端1516可远离边界壁1504和分离孔结构1502移动,同时远端1518可向边界壁1504移动。主体1512的远端1518可在其内表面是锥形的,以便远端1518不抵抗分离孔卡扣1506移动至第一位置,其中相比处于第二位置远端1518离边界壁1504更近。因此,当分离孔卡扣1506被从第一位置移动至第二位置时,分离孔卡扣1506的钩1514可向边界壁1504和分离孔结构1502移动。当钩1514处于第二位置时,其远表面可与位于分离孔结构1502上的分离孔锁1508接合。

如图15a-15b中所示,分离孔锁1508可附接于分离孔结构1502的侧面。在其它变化中,分离孔锁1508可附接于分离孔结构1502的近表面。分离孔锁1508可包括档杆,所述档杆具有被配置以与分离孔卡扣1506的钩1514的远表面接合的近表面。当分离孔锁1508与分离孔卡扣1506接合时,档杆可位于钩1514下面,以便钩1514的远表面可抵靠分离孔锁1508的档杆的近表面按压。这可抵抗分离孔结构1502相对于边界壁1504的近端移动。分离孔锁1508上的远端压力可在分离孔结构1502和基底之间产生压缩压力,将分离孔结构1502和边界壁1504耦接在一起并且将两者压在一起以形成防漏分离孔(与分离密封和/或集中孔结构组合,以下更详细地描述)。分离孔卡扣1506可偏向第一位置(图15a中所示),其可维持分离孔结构1502的耦接。在其它变化中,装置可包括机构,所述机构在分离孔结构1502被耦接后将分离孔卡扣1506锁在第一位置。

应该理解,分离孔结构1502可具有任何合适数目的分离孔卡扣1506(例如,一个、两个、三个、四个、五个、六个、七个、八个、或更多),并且边界壁1504可具有任何合适数目的相应分离孔锁1508。在一些变化中,分离孔结构1502的每个长边可包括两个至四个之间的卡扣。同样应该理解,分离孔锁1508的数目不需要匹配分离孔卡扣1506的数目,条件是该配置使分离孔结构1502可与边界壁1504耦接。同样应该理解,分离孔卡扣1506(和分离孔结构1502上的相应分离孔锁1508)可在边界壁1504上具有不同的布置。

返回多孔分离装置100的实施方式,分离孔结构602可以可移除地与容腔450耦接。即,分离孔结构602和容腔450之间的耦接机构的设计可为这样的,分离孔结构602可以在两个元件已经耦接后从容腔450移除。从容腔去耦接和移除的能力可允许将分离孔结构插入以首先将容腔中的组合物分离至分离孔中,并且随后可允许将分离孔结构移除以重新组合组合物。

在一些变化中,分离孔结构可以可逆地可移除地与容腔耦接,以便在分离孔结构已经从容腔去耦接后,可将其再耦接以将容腔中的组合物再分离至分离孔中。图6a-6c显示可以可逆地可移除与容腔耦接的分离孔结构的一种变化。如其所示,在施加向内压力下分离孔卡扣614的接头618可被配置以向内弯曲。为了在耦接时允许将接头618向内弯曲,在分离孔卡扣614和边界壁202的外表面之间可存在空间;即,边界壁202和锁条208之间的分离孔锁212的开口相比于分离孔卡扣614的细长部分616的厚度可横向地更宽。当接头618向内弯曲时,它们可不再与锁条208的远表面接合,其可允许近端定向力(例如,来自对分离孔结构602近端的推或拉)通过将分离孔卡扣614从分离孔锁212去耦接将分离孔结构602从容腔450移除。

图13中显示的多孔分离装置1300的分离孔结构1306、图14a-14b中显示的分离孔结构1402、和图15a-15b中显示的分离孔结构1502可类似地与悬浮腔可逆地可移除地耦接。关于图13中显示的多孔分离装置1300的分离孔结构1306,分离孔结构1306可与由边界壁1302、基底支持物1304、和基底(和在一些变化中的边界壁密封)形成的容腔可移除地耦接。在这个变化中,在施加向外压力下分离孔卡扣1322可被配置以向外弯曲。当分离孔卡扣1322向外弯曲时,它们可不再与分离孔锁1330的突出部1332的远水平表面接合,其可允许近端定向力(例如,来自对分离孔结构1306近端的推或拉)通过将分离孔卡扣1322从分离孔锁1330去耦接将分离孔结构1306从容腔移除。类似地,在图14a-14b和15a-15b中所示的变化中,分离孔卡扣1404和1506可分别从第二位置移动至第一位置以分别将分离孔结构1402和1502从边界壁1406和1504去耦接。

在其它变化中,分离孔结构可以不可逆地可移除地与容腔耦接。在这些变化中,一旦耦接,分离结构可从容腔移除,但是随后可不能被再耦接至容腔中。这可能因为,例如,在一些变化中,将分离孔结构从容腔去耦接,不可逆地影响了分离孔结构的结构以致其不能被再耦接(例如,为了移除分离孔结构,需要将分离孔卡扣614破坏)。

集中孔结构

多孔分离装置100可任选地包括集中孔结构702。集中孔结构702可被配置以减小分离孔610的远端部分的横截面积。此可以是有利的,例如,因为其可将每个分离孔610内的靶剂集中至分离孔610底部处更小的横截面积中。在一些变化中,集中孔结构可包括薄的材料层,所述材料诸如但不限于软弹性材料(例如,硅酮、橡胶或类似物),其可被配置以位于分离孔结构和基底之间。通常,集中孔结构可包括多个开口,其一个近端可对应于分离孔结构的开口的远端,并且开口可以在近向远的方向上变窄。集中孔结构中开口的远端可允许分离孔内的组合物与基底相互作用。在其中基底包括涂层(上面详细描述)的变化中,这可允许组合物与涂层相互作用。因此,在这些变化中,集中结构的开口可实际上包括含有涂层的物质,所述涂层诸如但不限于蛋白质、聚合物、水凝胶、或化学涂层。

图7a-7b分别示例集中孔结构702的一个实施方式的透视图和顶部视图。如所看到的,集中孔结构702可包括含有多个开口704的薄结构。开口704在近侧的横截面形状可被配置以对应于分离孔610的横截面形状。开口704可具有倒截方锥体形状,以便开口704的横截面积由近向远地减小。在开口704的远端,部分基底302(和任意涂层)可被暴露。

图8a-8b分别示例具有同样具有倒截方锥体形状的开口804的集中孔结构802的另一个实施方式的从顶部和侧面的特写视图。如图8b中所看到的,开口804在其近端806的横截面积大于开口804在其远端808的横截面积。在其它变化中,开口可具有其它形状,诸如但不限于截锥体(truncatedcone)或平截头锥体(pyramidalfrustum)。还在其它变化中,开口可在远端封闭;即,分离孔内的组合物可以不与基底接触。

如上所述,集中孔结构可位于分离孔结构和基底之间。在其中多孔分离装置包括集中孔结构的一些变化中,多孔分离装置可不包括分离密封。例如,在其中集中孔结构包括材料如橡胶、塑料、或聚合物的变化中,多孔分离装置可包括集中孔结构,而无分离密封,所述材料可以能够在基底和分离孔结构之间形成密封。在这些变化中,集中孔结构可附接于基底的近表面(如图9中所示);其可附接于边界壁;或其可附接于边界密封(例如,通过将集中孔结构的外缘附接于边界密封的内缘)。集中孔结构可以任何合适的方式附接于这些元件,所述方式诸如但不限于,粘合剂(胶、粘合剂聚合物、和类似物)、化学结合、或类似方式。

在其中多孔分离装置包括集中孔结构的其它变化中,多孔分离装置也可包括分离密封。例如,在其中集中孔结构包括通常不能在基底、集中结构、和分离孔结构之间形成充分密封的材料,如玻璃或硬塑料的变化中,多孔分离装置可包括集中孔结构和分离密封两者。在这些变化中,分离密封可位于基底和集中孔结构之间和/或集中孔结构和分离孔结构之间。当分离密封位于基底和集中孔结构之间时,分离密封可附接于基底的近表面、集中孔结构的远表面、或边界壁;当分离密封位于集中孔结构和分离孔结构之间时,分离密封可附接于集中孔结构的近表面、分离孔结构的远表面、或边界壁。

在一些变化中,本文描述的多孔分离装置可进一步包括盖子。盖子可被配置以在多孔分离装置上配合从而将容腔盖住。在一些变化中,盖子可被配置以当分离孔结构耦接在容腔中时单独地密封每个分离孔的顶部。

试剂装载装置

本文同样描述了试剂装载装置。在一些变化中,试剂装载装置可被配置以将试剂或测试剂递送至由耦接的分离孔结构602和容腔450生成的分离孔610的每一个。在其它变化中,试剂装载装置可独立于本发明所描述的多孔分离装置而被使用。例如,在某些情况下,试剂装载装置可与具有固定壁的多孔板一起使用。

突起部

在图10a-10b和图18所示的变化中,分别地,试剂装载装置1000和1800可分别包括多个突起部1002和1802。每个突起部1002或1802可分别包括杆1004或1804和封闭尖端1006或1806,以下更详细地描述。突起部可包括任意适合材料或材料,诸如但不限于塑料,硅、金属、或聚合物。在一些变化中,杆和封闭尖端可包括相同材料,然而在其它变化中它们可包括不同材料。

在一些变化中,试剂装载装置1000或1800可被配置以与多孔分离装置(例如,与多孔分离装置100,如图11中所示)一起使用,但是其不需要被配置以与多孔分离装置一起使用。在其中试剂装载装置被配置以与多孔分离装置100一起使用的变化中,突起部的数目可被配置以对应于多孔分离装置100中的分离孔610的数目。但是,应该理解,试剂装载装置可与具有比突起部数目更多或更少的分离孔610的多孔分离装置一起使用,或它们可不与多孔分离装置一起使用。例如,图23a-23b、24a-24b、25a-25b、28a-28b、30a-30b、31b-31d、和32显示试剂装载装置被配置以位于仅部分分离孔之上,并且因此具有比分离孔的数目更少的突起部。

在其中试剂装载装置被配置以与多孔分离装置一起使用的变化中,突起部的尺寸和间隔可被配置以对应于多孔分离装置的分离孔。更具体地,例如,如果试剂装载装置1000或1800被配置以与多孔分离装置100一起使用,突起部1002或1802的横截面尺寸可被配置以便突起部可以在分离孔610中配合。在一些变化中,突起部的最大横截面尺寸可为约1μm至约10μm、约10μm至约100μm、约100μm至约1mm、约1mm至约5mm、约5mm至约1cm、约1cm至约2cm、大于约2cm、约1μm至2cm、或约1mm至约1cm。

在其中试剂装载装置被配置以与多孔分离装置如多孔分离装置100一起使用的变化中,突起部的长度可使当试剂装载装置与多孔分离装置接合时,试剂装载装置的封闭尖端可完全淹没在每个分离孔的内容物中。在一些变化中,突起部的长度可为约1mm至约2mm、约2mm至约4mm、约4mm至约6mm、约6mm至约8mm、约8mm至约1cm、约1cm至约2cm、约2cm至约4cm、约4cm至约6cm、大于约6cm、约1mm至约6cm、约1mm至约1cm、或约1cm至约6cm。应该理解,每个突起部不需要具有相同的配置。

如上所述,突起部1002或1802可分别包括封闭尖端1006和1806,其均可被配置以保持试剂。在可不包括远端处的开口的意义上,封闭尖端可为“封闭的”,所述远端处的开口与突起部的杆中的腔连接,当试剂通过封闭尖端沉积(deposited)时试剂通过所述突起部行进。这与装置如移液器或类似物相反,其包括其中保持组合物的杆中的腔,和腔外的开口,当组合物通过移液器沉积时组合物通过所述腔行进。移液器或类似物通常由于腔内的局部真空将组合物至少部分地保持在腔内。相对而言,由于封闭尖端和试剂之间的相互作用(例如,粘着力)和由于试剂中的相互作用(例如,表面张力),试剂装载装置的封闭尖端可被设计以将试剂保持在尖端外面(不是杆中的腔中)。

封闭尖端(例如,封闭尖端1006或封闭尖端1806)可具有任何合适的几何形状用于以这样的方式保持试剂,所述几何形状包括但不限于具有钝尖的尖的形状或圆锥体(参见图12a)、正方形(参见图12b-12c和12e)、圆形(参见图12d和12f-12h)、或类似形状。在一些变化中,封闭尖端可为平的(参见图10a-10b)。在其它变化中,封闭尖端可包括凹陷——例如,它们可为凹面(例如,就有半球形凹陷)(参见图12h)或可包括圆柱形(或其它形状)凹处(参见图12g)。还在其它的变化中,封闭尖端可包括一种或多种线型凹陷。例如,封闭尖端可包括一个线型凹陷(参见图12b和12d),它们可包括两个垂直的线型凹陷(参见图12c),或它们可包括以网格状排列布置的多个线型凹陷。在其它变化中,封闭尖端可包括两个平行板,试剂可被保持在其之间,或试剂可被保持在其中的一个或多个毛细管。此类尖端,如凹面尖端、或其它包括凹陷的尖端可允许试剂被封闭尖端更牢固地保持,例如通过提供更大表面积用于封闭尖端和试剂之间的粘着力。

每个封闭尖端的表面可以是光滑的,或表面可为粗糙的(例如,具有表面不平整)。封闭尖端可具有任何合适的尺寸。在一些变化中,封闭尖端的最大横截面尺寸可为约1μm至约10μm、约10μm至约100μm、约100μm至约1mm、约1mm至约10mm、大于约10mm、约1μm至约10mm、约1μm至约1mm、或约1mm至约10mm。应该理解,每个封闭尖端不需要具有相同的配置。

在一些变化中,封闭尖端(例如,封闭尖端1006或封闭尖端1806)可包括多孔材料,如聚合物凝胶或水凝胶(参见图12e-12f)、聚合物基海绵、或网孔,或在一些变化中可包括含有试剂的基质,如干燥纤维结构。例如,封闭尖端可包括纤维素(例如,硝酸纤维素、纸状材料)、玻璃纤维网孔、丝纤维网孔、和类似物。在这些变化的一些中,当试剂装载装置(例如试剂装载装置1000或试剂装载装置1800)的封闭尖端被降低至液体或溶液中,如通过降低至多孔分离装置(例如,多孔分离装置100)的分离孔中时,全部或部分的封闭尖端可以是可溶解的。在其中全部或部分的封闭尖端1006是可溶解的变化中,可溶解材料可包括任意合适的材料,诸如但不限于盐、微粒、纳米颗粒、聚乙交酯、聚乳酸、或聚乳酸-羟基乙酸共聚物、或其组合。在其它变化中,当试剂装载装置100的封闭尖端1006被降低至液体或溶液中,如通过降低至多孔分离装置(例如,多孔分离装置100)的分离孔中时,全部或部分的封闭尖端1006可以是可熔的。在其中全部或部分的封闭尖端1006是可熔的变化中,可溶解的材料可包括任意合适材料,诸如但不限于dmso。

封闭尖端(例如,封闭尖端1006或封闭尖端1806)均可位于杆(例如,试剂装载装置1000的杆1004或试剂装载装置1800的杆1804)的远端。在一些变化中,封闭尖端可与杆成一体,然而在其它变化中,封闭尖端可以任何合适的方式(例如,使用粘合剂(胶、粘合剂聚合物、和类似物)、焊接、机械紧固件、化学结合、这些方法的结合、或类似方法)附接于杆。杆的近端可与板连接,其可形成突起部阵列。例如,如图10a-10b中所示,杆1004的近端可与试剂装载装置1000的板1008的远表面1010连接,其可形成突起部1002阵列。在一些变化中,杆1004可与板1008成一体,然而在其它变化中,杆1004可以任何合适的方式(例如,使用粘合剂(胶、粘合剂聚合物、和类似物)、焊接、机械固定件、化学结合、这些方法的组合、或类似方法)附接于板1008。作为另一个实例,如图18中所示,杆1804的近端可与试剂装载装置1800的板1808的远表面1810连接,其可形成突起部1802阵列。板1808可在其近表面上包括槽1820,其可被配置以与振动单元接合,以下更详细地描述。板1808也可包括腿1822,其可被配置以保护封闭尖端1806,如下面更详细的描述。

杆(例如,试剂装载装置1000的杆1004或试剂装载装置1800的杆1804)可具有一定长度以便当试剂装载装置与多孔分离结构100接合时,封闭尖端(例如,封闭尖端1006或封闭尖端1806)可被完全浸没在每个分离孔610的内容物中。例如,在一些变化中,杆的长度可为约1mm至约2mm、约2mm至约4mm、约4mm至约6mm、约6mm至约8mm、约8mm至约1cm、约1cm至约2cm、约2cm至约4cm、约4cm至约6cm、longerthan约6cm、约1mm至约6cm、约1mm至约1cm、或约1cm至约6cm。

杆可具有任何合适的横截面尺寸,其可比封闭尖端的横截面尺寸更小或更大。在一些变化中,杆的最大横截面尺寸可为约1μm至约10μm、约10μm至约100μm、约100μm至约1mm、约1mm至约10mm、大于约10mm、约1μm至约10mm、约1μm至约1mm、或约1mm至约10mm。应该理解,在一些变化中,杆可具有沿其长度可变的横截面尺寸(例如,它们可远端变细、近端变细、或向中点变细)。同样应该理解,每个杆不需要具有相同的配置。

定向部件

试剂装载装置可任选地包括可促进试剂装载装置以特定方向被插入至孔中的定向部件。在一些变化中,定向部件可为方向指示器,从而提供给用户允许用户正确地将试剂装载装置相对于孔定向的信息。在其它变化中,定向部件可为指示试剂装载装置以特定方向被插入至孔中的定向楔。在这些变化中,接收孔可具有允许试剂装载装置仅以特定方向被插入至孔中的相应定向楔。在一些情况中,这些接收孔可为本文描述的接收多孔分离装置的分离孔。在一些其它情况下,接收孔可为具有固定壁的接收板,如多孔板的部分(part)。接收装置的相应定向楔可与接收装置(例如,本文描述的多孔分离装置,或多孔板)成一体,或其可为被配置以添加至接收装置的接合器的部分,如下面更详细的描述。

图10a-10b和11显示具有包括方向指示器的定向部件的试剂装载装置的一个变化。如其所示,指示器可包括附接于板1008的近表面1012的把手1014,所述把手1014可在一侧上包括箭头1016。应该理解,指示器可具有任何合适的形式。例如,在一些变化中,指示器可在板1008的一个角上包括截断。在其它变化中,指示器可包括位于板1008上特定位置的可视指示器,如颜料或色彩、文本指示器、纹理、或类似物。

如上所述,在其它变化中,定向部件可包括可指示试剂装载装置以特定方向被插入至孔中的的定向楔。定向楔可防止试剂装载装置以错误方向被插入至孔中(如本文描述的多孔分离结构,或具有固定壁的多孔板的孔),并且可仅允许试剂装载装置在试剂装载装置相对于接收装置处于适当方向时被插入至孔中(即,当试剂装载装置被降低至接收装置中时在试剂定位装置的每个突起部将进入期望的孔时)。

应该理解,试剂装置的定向楔和接收装置的相应定向楔可具有任何数目的配置或或其它物理形状。在一些变化中,一个或多个定向楔可具有非对称形状,以便当试剂装载装置相对于接收装置处于正确方向时试剂递送装置的定向部件仅可与接收装置的相应定向楔适当地接合。定向楔和接收装置上的相应楔可具有任何合适的形状,如半圆形、倾斜槽、弯曲或弧形槽、三角形、新月形、平行四边形、或类似形状。

试剂装载装置的实例包括的定向楔在图18显示。如其所示,定向部件包括一种或多个槽1824。如图19a-19b中所示,试剂装载装置1800可包括两个侧边1826。图19a中所示的一个侧边1826可包括单个槽1824a,然而图19b中显示的另一侧边1826可包括两个槽1824b和1824c。相应的多孔分离结构可包括相应的定向部件。更具体地,多孔分离结构可包括具有对应于槽1824a的接头1828a的一端,和具有两个对应于槽1824b和1824c的接头1828b和1828c的一端。槽1824和接头1828可对应以便当两个组件被正确地对齐时,试剂装载装置1800可被降低至多孔分离装置中,但是当相对方向相反时,不能被降低至多孔分离装置中。

在其中接收装置包括相应的定向楔的其它变化中,相应的定向楔可为接合器的部分,而不是与接收装置成一体。接合器可被配置以附接于多孔分离装置或其它接收装置。此类接合器的一个实例在图22中显示。如其所示,接合器2206可包括被配置以在多孔分离装置2204上配合的外部框架。接合器2206可包括楔2208。楔2208可沿接合器2206的两个相对侧延伸,并且可朝向内,在楔2208和多孔分离装置2204的外缘之间形成间隙2210。

试剂装载装置(例如,试剂装载装置2212)可包括对应于楔2208的槽口2214,例如图23a-23b中所示。图25a-25b显示接合器2206的楔2208和试剂装载装置2212的槽口2214的特写视图。当试剂装载装置2212相对于接合器2206正确地定向时,如图25a中所示,楔2208和槽口2214的形状对应。但是,当试剂装载装置2212相对于接合器2206错误地定向时,如图25b中所示,楔2208和槽口2214的形状可不对应。在一些变化中,当楔2208和槽口2214不对应时,试剂装载装置2212可以不能被降低至多孔分离装置中。楔2208和槽口2214也可被配置以引导试剂装载装置2212的突起部到多孔分离装置的分离孔中。即,当楔2208和槽口2214适当地对齐时,每个突起部将会位于分离孔的上方。

随着试剂装载装置2212被降低至多孔分离装置2204中,试剂装载装置2212的槽口2208可进入楔2208和多孔分离装置2204的外缘之间的间隙2210,其中试剂装载装置2212定向以便楔2208对应于槽口2214。

在某些情况下,可期望定向楔限制试剂装载装置的插入方向,同时仍允许试剂装载装置将振动赋予接收装置的孔。例如,这可允许试剂装载装置被用于混合接收装置的内容物。在一些变化中,这可通过具有被配置以仅在插入期间(例如,当试剂装载装置被部分地装载至多孔分离装置中时)限制试剂装载装置的楔来实现,但当试剂装载装置被完全地装载至多孔分离装置中时,试剂装载装置不再被楔限制并且可移动以便赋予振动。

例如,如图24b中所示,试剂装载装置2212和接合器2206可为适合的以便楔2208和槽口2214仅仅随着试剂装载装置2212被插入至多孔分离装置2204中而接合,但是一旦试剂装载装置2212被完全插入至多孔分离装置2204中,楔2208和槽口2214不再接合。这可允许试剂装载装置2212相对于多孔分离装置2204移动以便混合分离孔的内容物。

如图24b中所示,这可通过分别仅部分地沿着接合器2206的内表面和试剂装载装置2212的外部端表面延伸的楔2208和槽口2214实现。如其所示,楔2208可仅在接合器2206的内表面的上半部内延伸,同时槽口2208可仅在试剂装载装置2212的外部端表面的下半部中延伸。照此,当试剂装载装置少于被插入至多孔分离装置中的一半(half-way)时,楔2208和槽口2214可紧固地接合,因此限制试剂装载装置的定向和其相对于多孔分离装置的移动。但是,当试剂装载装置多于被插入至多孔分离装置中的一半时,楔2208和槽口2214可不紧固地接合,以便在楔2208和槽口2214之间存在空隙(clearance),从而允许试剂装载装置在相对于多孔分离装置的移动的一定范围内移动。在一些变化中,沿着接合器2206的内表面的下半部,可存在较小版本的楔,例如图24b中所示,其可阻止试剂装载装置的大部分(substantial)横向移动同时仍使得移动范围足以允许试剂装载装置的振动,以便促进分离孔的内容物混合,如本文更详细地描述。但是应该理解,在某些情况下(例如,当不需要混合,或混合不是通过试剂装载装置的横向移动来完成时),当试剂装载装置被完全插入至多孔分离装置中(例如,楔和槽口的一个或两个可沿着接合器和试剂装载装置的全长延伸)时,楔和槽口的一个或多个可紧固地接合。

应该理解,定向部件可包括任何适合的指示定方向的形状。作为一个实例,定向部件可包括倾斜槽2602,如图26a中所示。图26b显示包括直角三角形2604的定向部件的另一个实例。在其中定向部件位于接合器的相对侧的一些变化中,相对侧的每一个上的定向部件可具有不同形状(例如,一侧为半圆形和另一侧为矩形)、方向、或尺寸,以便试剂装载装置上的相应槽口仅对应于一侧上的楔。同样应该理解,虽然接合器被本文描述为包括楔并且试剂装载装置被描述为包括相应的槽口,但是在其它变化中,试剂装载装置可包括楔并且接合器可包括相应的槽口。

虽然接合器可包括面向内的楔,从而在楔和多孔分离装置的外缘之间形成间隙,但是在其它变化中,接合器可包括面向外的楔。此类接合器的实例在图27和28a-28b中显示。如其所示,接合器2702可被配置以放置在多孔分离装置2704上以形成外部框架。接合器2702可在一个或多个外缘上(如其所示,在两个相对的外缘上)包括一个或多个面向外的楔。第一边缘上的楔2706可包括第一形状(此处,三角形),同时第二边缘(第一边缘对面)上的楔2708可包括第二形状(此处,由倒圆齿状边缘形成突起部)。应该理解,第一和第二形状可为任意合适的不同形状,以便具有相应槽口的试剂装载装置将以第一方向而不是以第二方向与接合器接合。

如图28a-28b中所示,相应的试剂装载装置2710可分别包括对应于楔2706和2708的槽口2712和2714,其可位于试剂装载装置2710的末端的内表面上。如图22到25a-25b的变化中,楔2706和2708可仅在接合器2702的外表面的上半部中延伸,而槽口2712和2714可仅在试剂装载装置2710的内端表面的下半部中延伸。照此,随着试剂装载装置被插入至多孔分离装置中,楔和槽口可紧固地接合,但是当试剂装载装置被完全插入至多孔分离装置中时它们可不紧固地接合,如关于图24a-24b中更详细地描述。

应该理解,楔不需要作为接合器的部分;在一些变化中,它们可与接收装置如多孔分离装置成一体,如图29和30a-30b的变化中所示。如其所示,多孔分离装置2902的边界壁可包括在边界壁外表面的相对侧上的楔2904和2906。这些楔可具有与关于图27和28a-28b所描述的楔相似的相似特征和功能,并且可与试剂装载装置2908接合。面向内的楔——如图22到26a-26b中显示的楔——也可与多孔分离装置成一体。此外,虽然本文描述的定向楔被相对于本文描述的多孔分离装置和试剂装载装置进行描述,但是应该理解,定向楔也可与不具有本文描述的部件的标准多孔板一起使用。

接合器3100的另一个变化在图31a-31d中显示。在其所显示的变化中,如所示的,接合器3100可被配置以与具有固定壁的接收装置,如标准96-孔板3102接合。接合器3100可适应标准、固定孔板以便其可与试剂装载装置3106接合。接合器3100可包括具有对应于96-孔板3102的外部形状的中心开口3104的内壁3108,和被配置以接收试剂装载装置3106的槽3110。接合器3100可包括一个或多个定向部件以指示插入的试剂装载装置3106的方向。例如,仅当试剂装载装置3106以特定方向装载时,槽3110可包括一个或多个被配置以匹配试剂装载装置3106上的相应表面的锯齿形或z字形的表面。如图31a-31d中所示,接合器3100可包括第一边上槽3110的外壁上的锯齿形表面3112,和第二边上槽3110的内壁上的锯齿形表面3114。试剂装载装置3106可在第一侧壁外面上具有锯齿形表面3116,其可对应于锯齿形表面3112,同时试剂装载装置3106可在第二侧壁里面上具有锯齿形表面3118,其可对应于锯齿形表面3114。因此,当试剂装载装置3106处于第一方向以便锯齿形表面3112与锯齿形表面3116对齐时,以及当锯齿形表面3114与锯齿形表面3118对齐时,试剂装载装置3106可能够被插入至接合器3100的槽3110中。但是,当试剂装载装置3106处于第二相反方向时,试剂装载装置3106可不能被插入至接合器3100的槽3110中。

在一些变化中,接合器可进一步包括其它特征以帮助将试剂装载装置引导至接收孔中。例如,在图31a-31d中所显示的变化中,接合器3100可包括自接合器3100的近端面向近端延伸的销轴(pin)3120。销轴3120可被配置以在试剂装载装置中的相应开口3122中配合。虽然销轴3120在图31a-31d中被显示为具有三角形状,但是销轴可具有任何合适的形状,如棒、正方形、或类似的形状。

试剂/测试剂

本文描述的试剂装载装置的封闭尖端的每一个可装载有试剂或测试剂。试剂可处于任何合的适形式,诸如但不限于,液体、溶液、凝胶、或固体。当试剂处于液体或溶液形式时,试剂可粘附于每个封闭尖端,这是由于液体内的粘结力(例如,表面张力)和液体和封闭尖端之间的粘着力。在一些变化中,依据封闭尖端的配置和材料和液体或溶液的材料性质,可粘附于每个封闭尖端的液体或溶液的体积可为约1pl至约10pl、约10pl至约100pl、约100pl至约1nl、约1nl至约10nl、约10nl至约100nl、约100nl至约1μl、约1μl至约10μl、或多于约10μl。

虽然在一些变化中,本文描述的封闭尖端可装载有相同试剂,但是可能常常需要用不同试剂或测试剂装载封闭尖端。例如,可能需要这样做以便接收装置的孔(如本发明所描述的多孔分离装置的分离孔)可经受不同试剂。测试剂可为,但不限于蛋白质、核酸、细胞、微生物(例如,细菌、真菌)、植物(例如,藻类)、病毒、小分子药物或任何化合物。在一些变化中,封闭尖端可装载有期望检测的特定试剂文库。例如,试剂装载装置可装载有细菌文库、药物文库(例如,激酶抑制剂文库)、抗体文库、或类似物。

混合

在被递送后(例如,在被递送至本发明所描述的多孔分离装置的分离孔的内容物中后,或在被递送至具有固定壁的板,如多孔板的孔中后),本文描述的试剂装载装置可任选地被配置以促进试剂的混合。在一些变化中,试剂装载装置可被配置以给予振动以促进混合。试剂装载装置可包括一个或多个可引起突起部振动的致动器或马达。在一些变化中,每个突起部可附接于致动器或马达;在其它变化中,单个致动器或马达可引起所有突起部振动。在还有其它的变化中,可存在多于一个的致动器或马达但少于突起部的数目。

图20a-20c显示马达单元2000的一个实施方式。马达单元2000可包括振动马达2002,其可通过线2004与控制器2006连接。控制器2006可为手持式并且包括允许用户控制马达2002的接口,如开/关按钮2012。在一些变化中,接口可允许用户控制频率、幅度、和/或振动持续时间。振动马达2002可被包含在单元2008中,所述单元2008被配置以这样的方式与试剂装载装置接合,以将马达2002的振动运动传递至试剂装载装置的突起部。在图20a-20c中所显示的变化中,单元2008可包括槽2010,其可在试剂装载装置1800的板1808的近表面上与槽1820接合,如图20c中所示。单元2008可通过任何合适的可逆或不可逆方法被固定至试剂装载装置(例如,利用与试剂装载装置1800的槽1820对齐的槽2010),所述可逆或不可逆方法诸如但不限于弹簧装载夹具或卡扣。虽然图20a-20c中显示的变化包括一个振动的马达2002,但是应该理解,在其它变化中,马达单元2000可包括多于一个马达,如两个、三个、或更多马达。

马达单元3200的另一个变化在图32和33a-33b中显示。马达单元3200可包括位于振动单元3204中的振动马达3202(参见图33b),其可通过可弯曲的线3206连接至包括电池和开/关转换器3210的控制器3208。振动单元3204可包括槽3212,所述槽3212被配置以在试剂装载装置(例如,本发明所描述的任何其它试剂装载装置,如试剂装载装置2212)的近表面上与相应的槽3214接合。

在马达单元的另一个变化中,一个或多个(例如,两个、三个、或更多个)振动马达可被安装在手持式装置的尖端上。手持式装置可与手持式移液器相似。手持式装置可被可逆地固定至试剂装载装置,例如通过被固定至试剂装载装置的近表面,以便当手持式装置被固定至试剂装载装置时,振动马达的振动可被传递至试剂装载装置的突起部。在一些变化中,手持式装置可通过夹具被固定至试剂装载装置,所述夹具可通过手持式装置上的按钮被打开和关闭。在一些变化中,按钮可通过用户的拇指进行操作。在这些变化的一些中,一个或多个马达可包括线性振动。在其它变化中,振动可为磁场所致。更具体地,所有或一部分的试剂装载装置的突起部如尖端可包括被磁场吸引的材料(例如,铁或镍),并且交变磁场可被打开和关闭(例如,以约10hz止至约200khz的频率)以便引起振动。

可选择振动的幅度和频率以将试剂的混合最大化,而不负面地影响试剂被递送至其中的组合物。即,可能期望最大化混合至孔(例如,本文描述的多孔分离装置的分离孔,或具有固定壁的板的孔)的内容物中而不负面地影响靶剂的振动。照此,振动的幅度和频率可根据试剂装载装置的设计(包括突起部的物理设计)进行定制。在一些变化中,振动可为线型振动(例如,来回振动);在一些其它振动中,振动可为旋转振动。在其中振动是线型的一些变化中,振动的幅度可为约1mm至约3mm。在一些变化中,频率可为约10hz至约200khz。在这些变化的一些中,频率可为在声学范围以下(例如,在约200hz以下)的搅动形式;或其可为在声学范围中(例如,约20hz至约200khz)的超声处理的形式或在声学范围(例如,在约200khz以上)的超声处理的形式。在其中振动是旋转振动的一些变化中,振动可以是每分钟约600至约12,000,000转。在其中试剂装载装置被配置以促进试剂混合的变化中,突起部的物理设计可被配置以促进混合。例如,突起部可包括具有更好弹性的杆以促进封闭尖端的振动,如通过具有更小的横截面或通过包括弹性材料。

遏制单元

在一些变化中,试剂装载装置可进一步包括遏制单元。遏制单元可被配置以保护装载于试剂装载装置的封闭尖端上的试剂,同时也被配置使其能够从试剂装载装置移除而将试剂留在突起部的封闭尖端上。在一些变化中,遏制单元可包括大体上平坦的表面。在这些变化中,当遏制单元被放置在其中其保护封闭尖端上的试剂的位置时,其可与试剂接触。但是,当遏制单元从试剂装载装置的剩余部分移除时,遏制单元的材料可具有一定性能(例如,结合或表面亲和力系数)以便当表面远离试剂移动时,试剂从表面释放并且保持附接于突起部的封闭尖端。

例如,在一个变化中,试剂装载装置的封闭尖端可包括第一塑料并且遏制单元可包括第二塑料,其中结合或表面亲和力系数不同并且使试剂从第二塑料释放并保持耦接于第一塑料。在其它变化中,遏制单元可包括多个单独的孔或盖子,每一个被配置以隔离试剂装载装置的单独突起部。孔或盖子可为连接的(例如,通过被连接至平坦表面的每一个),或它们可为分离的。在一些变化中,孔或盖子可具有大于试剂装载装置上的突起部的长度的深度,以便突起部的封闭尖端不可与孔或盖子的末端接触;在其它变化中,孔或盖子和封闭尖端的材料可具有允许试剂从孔或盖子的表面释放同时保持附接于突起部的封闭尖端的材料性质,如上所述。

在其它的变化中,试剂装载装置可具有被配置以保护装载于试剂装载装置的封闭尖端上的试剂,而没有分离的遏制单元的设计。一个此类变化在图18中显示。如其所示,试剂装载装置1800可包括腿1822,其可被配置以保护封闭尖端1806。在其中试剂装载装置是矩形(如试剂装载装置1800)的变化中,腿1822可位于试剂装载装置的每个角。腿1822可比突起部1802长(即,它们可向远延伸超过封闭尖端1806),以便在试剂装载装置1800被放置在具有面向表面的突起部的封闭尖端1806的表面上的情况下,腿1822的远端可接触表面,而封闭尖端1806可悬浮在表面上,如图18中所示。照此,腿1822可保护装载于封闭尖端1806上的试剂免于接触表面,这可保护试剂免于污染。

试剂盒

应该理解,本文描述的多孔分离装置和试剂装载装置的组件除了具有装置的形式,还可具有用于生物或化学分析的试剂盒的形式。此外本文描述的是包括本文描述的多孔分离装置(例如,上述的多孔分离装置100)和本文描述的试剂装载装置(例如,上述的试剂装载装置1000或试剂装载装置1800)两者的分析系统。试剂装载装置可包括对应于多孔分离装置的多个分离孔的多个突起部,以便试剂装载装置的多个突起部的每一个可被配置以同时地在多孔分离装置的分离孔的一个中配合。

系统可进一步任选地包括配置用于装载试剂装载装置的室。该室可包括隔离区域,上述隔离区域包括处于对应于试剂装载装置的封闭尖端的配置的配置的试剂或测试剂。这可允许试剂装载装置的每一个尖端同时地用试剂或测试剂装载,甚至当待装载于封闭尖端的一个或多个上的试剂或测试剂不同。在一些变化中,隔离区域可为室中的多个孔或隔室,其可被用户用对应于封闭尖端的配置的试剂或测试剂进行装载(或可用试剂或测试剂预先装载)。在其它变化中,隔离区域可包括基底上的多个区域(例如,载玻片上的点)。此外,在某些情况下,本文描述的系统或试剂盒可包括本文描述的装置的子集。例如,在一个变化中,试剂盒可不包括多孔分离装置,但是可包括试剂装载装置和配置用于装载试剂装载装置的室。

方法

本发明同样描述的是使用本发明所描述的多孔分离装置和试剂装载装置或试剂盒、或系统的方法。通常,容腔(例如,上述的容腔450)可通过将边界壁(例如,上述的边界壁202)与基底支持物(例如,上述的基底支持物402)耦接而形成,其也可将基底(例如,上述的基底302)和边界密封(例如,上述的边界密封204)夹在边界壁和基底支持物之间。一旦形成了容腔,组合物(例如,细胞悬浮液)可被递送至容腔(例如,通过使用移液器)。分离孔结构(例如,上述的分离孔结构602)可随后在容腔中耦接,这可将容腔的内容物划分至多个分离孔(例如,上述的分离孔610)中。在一些变化中,在分离孔结构耦接之前可允许一段时间,但是它不是必要的。在分离孔结构耦接之后可允许充分用于靶剂沉淀和/或附接于基底的一段时间,但是不是必要的。试剂装载装置(例如,上述的试剂装载装置1000或1800)可随后被用于将测试剂同时或分别地递送至分离孔的每个。可选地,可使用已知方法(代替本文描述的试剂装载装置)将测试剂递送至分离孔的每个。分离孔结构可随后任选地从容腔移除。已知技术可被用于观察、测量、或分析该检测。

参考多孔分离装置100的实施方式,多孔分离装置100可通过将基底302放置于基底支持物402的框架404中而组装。基底支持物402的边界壁卡扣408可被插入至边界壁202的锁条208的基底支持物锁210中。为此,边界壁卡扣408的接头412可向内弯曲,以允许接头412穿过基底支持物锁210的开口。接头412的三角形状可使接头412逐渐向内弯曲——由于随着边界壁202相对于基底支持物402向远端移动而来自锁条208的压力。当接头412到达开口的近端时,它们可向外卡住以钩于锁条208上,边界壁卡扣408的远表面414紧压锁条208的近表面,并且边界壁卡扣408的细长部分410位于边界壁202和锁条208之间的边界壁锁210的开口中。这可将基底302(和边界密封204)夹在边界壁202和基底支持物402之间。归因于边界壁卡扣408和基底支持物锁210耦接的边界密封204和基底302之间的压缩力可将边界密封204紧压基底302,在容腔450周围生成防漏密封。

相似方法可被用于组装本文描述的多孔分离装置(如关于图13所描述的多孔分离装置1300)的其它实施方式中的容腔。在该实施方式中,容腔可通过将基底放置于基底支持物1304的框架1308中而被组装。基底支持物1304的边界壁卡扣1310可与边界壁1302的基底支持物锁1316耦接。为此,边界壁1302可被从与基底支持物1304近端分离的位置向基底支持物1304远端移动,边界壁卡扣130与基底支持物锁1316对齐。随着边界壁1302和基底支持物1304彼此相向移动,边界壁卡扣1310的水平部分1314的内表面可与基底支持物锁1316突出部1318的外表面接触。此接触可产生可使边界壁卡扣1310向外弯曲的压力。随着边界壁卡扣1310继续相对于突出部1318向近端移动,边界壁卡扣1310可向外渐增地弯曲以便沿着突出部1318的外表面移动,直到边界壁卡扣130的水平部分1314到达突出部1318的近端,在这一点上边界壁卡扣1310可向内卡住,其可将边界壁1302和基底支持物1304耦接——原因是边界壁卡扣1310的水平部分1314的远表面和基底支持物锁1316的突出部1318的近表面之间的接合。这可将基底(和边界密封)夹在边界壁1302和基底支持物1304之间。归因于边界壁卡扣1310和基底支持物锁1316的耦接的边界密封和基底之间的压缩力可将边界密封紧压基底,在容腔周围生成防漏密封。

在文描述的方法的其它变化中,不需要组装容腔。例如,在图5中显示的多孔分离装置500的实施方式中,边界壁504被固定地附接于基底506。因此,边界壁504和基底506不需要被耦接以形成容腔502。

在其中基底302的近表面304包括涂层的一些变化中,基底302可用涂层进行预涂布。在其它变化中,基底302可在组装容腔450之前或之后用涂层进行涂布。在具有涂层并且其中分离密封602或集中孔结构702被附接于基底302的变化中,基底302可在分离密封602或集中孔结构702被附接于基底302之前或之后用涂层进行涂布。

靶剂可随后被递送至容腔450。在一些变化中,靶剂可包括细胞类型。在其它变化中,靶剂可包括,例如蛋白质、核酸、微生物(例如,细菌、真菌)、植物(例如,藻类)、病毒、小分子药物或任何化合物、聚合物、抗原、抗体、细胞片段、同质细胞(cellhomogenous)、dna、或肽。靶剂可在任何适合的组合物中进行递送,所述组合物诸如但不限于液体或溶液(例如,当靶剂是细胞类型时,细胞可在细胞悬浮液中进行递送)、凝胶(例如,水凝胶或溶胶-凝胶)、粉末、固体、或类似物。当组合物是液体或溶液时,组合物可使用移液器或其它已知技术递送至容腔。充足的组合物体积可被递送以便盖住容腔的底部。在靶剂被递送至容腔450之后,可任选地允许适量的时间用于靶剂沉淀和/或粘着于基底,但不是必要的。例如,当靶剂是细胞时,在一些变化中,在分离孔结构被插入之前不需要允许适当时间(如下所述)。

分离孔结构602可随后被插入至容腔450中。分离孔结构602的分离孔卡扣614可被插入至边界壁202的锁条208的分离孔锁212中。为此,分离孔结构602可被保持在容腔450之上以便分离壁604的远表面与基底302的近表面304大体上平行。分离孔结构602可随后被降低至容腔450中,在分离孔结构602和基底302之间保持平行方向。分离孔卡扣614可被插入通过分离孔锁202。为此,分离孔卡扣614的接头618可向内弯曲以允许接头618行进通过分离孔锁202的开口。接头618的三角形状可使接头618逐渐向内弯曲——由于随着分离孔结构602被降低至容腔450中来自锁条208的压力。当接头618到达开口的远端时,它们可向外卡住以钩于锁条208上,接头的近表面620紧压锁条208的远表面,并且分离孔卡扣614的细长部分616位于边界壁202和锁条208之间的分离孔锁212的开口中。

这可将分离孔结构602(和分离密封608)固定在容腔450中。这可形成多个分离孔610,并且归因于分离孔卡扣614和分离孔锁212的耦接的分离密封608和基底302之间的压缩力可将分离密封608紧压基底302,在分离孔610之间生成防漏密封。容腔450中的分离孔结构602的耦接可使容腔450中的组合物分配至分离孔610中。在一些变化中,如上所述,第二(或第三、第四、第五等等)分离孔结构可进一步在由分离孔结构602形成的分离孔610的一个中进行耦接。在一些变化中,每个分离孔610中的靶剂可随后被任选地允许附接和/或生长期望的一段时间。例如,在一些变化中,当靶剂是细胞时,可允许适当时间用于细胞附接于每个单独孔610中的基底302。

在本文描述的多孔分离装置(如,关于图13所描述的多孔分离装置1300)的其它实施方式中,相似的方法可被用于将分离孔结构固定在容腔中。在此实施方式中,分离孔结构1306可通过将分离孔锁1330与分离孔卡扣1322耦接而被耦接至容腔。为此,分离孔结构1306可被保持在容腔上以便分离壁1334的远表面与基底的近表面大体上平行。分离孔结构1306可随后被降低至容腔中,在分离孔结构1306和基底之间保持平行方向。当分离孔结构1306被降低,分离孔卡扣1322可与分离孔锁1330的突出部1332的外表面接触。此接触可产生可使分离孔卡扣1322向外弯曲的压力。随着分离孔卡扣1322相对于突出部1332继续向远端行进,分离孔卡扣1322可渐增地向外弯曲以便沿着突出部1332的外表面移动,直到分离孔卡扣1322的水平部分1326到达突出部1332的远端,在这一点上分离孔卡扣1322可向内卡住(snap),分离孔卡扣1322的水平部分1326的近表面紧压分离孔锁1330的突出部1332的远表面。这可将分离孔结构1306(和分离密封)固定在容腔中,其可形成多个分离孔,如上面关于多孔分离装置100所述的。

关于图14a-14b所描述的分离孔卡扣和分离孔锁的实施方式,相似的方法可被用于将分离孔结构固定在容腔中。在此实施方式中,分离孔结构1402可通过将分离孔锁1412与分离孔卡扣1404耦接而耦接至容腔。为此,分离孔结构1402可被保持在容腔上以便分离壁的远表面与基底的近表面大体上平行,其中分离孔卡扣1404处于第一位置,如上所述。分离孔结构1402可随后被降低至容腔中,在分离孔结构1402和基底之间保持平行方向。当分离孔结构1402被完全降低至容腔中时,分离孔卡扣1404可被移动至第二位置,如上所述,其中档杆1418位于第一突出部1414下面并且垂直部分1410通过分离孔锁1412的第二突出部1416的l型形状保持在适当位置,以便档杆1418的远表面紧压第一突出部1414的近表面。当分离孔卡扣1404被移动至第二位置,第二突出部1416可弯曲以允许分离孔卡扣1404进入第二位置;一旦分离孔卡扣1404处于第二位置,第二突出部1416可返回图14a-14b中所示的位置。这可将分离孔结构1402(和分离密封)固定在容腔中,其可形成多个分离孔,如上面关于多孔分离装置100所述。

关于图15a-15b所描述的分离孔卡扣和分离孔锁的实施方式,相似的方法可被用于将分离孔结构固定在容腔中。在此实施方式中,分离孔结构1502可通过将分离孔锁1508与分离孔卡扣1506耦接而耦接至容腔。为此,分离孔结构1502可被保持在容腔上以便分离壁的远表面与基底的近表面大体上平行,其中分离孔卡扣1506处于第一位置,如上所述。分离孔结构1502可随后被降低至容腔中,在分离孔结构1502和基底之间保持平行方向。当分离孔结构1502被降低至容腔中,分离孔卡扣1506可通过分离孔锁1508被压至第二位置(图15b中所示)。在一些变化中,这可因为钩1514和分离孔锁1508可在其近和远表面上分别具有相应成角度的表面。在此类变化中,随着钩1514的近表面与分离孔锁1508的远表面接触,分离孔卡扣1506可被渐增地压向第二位置,直到分离孔卡扣1506朝向第一位置向内卡住。当分离孔结构1502被完全降低至容腔中时,分离孔卡扣1506返回(例如,由于偏压(bias))至第一位置(图15a中所示),如上所述,其中钩1514的远表面紧压分离孔锁1508的档杆的近表面。当分离孔卡扣1506处于第二位置时,此可将分离孔结构1502(和分离密封)固定在容腔中,其可形成多个分离孔,如上面关于多孔分离装置100所述。

根据想要的筛选操作或其它实验室测试,试剂或测试剂可随后被递送至分离孔的每一个。在一些变化中,试剂或测试剂可使用手动(例如,移液器)或机器人工序单独地被递送至分离孔的每一个。在其它变化中,本文描述的试剂装载装置(例如,上述的试剂装载装置1000或试剂装载装置1800)可被用于大体上同时地将试剂或测试剂递送至每个单独孔中。从而,试剂递送装置可显著地增加手动操作的方便性和通量。在这些变化的一些中,试剂装载装置和/或多孔分离装置可与自动机器人系统耦接,以甚至进一步增加通量。与目前的技术相比,所产生的系统除了其它优点可具有更高的通量并且可更快和更简便。

在一些变化中,本文描述的试剂装载装置可用试剂或测试剂在多个封闭尖端的每个上进行预装载。在其它变化中,用户可用试剂或测试剂装载多个封闭尖端的每一个。当试剂或测试剂处于液体或溶液形式时,这可通过将封闭尖端的每一个浸至液体或溶液中,并且随后将它们从液体或溶液中移除来完成。在一些变化中,试剂装载装置可被浸至隔离区域中,所述隔离区域包括处于对应于封闭尖端的配置的配置的试剂或测试剂。这可允许试剂装载装置的每个尖端同时地装载有试剂或测试剂进行,甚至当在封闭尖端的一个或多个上装载的试剂或测试剂不同时。在一些变化中,隔离区域可为室中的多个孔或隔室,其可被用户用对应于封闭尖端的配置的试剂或测试剂进行装载(或可用试剂或测试剂进行预装载)。在其它变化中,隔离区域可在基底上包括多个区域(例如,载玻片上的点)。在其它变化中,封闭尖端的一个或多个可被单独地浸于液体或溶液中以装载试剂或测试剂。在一些变化中,被限定体积的液体或溶液可被施加于每个封闭尖端。在这些变化的一些中,尖端设计可包括凹陷或其它表面特征(例如,半球形凹陷、圆柱形凹处、或一个或多个线型凹陷、或两个平行板之间的空间、或一个或多个毛细管,如上面关于图12a-12h所述),其可被配置以保持特定体积的所给试剂。例如,封闭尖端的凹陷或其它表面设计可具有配置的尺寸以便当封闭尖端被浸至目标溶液中时,在封闭尖端上沉积或捕获所限定的体积——取决于试剂(例如,培养基、磷酸缓冲盐水、dmso)的表面张力和表面亲和力。

当试剂处于固体(例如,粉末)形式时的情况,本文描述的封闭尖端可以与液体或溶液形式的试剂相同的方式装载处于溶液的试剂,和溶液中的液体可随后被允许蒸发,留下保留在封闭尖端上的固体试剂。在一些变化中,当试剂是细胞或微生物时,封闭尖端可装载细胞或微生物——通过用冷冻保存溶液态的含有细胞或微生物的悬浮小滴以与液体或溶液形式的试剂相同的方式进行装载,并且试剂装载装置可随后被冷冻。应该理解,不是所有封闭尖端都需要装载试剂(例如,一些封闭尖端可不装载试剂以便提供对照条件)。

在某些情况下,本文描述的封闭尖端可装载凝胶,诸如但不限于水凝胶或溶胶-凝胶。在一些情况中,封闭尖端可直接用凝胶进行装载。在其它情况下,封闭尖端可装载液体,所述液体可随后固化形成凝胶(例如,聚合可为光引发的、化学引发的、热引发的、或类似引发的)。在其它情况下,封闭尖端可装载液体,所述液体可随后至少部分地蒸发以留下凝胶。在这些变化的一些中,试剂或测试剂可处于凝胶形式,而在其它变化中,试剂或测试剂可被掺入凝胶(即,凝胶可使试剂或测试剂固定)。在这些变化中,试剂或测试剂的非限制性实例可包括蛋白质、核酸、细胞、微生物(例如,细菌、真菌)、植物(例如,藻类)、病毒、小分子药物或任何化合物、或想要检测的特定试剂文库(例如,细菌文库、药物文库(例如,激酶抑制剂文库)、抗体文库,病毒文库、基因文库、聚合物文库、肽文库、细胞文库、或类似物)。

装载的本文描述的试剂装载装置(即,试剂装载装置1000或试剂装载装置1800)可被降低至本文描述的多孔分离装置(例如,多孔分离装置100)中,以便试剂装载装置的突起部(例如,突起部1002或突起部1802)进入分离孔。在其中系统包括定向部件的变化中,定向部件可被用于保证试剂装载装置被正确地定向,以便试剂装载装置的每个突起部进入所希望的分离孔。例如,在图22到26a-26b中所显示的变化、图27和28a-28b中显示的变化、和图29和30a-30b中显示的变化中,在将试剂装载装置降低至多孔分离装置中之前,试剂装载装置的槽口可与多孔分离装置或接合器的楔对齐。在其中试剂装载装置被配置以对应于接合器上的定向部件的变化中,在装载的试剂装载装置被降低至孔中之前,接合器可被放置在多孔分离装置(或其它接收装置)上。

试剂装载装置应该足够低以便装载于封闭尖端上的试剂被浸没在分离孔的内容物中。在一些变化中,如试剂装载装置1000,此足够量的降低可通过降低试剂装载装置1000直到板1008的远表面1010接触多孔分离装置(例如,多孔分离装置100)的近表面而实现。在其它变化中,如试剂装载装置1800,此足够量的降低可通过降低试剂装载装置1800直到腿1822的远表面到达基底支持物和/或多孔分离装置静置于其上的表面而实现。可选,应该理解,试剂装载装置可被降低以便封闭尖端和/或试剂或测试剂接触但不穿透分离孔的内容物的近表面(例如,在其中分离孔含有凝胶或固体的一些变化中)。

虽然封闭尖端浸没在分离孔的内容物中,但是封闭尖端可被振动以促进试剂与分离孔的内容物的混合。例如,在其中通过马达单元2000提供振动的一些变化中,开/关按钮2012可被用于控制马达2002。马达2002可被打开,其可导致单元2008振动,其可将振动的马达通过与试剂装载装置1800的槽1820接合的马达单元2000上的槽2010传递至试剂装载装置1800。作为另一个实例,在其中通过具有安装在其上的马达单元的手持式装置引起振动的一些变化中,手持式装置可被固定至试剂装载装置(例如,通过夹具)。用户的拇指可被用于打开马达,其可导致线型或旋转振动。作为另一个实例,在其中通过磁场引起振动的一些变化中,磁场可被打开和关闭(例如,以约10hz至约200khz地频率)以便引起振动。

同样应该领会到,在其它变化中,在不使用分离孔结构的情况下,试剂装载装置可被用于将一个或多个试剂或测试剂递送至容腔。例如,试剂装载装置可被用于将一个或多个试剂或测试剂递送至包括固体或凝胶涂层的容腔。在这种情况下,涂层可充分地限制试剂或测试剂的迁移或扩散,以便由试剂装载装置的每个突起部递送的试剂或测试剂与其它保持充分地分离。试剂装载装置可被降低至涂层的表面上以便封闭尖端和/或试剂或测试剂接触涂层的表面,但封闭尖端不会穿透表面;或试剂装载装置可被降低至表面上以便封闭尖端穿透表面。在一些变化中,在试剂或测试剂被递送至涂层之后试剂装载装置可被移除,或试剂装载装置可被留在适当位置。在一个具体地非限制性实例中,试剂装载装置可被用于将一个或多个抗菌剂递送至具有在其表面培养的细菌或随后将具有在其表面培养的细菌的凝胶(例如,琼脂凝胶)。

在试剂被递送至分离孔之后,可允许经过足够的一段时间以便任何需要的反应可发生。分离孔结构可随后从容腔移除(例如,在多孔分离装置100中,分离孔结构602可从容腔450移除)。这可允许同时对容腔的全部内容物实施的处理,如清洗步骤;用染色剂、报告基因(reporter)、或抗体处理;或类似步骤。在分离孔结构被移除之前溶液可单独地从每个分离孔移除(例如,通过抽吸),或在分离孔结构被移除之后其作为整体可被从容腔移除(例如,通过抽吸)。在其中第二分离孔结构(或第三、第四、第五等等)在分离孔结构的分离孔中被耦接的变化中,第二分离孔结构可与分离孔结构一起被移除,或第二分离孔结构可被移除而留下在容腔耦接的分离孔结构,或第二分离孔结构可被留下在容腔中耦接而将分离孔结构移除(在其中的变化中,第二分离孔结构以这样的方式与基底耦接,其允许其在没有分离孔结构的情况下保持耦接(例如,如果第二分离孔结构通过边界壁进行耦接))。

在一些变化中,在将分离孔结构移除后,相同或不同分离孔结构可以与以上所述初始将分离孔结构耦接至容腔中的相似的方式在容腔中耦接。例如,第一步骤(例如,将一个第一抗体从第一抗体文库递送至分离孔的每个)可以随着容腔中的组合物被第一分离孔结构分离至所给数目的分离孔中而被实施。第二步骤(例如,处理感兴趣的药物)可以随着第一分离孔结构被移除和随着在容腔中形成一个连续区域的组合物而随后被实施。第三步骤(例如,将一个第二抗体从对应于第一抗体文库的第二抗体文库递送至分离孔的每个)可以随着被第一分离孔结构重新分离的容腔中的组合物重新耦接至容腔中而随后被实施。作为另一个实例,对于第三步骤,不同的第二分离孔结构可以被耦接至容腔中以将容腔中的组合物不同地划分用于该步骤。

在检测过程被实施之后,结果可使用已知技术进行分析。在一些变化中,可以使用为本文描述的多孔分离装置特别设计的显微镜安装接口。多孔分离装置和/或试剂装载装置可为一次性的,以便一个或两个被配置以用于单独使用。因此,在完成所需步骤之后,一个或两个可被丢弃。在以上步骤关于多孔分离装置100被描述的某种程度上,应该理解,以上步骤可使用其它具有分离的边界壁和基底的多孔分离装置(例如,图13中所示的多孔分离装置1300,或图14a-14b和15a-15b中所示的分离孔卡扣和分离孔锁设计),或使用具有固定地附接的边界壁和基底或完整的边界壁和基底(如上述的多孔分离装置500的容腔502)的多孔分离装置而被相似地实施。

此外,虽然关于结合使用本发明所描述的多孔分离装置,本发明所描述的试剂装载装置的装载和使用已在上面描述,但是应该理解,在一些变化中,针对任意多孔分离装置的使用,本发明所描述的试剂装载装置的装载和使用可被单独地实施。即,试剂装载装置可被用于将材料递送至容器而不是本发明所描述的多孔分离装置中的容器。例如,在有或没有接合器(如上述的接合器)的情况下,试剂装载装置可与具有固定壁的板(例如,多孔板或具有单个孔的板)一起使用。相反地,针对任意本发明所描述的试剂装载装置的使用,本发明所描述的多孔分离装置可单独地被使用。例如,不使用本发明所描述的试剂装载装置的装置或方法可被用于将材料递送至本发明所描述的多孔分离装置的单个孔。

具体细节在以上说明书中被给出以提供实施方式的彻底理解。但是,可以理解,在没有这些具体细节的情况下实施方式可被实践。本领域技术人员可容易地确认,在公开的实施方式中可发生各种变化和替换,它们的使用和配置以获得与通过本发明所描述的实施方式获得的结果相同的结果。因此,不存在意图将权利要求限制于公开的示例性形式。各种变化、修饰和替换结构落在如权利要求中所表述的公开内容的范围和精神内。

实施例#1

作为一个实例,本发明所描述的方法可被用于研究药物途径。

1.细胞引入:在将边界壁、基底和边界密封耦接以形成容腔之后,细胞悬浮液可被移液至容腔中。

2.细胞分离:分离孔结构可随后在容腔中进行耦接以将细胞悬浮液分离至分离的分离孔中,将悬浮液中的细胞分离至每个孔中。可预先计算细胞密度或浓度,以获得每个分离孔中所需数目的细胞和体积。例如,如果每个分离孔中所需细胞的数目是x,并且分离孔的数目是y,并且每个分离孔中的所需体积是z(μl),那么细胞悬浮液的细胞密度或浓度应该为每微升x/z细胞,并且y*z微升的总体积应该被移液至容腔中。可确定每个分离孔中细胞的所需数目x以用于将进行的具体分析。例如,用于增殖分析,x应该足够小以允许接种和处理之后的细胞增殖的空间。作为另一个实例,用于细胞死亡分析,x应该足够大以维持来自处理的袭击(assault)。每个分离孔中所需要的体积z可基于实际情况和药物递送浓度进行确定。例如,z可被选择足够大以便溶液不会显著地蒸发或干燥。此外或可选地,z可被选择足够小以便在分离孔结构和试剂装载装置处于适当位置之后,溶液通过分离孔结构而保持分离(即,溶液不会流过分离孔结构的壁;分离孔的体积容纳孔中组合物的体积,以及被插入至组合物中的试剂装载装置的突起部的体积)。体积z也可被选择以获得所需的稀释:如果突起部上的试剂或药物的体积是m(μl),并且当试剂或药物被递送时所需要的稀释是因子n,那么z可等于m*(n-1)。

3.细胞附着:细胞可随后被允许附着于基底一定时间。

4.结合:在细胞达到所需条件之后,分离孔结构可随后被移除,以便容腔再次是连续的(即,腔中所有细胞处于同一培养基中)。

5.处理:测试条件可被施加至细胞上。例如,测试剂(如所需浓度的药物)可被装载至容腔中(即,药物可被稀释至腔中的培养基中)。在其它变化中,首先容腔中的溶液可被抽吸,并且随后该溶液可被药物溶液替换(例如,在培养基中混合)可被装载至预抽吸腔中。可选地,在没有移除分离孔结构的情况下可施加测试条件。例如,分离孔在适当位置的情况下,可利用用相同药物装载试剂装载装置的每个突起部的试剂装载装置递送药物。试剂装载装置可随后被降低至容腔中,以便试剂装载装置的一个突起部进入分离孔的每个,并且突起部的试剂装载尖端浸没至每个分离孔中的溶液中,但没有接触底部上的细胞。突起部可随后被振动以促进试剂与细胞悬浮液的混合。试剂装载装置可随后从多孔分离装置移除。

6.制备:在测试条件成熟之后,可以筛选细胞的各种标记。细胞可首先被准备用于分析:腔中的培养基可被抽吸。可用磷酸缓冲盐水清洗过量的培养基。腔中的细胞可用福尔马林或多聚甲醛溶液固定。固定溶液可随后被抽吸。细胞可随后用磷酸缓冲盐水进行清洗,通过血清或白蛋白溶液阻断,如必要通过tritonx-100透化,并且随后浸入磷酸缓冲盐水。

7.重新分离:分离孔结构可在容腔中重新耦接以将细胞重新分离至分离孔中。(在上面步骤5中可选的变化中,其中在没有移除分离孔结构的情况下施加测试条件,重新分离是不必要的。)

8.分析剂引入:分析试剂文库(例如,第一抗体文库)可随后用试剂装载装置进行递送。具体地,用分析剂(如第一抗体)的文库预装载的试剂装载装置可随后被降低至容腔中,以便试剂装载装置的一个突起部进入分离孔的每一个,并且突起部的试剂装载尖端浸没至每个分离孔中的溶液中,但是没有接触底部上的细胞。突起部可随后被振动以促进试剂与细胞悬浮液的混合。试剂装载装置可随后从多孔分离装置移除。可允许充足的温育时间以便分析剂(如第一抗体)可附接于它们的目标。

9.重新结合:分离孔结构可从容腔移除,以便所有细胞再次处于同一容腔中。在分离孔结构被移除之前,每个分离孔中的溶液可被单独地抽吸;或者在将溶液从容腔抽吸之前,可移除分离孔结构。

10.检测剂引入:在用磷酸缓冲盐水清洗之后,可分析分析剂(如第一抗体)的活性。例如,如果使用非结合第一抗体文库,可用第二抗体替换磷酸缓冲盐水。每个分析剂(如第一抗体)的身份(identity)可通过由分离孔形成的每个细胞聚集的位置进行指示。可使用一个第二抗体检测和区分无限数目的第一抗体,而不是用不同的第二抗体染色每一个不同的第一抗体。可重复步骤8到10的分析,每次装载不同的第一和第二抗体。

实施例#2

作为另一个实例,本发明所描述的方法可被用于药物筛选。

1.细胞引入:在将边界壁、基底和边界密封耦接以形成容腔之后,细胞悬浮液可被移液至容腔中。可预先计算细胞密度和浓度,以获得每个分离孔中所需数目的细胞和体积。例如,如果每个分离孔中所需细胞的数目是x并且分离孔的数目是y,并且每个分离孔中的所需体积是z(μl),那么细胞悬浮液的细胞密度和浓度应该为每微升x/z细胞,并且y*z微升的总体积应该被移液至容腔中。可确定每个分离孔中细胞的所需数目x以用于待进行的具体分析。例如,用于增殖分析,x应该足够小以允许接种和处理之后的细胞增殖的空间。作为另一个实例,用于细胞死亡分析,x应该足够大以维持来自处理的袭击。每个分离孔中所需要的体积z可基于实际情况和药物递送浓度进行确定。例如,z可被选择足够大以便溶液不会显著地蒸发或干燥。此外或可选地,z可被选择足够小以便在分离孔结构和试剂装载装置处于适当位置之后,溶液通过分离孔结构而保持分离(即,溶液不会流过分离孔结构的壁;分离孔的体积容纳孔中组合物的体积,以及被插入至组合物中的试剂装载装置的突起部的体积)。体积z也可被选择以获得所需的稀释:如果突起部上的试剂或药物的体积是m(μl),并且当试剂或药物被递送时所需要的稀释是因子n,那么z可等于m*(n-1)。

2.细胞分离:分离孔结构可随后在容腔中进行耦接以将细胞悬浮液分离至分离的分离孔中。

3.细胞附着:细胞可被允许沉淀至分离孔的底部,并且可允许一定时间用于细胞粘附和生长。

4.处理:在每个突起部上预装载有一定体积m(μl)的药物文库的试剂装载装置可随后被降低至容腔中,以便试剂装载装置的一个突起部进入分离孔的每个。每个分离孔中的体积z,和/或体积m,可被选择以实现所需的药物稀释:如果突起部上的试剂或药物的体积为m(μl),并且当试剂或药物被递送时所需要的稀释是因子n,那么z可等于m*(n-1)。突起部可随后被振动以促进药物与细胞悬浮液的混合。试剂装载装置可随后从多孔分离装置移除。

5.分析:可通过活细胞分析分析每个分离孔中药物的效果。可获取每个孔中的细胞的明场图像或视频。如果细胞是固有荧光(例如,由于转染至细胞基因组中的gfp基因),那么可获取细胞的荧光图像。此外或可选地,每个分离孔中的培养基可被取样用于进一步测试。

细胞也可被进一步地处理用于分析。例如,细胞可被清洗、固定和透化,并且感兴趣的分析试剂(如第一抗体)可被引入。在温育和清洗之后,检测试剂(如第二抗体)可被引入。在温育和清洗之后,可基于分析试剂的信号分析对每个药物的细胞反应。如果分离孔结构已被移除,那么可通过每个细胞聚集的位置区分不同的药物。

在移除分离孔结构之后可对容腔中的细胞执行各种分析。例如,在染色测定中,不用处理和染色每个分离孔中的细胞,边界孔中所有的细胞可同时地被处理和染色,而不需要机器人液体处理器或多通道移液器。在荧光分析中,可获取来自细胞的荧光信号。可通过区分每个细胞聚集之间由于分离孔结构的空间分离容易地区分每个药物的效果。

实施例#3

作为另一个实例,本文描述的方法可以被用于评估药物对来自个体(例如,患者)的多个细胞类型的效果。

1.药物装载:在将边界壁、基底和边界密封耦接以形成容腔之后,包括药物的组合物可被移液至容腔中。

2.分离:分离孔结构可随后在容腔中进行耦接以将组合物分离至分离的分离孔中。

3.细胞引入:预装载有来自个体的细胞文库的试剂装载装置可随后被降低至容腔中,以便试剂装载装置的一个突起部进入分离孔的每一个。突起部可随后被振动以促进细胞与包括药物的组合物混合。试剂装载装置可随后从多孔分离装置移除。

4.分析:药物对每个分离孔中的细胞的效果可通过活细胞分析进行分析。可获取每个孔中的细胞的明场图像或视频。如果细胞是固有荧光(例如,由于转染至细胞基因组中的gfp基因),那么可获取细胞的荧光图像。此外或可选地,每个分离孔中的培养基可被取样用于进一步测试。

为了观察细胞响应药物的的具体活性,每个孔中的培养基可被抽吸,并且随后分离孔结构可从容腔移除;或者,分离孔结构可从容腔移除并且随后抽吸培养基。可对容腔中的细胞执行各种分析。例如,在染色分析中,不用处理和染色每个分离孔中的细胞,容腔中的所有细胞可被同时地处理和染色,而不需要机器人液体处理器或多通道移液器。在荧光测定中,可获取来自细胞的荧光信号。药物对来自个体的多个细胞类型的效果可通过区分每个细胞聚集之间由于分离孔结构的空间分离容易地进行区分。

实施例#4

作为另一个实例,本文描述的方法可以被用于平行分析对多个个体(例如,患者)的药效。

1.药物装载:在将边界壁、基底和边界密封耦接以形成容腔之后,包括药物的组合物可被移液至容腔中。

2.分离:分离孔结构可随后在容腔中进行耦接以将组合物分离至分离的分离孔中。

3.细胞引入:预装载有来自不同个体的细胞文库的试剂装载装置可随后被降低至容腔中,以便试剂装载装置的一个突起部进入分离孔的每一个。突起部可随后被振动以促进细胞与包括药物的组合物混合。试剂装载装置可随后从多孔分离装置移除。

4.分析:药物对每个分离孔中的细胞的效果可通过活细胞分析进行分析。可获取每个孔中的细胞的明场图像或视频。如果细胞是固有荧光(例如,由于转染至细胞基因组中的gfp基因),那么可获取细胞的荧光图像。此外或可选地,每个分离孔中的培养基可被取样用于进一步测试。

为了观察细胞响应药物的的具体活性,每个孔中的培养基可被抽吸,并且随后分离孔结构可从容腔移除;或者,分离孔结构可从容腔移除并且随后抽吸培养基。可对容腔中的细胞执行各种检测。例如,在染色测定中,不用处理和染色每个分离孔中的细胞,容腔中的所有细胞可被同时地处理和染色,而不需要机器人液体处理器或多通道移液器。在荧光测定中,可获取来自细胞的荧光信号。药物对不同个体的细胞的效果可通过区分每个细胞聚集之间由于分离孔结构的空间分离容易地进行区分。

实施例#5

作为另一个实例,本文描述的方法可以被用于平行分析多个个体(例如,患者)的药效。

1.药物引入:在将边界壁、基底和边界密封耦接以形成容腔之后,包括药物的组合物可被移液至容腔中。

2.分离:分离孔结构可随后在容腔中进行耦接以将组合物分离至分离的分离孔中。

3.细胞引入:来自不同个体的细胞可随后被单独地递送至每个分离的分离孔(例如,使用移液器)。多孔分离装置可随后被振动(例如,通过将其放置在震动器上)以促进细胞与包括药物的组合物混合。

4.分析:药物对每个分离孔中的细胞的效果可通过活细胞分析进行分析。可获取每个孔中的细胞的明场图像或视频。如果细胞是固有荧光(例如,由于转染至细胞基因组中的gfp基因),那么可获取细胞的荧光图像。此外或可选地,每个分离孔中的培养基可被取样用于进一步试验。

为了观察细胞响应药物的具体活性,每个孔中的培养基可被抽吸,并且随后分离孔结构可从容腔移除;或者,分离孔结构可从容腔移除并且随后抽吸培养基。可对容腔中的细胞执行各种分析。例如,在染色测定中,不用处理和染色每个分离孔中的细胞,边界孔中的所有细胞可被同时处理和染色,而不需要机器人液体处理器或多通道移液器。在荧光分析中,可获取来自细胞的荧光信号。药物对不同个体的细胞的效果可通过区分每个细胞聚集物之间由于分离孔结构的空间分离容易地进行区分。

实施例#5

作为另一个实例,本发明所描述的方法可被用于平行分析试剂对细菌培养的效果。

1.细菌培养:包括细菌培养基的凝胶(如水凝胶(例如,琼脂凝胶))可被布置于腔中。该腔可为本文描述的分离孔装置的容腔,或其可为固定壁型板的腔,或类似物。同时凝胶可以聚合形式进行布置,或者预凝胶溶液可被布置于腔中并且随后固化以形成凝胶。靶剂(如细菌)可在凝胶的表面上培养,或者可被掺入凝胶。

2.处理:如本文描述的试剂装载装置可装载一个或多个测试文库,如蛋白质文库、核酸文库、细胞文库、微生物文库(例如,细菌文库、真菌文库)、植物文库(例如,藻类)、病毒文库、小分子药物或任何化合物文库(例如,激酶抑制剂文库)、抗体文库、或类似物,或这些的任何组合。可选地,试剂装载装置可用一个或多个测试文库预装载。试剂可处于液体形式、凝胶形式、或固体形式,和/或可被固定于试剂递送装置的封闭尖端上,如通过水凝胶或溶胶-凝胶。试剂装载装置可被降低至腔中以便试剂装载装置的封闭尖端与腔中的凝胶表面接触。试剂装载装置可被留在适当位置或可被移除。

3.分析:可分析每个试剂对凝胶表面上的细菌培养的效果。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1