液体燃料合成系统的制作方法

文档序号:5130063阅读:214来源:国知局
专利名称:液体燃料合成系统的制作方法
技术领域
本发明涉及液体燃料合成系统,特别是,涉及以含有氢、一氧化碳、二氧化碳的合成气体,例如天然气以及热分解石油、煤等的化石燃料,生物燃料,各种废弃物等获得的合成气体等可燃性气体作为原料,用于进行液体燃料合成所采用的液体燃料合成系统。
背景技术
近年来,由于环境问题以及资源枯竭、减少化石燃料(也称为矿物燃料)等的要求,期待着以煤及生物燃料(biomass)等固体燃料、以及有机性废弃物作为原料的液体燃料合成技术的实用化。
为了由固体燃料及废弃物合成液体燃料,有直接油化的工艺,以及一度使废弃物气化获得以氢、一氧化碳等作为主体的合成气体(生成气体),将获得的合成气体作为原料,进行液体燃料的合成的工艺。这里,在利用气化工艺的情况下,由于经由一度合成的气体之后,将其精制获得液体燃料,所以,具有能够获得纯度高、高质量的液体燃料的优点。
在这种情况下,根据作为最终制品的液体燃料的种类,通过将合成气体中的氢和一氧化碳气的比例(H2/CO)及二氧化碳的量保持在所定的值,可以提高液体燃料的收率(产率)。
在利用如上所述的现有技术的气化方法合成液体燃料的情况下,在将合成气体导入到液体燃料合成工序之前,需要除去二氧化碳的工序。这是因为,在通过气化获得的合成气体中,一般含有过剩的二氧化碳。为了除去二氧化碳,有物理吸收工艺和化学吸收工艺等各种方法,但这些方法,需要进行吸收液的补充和废液的处理,工艺很复杂。从而,可能适于采用大型装置,但在小型装置的情况下存在着设备成本和运行成本增大的问题。

发明内容
因此,本发明的目的是,提供一种以氢、一氧化碳、二氧化碳的合成气体作为原料,能够在小规模的装置中,以低成本制造液体燃料的液体燃料合成系统。
为了达到上述目的,根据本发明的第一种形式,液体燃料合成系统包括进行含有氢和一氧化碳的合成气体或含有氢、一氧化碳和二氧化碳的合成气体的成分调整,获得精制的气体的气体精制装置102;以用气体精制装置102获得的精制气体301a作为原料,合成液体燃料309的液体燃料合成装置300;其中,气体精制装置102被构成为,具有将氢分离装置120以及给氢分离装置120设旁路的旁通管路406,将前述合成气体的一部分通过氢分离装置120而获得高纯度的氢j,与通过旁通管路406的合成气体混合,调整精制气体301a中的氢和一氧化碳或氢和一氧化碳和二氧化碳的比例。
液体燃料例如是甲醇、二甲醚、汽油等。与合成气体成分调整的同时,典型地还进行剩余成分的去除。
通过这种结构,由于气体精制装置具有氢分离装置和给氢分离装置设旁路的旁通管路,将使前述合成气体的一部分通过氢分离装置获得的高纯度的氢和通过旁通管路的合成气体混合,所以可以调整精制气体中的氢和一氧化碳或者氢和一氧化碳和二氧化碳的比例。
这里,当合成气体是含有氢和一氧化碳的气体时,调整氢和一氧化碳的比例,当合成气体是含有氢和一氧化碳和二氧化碳的气体时,调整氢和一氧化碳的比例,或者也可以调整调整氢和一氧化碳及二氧化碳的比例。
根据本发明的一种形式,可以包括将被处理物a热分解气化,产生向气体精制装置102供应的前述合成气体的气化装置101。
根据本发明的一种形式,氢分离装置120被构成为,从前述合成气体中除去可燃性的剩余成分k,获得高纯度的氢j;气化装置101可以被构成为,利用燃烧前述除去的剩余成分k获得的热量,作为前述热分解气化所需的反应热的一部分或者全部。
此外,根据本发明的第二种形式,包括使高温流动介质(媒体)在内部流动、形成具有第一界面的气化室流动床,在前述气化室流动床内将被处理物a气化,产生含有氢和一氧化碳及二氧化碳的合成气体b的气化室1;形成使高温流动介质在内部流动,具有第二界面的炭燃烧室流动床,使伴随着前述气化室中的气化产生的炭h在前述炭燃烧室流动床内燃烧、加热前述流动介质的炭燃烧室2;对在气化室1内产生的合成气体的进行成分调整,获得精制气体301a的气体精制装置102;以精制气体301a作为原料合成液体燃料的液体燃料合成装置300;其中,气化室1和炭燃烧室2被构成为,以在前述各个流动床的界面的铅直的上方气体不能流通的方式,被第一间隔壁15隔开,在第一间隔壁15的下部,形成将气化室1和炭燃烧室2连通的连通口25,该连通口25的上端的高度是使得,在前述第一界面和第二界面以下形成连通口,在炭燃烧室2中被加热的流动介质,通过连通口25从炭燃烧室2侧向气化室1侧移动;气体精制装置102,具有氢分离装置120和给氢分离装置120设旁路的旁通管路406,将前述合成气体的一部分通过氢分离装置120获得的高纯度氢j,和通过旁通管路406的合成气体混合,调整精制气体301a中的氢和一氧化碳和二氧化碳的比例。
与合成气体的成分调整的同时,典型地,也进行剩余成分k的去除。
根据本发明的一种形式,氢分离装置120被构成为,从前述合成气体中进行可燃性的剩余成分k获得高纯度的氢j;气化装置101被构成为,利用燃烧除去的剩余成分k获得的热量,作为加热炭燃烧室2内的前述流动介质的热源的一部分或全部。
根据本发明的一种形式,氢分离装置120被构成为,具有吸附剩余成分k的吸附材料121d、122d、123d,容纳前述吸附材料的容器121e、122e、123e,将前述合成气体导入前述容器内,通过使该容器内的压力在相对的高压和低压之间变化,反复进行剩余成分k的吸附和脱吸附的所谓压力摆动吸附式氢分离装置(例如参照图2)。
根据本发明的一种形式,液体燃料合成装置300被构成为,在液体燃料的合成时,产生可燃性的剩余气体307a;将液体燃料合成装置300产生的可燃性的剩余气体307a在氢分离装置120的上游侧与前述合成气体混合。


图1是本发明的第一种实施形式的甲醇合成系统的流程图。
图2是表示在本发明的实施形式中使用的氢分离装置的一个例子的流程图。
图3是表示在本发明的实施形式中用甲醇合成装置系统的一个例子的流程图。
图4是本发明的第二种实施形式的甲醇合成系统的流程图。
图5是表示本发明的实施形式中用的气化炉的一个例子的示意性剖面图。
具体实施形式下面,参照附图对本发明的实施形式进行说明。此外,在各图中,对于相互相同或相当的构件付与相同的标号或类似的标号,省略其重复说明。
图1是根据本发明的第一种实施形式的甲醇合成系统的流程图。它是本发明的基本实施形式,其构成包括除去合成气体b中不需要的物质的同时,调整合成气体b中的氢、一氧化碳、二氧化碳成分的比例、获得精制的气体的精制装置102,作为以精制气体301a为原料,进行液体燃料309的合成的液体合成装置的液体燃料合成系统300。在气体精制装置102和液体燃料合成系统300之间设置气体压缩装置107’。
此外,这里作为液体燃料合成系统的一个例子,对于甲醇合成系统进行说明,但同样的系统,也可以用于二甲醚,汽油等其它液体燃料的合成。
此外,如图1所示,第一种实施形式中的气体精制装置102典型的构成包括作为除去合成气体b不需要的物质的不需要物质除去装置的清洗装置103,用于调整合成气体b中的氢、一氧化碳、二氧化碳的成分比例用的CO转化装置104及氢分离装置120。此外,如图1所示,甲醇合成装置系统300典型的构成包括甲醇合成装置320,甲醇蒸馏装置330。
气体精制装置102的构成,包括清洗合成气体b的清洗装置103,将合成气体b升压的气体压缩装置107,使合成气体b中的一氧化碳气CO与水蒸气H2O反应变换成氢气H2的CO转化装置104,从前述CO转化后的合成气体j中进行剩余成分k的除去、获得纯氢的氢分离装置120。
此外,在连接到气体压缩装置107的排出口上的气体配管401上,连接三通阀451的一个口上,连接到第二个口上的配管402连接到CO转化装置104上,连接到第三该口上的配管403以给CO转化装置104设旁路、在其出口配管404处汇流的方式进行连接。配管403的连接位置,位于CO转化装置104与后面所述的三通阀452之间。
此外,三通阀452的一个口,连接到CO转化装置104的出口配管404上,连接到第二个口上的配管405连接到氢分离装置120上,连接到第三个口上的配管406,以给氢分离装置120设旁路、在其出口配管405处汇流的方式连接。此外,在三通阀452的下游侧的配管405上,连接有从后面详细描述的甲醇合成装置系统300来的甲醇合成剩余气体配管412。
气体清洗装置103是将罐状的容器竖立设置而构成的清洗塔。利用循环泵103a将滞留在塔的底部的水送往配置在塔的上部的喷嘴,撒布到塔内。将从综合型气化炉101(参照图4)提供的合成气体b,从清洗塔的下部导入,与撒布的水对流接触进行清洗。特别是,除去伴随气体b的炭等固体成分及氯气等。
气体清洗装置103的塔顶部的排气口,连接到气体压缩装置107上。气体压缩装置107,压缩清洗后的合成气体。在CO转化装置104和氢分离装置120中需要的压力优选在1.5Mpa以上,更优选在2.0MPa以上。压缩装置107,处理气体流量大时,可以采用离心式压缩机,在处理气体流量小时,可以采用往复式压缩机等容积式压缩机。
在气体压缩装置107的下游侧,经由前述三通阀451设置CO转化装置104,设置给CO转化装置104设旁路的气体配管403。CO转化装置104是罐状容器竖立设置而构成的塔。在容器中填充CO转化催化剂。此外,在CO转化装置104上连接供应水蒸气1的水蒸气供应配管。
下面,接着参照图1对第一种实施形式的甲醇合成系统的作用进行说明。在第一种实施形式中,以含有氢和一氧化碳的合成气体,或者以含有氢和一氧化碳和二氧化碳的合成气体作为原料,进行作为液体燃料的甲醇的合成。特别是,优选将以含有氢和一氧化碳作为主成分的气体,或者以含有氢和一氧化碳和二氧化碳作为主成分的气体作为原料。这里,所谓“作为主成分”不单纯是指杂质的程度,而且指作为甲醇的合成原料成分适用的程度。此外,前述合成气体,可以是含有氢及一氧化碳的气体,或者也可以是含有氢、一氧化碳及二氧化碳的气体。一般地,可以是天然气及通过石油的改性反应获得的,也可以是通过将煤、木质类、草木类的生物燃料,各种废弃物等进行热分解气化获得的。此外,也可以利用高炉、炼焦炉等产生的副产物气体。
合成气体b,首先在气体精制装置102中除去包含在合成气体b中的不需要的物质。不需要的物质用在气体精制装置102中的特别是气体清洗装置103除去。这里,不需要的物质是指,典型的有包含在合成气体b中的硫化氢,硫化羰等含有硫的气体成分,氯化氢等含有氯的气体成分,灰尘成分、碳粒子等。含有硫的气体成分及含有氯的气体成分,除了起着使后级的甲醇合成装置320中的催化剂恶化的作用之外,还成为腐蚀工场设备的原因,所以将其除去,使之典型地在10ppm以下,优选在1ppm以下,更优选在0.1ppm以下。为了有效地除去硫化物,可以设置如图4所示的第二实施形式中那样的脱硫装置。
此外,灰尘成分及碳粒子等固体成分,由于附着在气体清洗装置103的后级的氢分离装置120中的吸附材料、甲醇合成装置320中的催化剂等上,使吸附材料和催化剂的性能降低,所以,必须将其除去,使其浓度足够低。
接着,将除去不需要的物质后的合成气体,为了成为适合于后级的液体燃料合成反应的组分,进行氢及一氧化碳、二氧化碳的成分比的调整。由氢H2及一氧化碳CO、二氧化碳CO2合成甲醇CH3OH的合成反应,根据下面的两个化学式进行。
(1)(2)反应式(1)表示,为了用1摩尔一氧化碳获得1摩尔甲醇,需要2摩尔氢。此外,反应式(2)表示,为了由1摩尔二氧化碳获得1摩尔甲醇,需要3摩尔氢。将这两个反应最佳化的合成气体中的氢、一氧化碳、二氧化碳的摩尔比,可以利用由下式表示的R值进行评价,R=2时,反应式(1)和反应式(2)两者最佳化,甲醇的收率最高。
R=(H2-CO2)/(CO+CO2)其中,R=2是化学上最佳的组成,实际上,由于甲醇反应装置的性能等引起的损失,使得R=2以上,优选在2.1~2.2左右。
在合成气体中不含二氧化碳的情况下,上述R值单纯地作为氢与一氧化碳的摩尔比,表示氢和一氧化碳的摩尔比为2即可,这是由于反应根据式(1)进行。但是,在以化石燃料和有机废弃物作为原料获得的合成气体中,一般地,由于平衡反应,包含有一定程度的二氧化碳。在这种情况下,甲醇合成反应根据式(2)进行。上述R值是考虑到这一点时的指标值。
为了将含有任意的氢、一氧化碳、二氧化碳的合成气体的R值调整到2以上,在现有技术中,一般采用下述方法。首先,将合成气体的一部分通过CO转化装置,在催化剂的存在下进行由下式表示的CO转换反应(shift reaction),将合成气体中的一氧化碳的一部分变换成氢。
其次,使CO转换反应后的气体与未通过CO转化装置的合成气体的剩余部分混合,调整到最终的氢和一氧化碳的比例成为2以上。这里,由于当合成气体中的氢和一氧化碳的比例本来就在2以上时,并不一定必须进行上述操作,所以,并不一定需要CO转化装置。
接着,利用二氧化碳除去装置,除去合成气体中的二氧化碳。这里,在能够完全除去二氧化碳的情况下,通过将CO转换反应后的合成气体中的氢和一氧化碳的比例调整成2,可以达到R=2,但是,根据二氧化碳除去装置的性能,残留若干二氧化碳,所以CO转换反应后的氢和一氧化碳的比例,根据残留的二氧化碳的量,通过调整成比2稍高的值,最终可以达到R=2。
此外,相反地,在合成气体中的氢和一氧化碳的比例本来大大超过2时,没有必要将二氧化碳全部除去,通过残留一定量的二氧化碳,可以达到R=2。
在现有技术中,作为代表性的二氧化碳除去装置,广泛采用物理吸收法和化学吸收法。作为物理吸收法的代表例,有列克吉索尔法(retisolprocess)。这是在低温下使合成气体中的二氧化碳溶解到甲醇除去的方法。此外,作为化学吸收法的代表性的例子,有胺法。这是一种使合成气体中的二氧化碳在链烷醇胺系的吸收液中进行化学反应而吸附除去的方法。
在任何一种方法中,通过对吸收了二氧化碳后的吸收液加热,都可以放出二氧化碳。即,通过一面在使合成气体与吸收液接触,吸收二氧化碳的吸收塔与加热吸收液、将二氧化碳等释放到大气等中的再生塔之间,反复进行加热、冷却,一面使吸收液循环,可以连续地除去合成气体中的二氧化碳。
由于这些方式工艺复杂,所以,适合于较大型的装置,对于小型的装置,相对而言,存在着设备成本昂贵的问题。另外,因为使用液体作为介质,需要进行吸收液的补充和劣化的吸收液的抽出,需要对抽出的吸收液进行处理等等,由此存在设备的运转成本上升的问题。
由于上述问题,在本发明的实施形式中,不采用上述这种二氧化碳除去装置,通过利用氢分离装置,进行合成气体中的氢、一氧化碳、二氧化碳的成分比例的调整。
在图1所示的第一种实施形式的方式中,将在清洗装置103中清洗后的合成气体,导入三通阀451,将合成气体的一部分供应给CO转化装置104。合成气体的另外的部分被构成为,从三通阀经由旁路配管403,能够与用CO转化装置104处理的气体混合。用CO转化装置104,将合成气体中的氢和一氧化碳的比例调整到2以上。这时,在合成气体中的氢和一氧化碳的比例原来就在2以上的情况下,并不一定必须进行这种操作。
将用CO转化装置104进行过比例调整的合成气体,或者从清洗装置103直接通过旁通配管403的气体,或者将用CO转化装置104进行过比例调整的合成气体和从旁通配管403来的气体混合并进行过比例调整的合成气体,导入三通阀452,将合成气体的一部分供应给氢分离装置120。从三通阀452来的其它部分的合成气体,和给氢分离装置120设旁路、经由氢分离装置120的气体混合。
此外,三通阀451,优选以作为调节阀能够调节流过配管402和配管403的气体的流量的比例的方式构成。同时,作为调节阀的三通阀451,以利用图中未示出的控制器,将在CO转化装置104的后级与旁通配管403汇流的配管404中的前述比例、换句话说,将三通阀452之前的前述比例控制在所定值的方式,调节流过配管402和配管403的气体的流量。
在氢分离装置120中,合成气体i,将纯氢与其它气体k分离。通过将这里获得的纯氢j与未通过氢分离装置120的合成气体i的剩余部分混合,获得最终的精制的气体301a。未通过氢分离装置120的合成气体i与从三通阀452来的经由旁路配管406的纯氢j混合。
这里,将合成气体的一部分导入到氢分离装置120中的比例,由在CO转化装置104中将氢和一氧化碳的比调整到2以上之后所含的二氧化碳的量决定。即,在CO转化装置中合成气体的氢和一氧化碳的比例恰好调整到2、残留一定量的二氧化碳的情况下,由于氢和一氧化碳根据前述反应式(1)进行反应,所以成为用于进行甲醇的合成的最佳组成比。但是,由于残留的二氧化碳根据前述反应式(2)进行反应合成甲醇,所以,所需的氢完全变得不足。
因此,将合成气体的一部分通过氢分离装置120,获得作为与二氧化碳根据公式(2)进行反应的对象的纯氢j,通过将其与未通过氢分离装置将120的合成气体i的剩余部分混合,可以达到R=2以上。
此外,三通阀452优选被构成为,作为调节阀,能够调节流过配管405和配管406的气体流量的比例。同时,作为调节阀的三通阀452,利用图中没有示出的控制器,以将在氢分离装置120的后级与旁通配管406汇流的配管407中的前述比例、换句话说,将甲醇合成装置系统300前的前述比例控制在所定值的方式,调节流过配管405和配管406的气体流量。
作为氢分离装置120,优选采用后面参照附图详细描述的压力摆动吸附式的氢分离装置。它通过将加压的合成气体通过填充有合成沸石等吸附材料的塔内,选择性地吸附氢以外的成分,获得纯氢。通过使塔的压力变化,吸附材料反复进行吸附和脱吸附,可以进行再生利用。
压力摆动吸附式氢分离装置,由于其结构简单,所以,即使设备规模是小规模的,效率也几乎不会降低,此外,还具有设备成本不太高的特长。进而,吸附材料长时间不更换也能够使用,运行成本低。由此,与采用物理吸收、化学吸收等二氧化碳除去装置的现有方法相比,特别是在小规模的设备的情况下,具有能够降低设备成本和运行成本的效果。
另一方面,从氢分离装置120,获得除一氧化碳、二氧化碳之外还包含少量未被作为纯氢回收的氢的剩余气体k。由于该剩余气体k是可燃性的,具有发热量,所以在系统内可以作为热源加以利用。具体地说,使剩余气体k在图中未示出的锅炉中燃烧,通过作为蒸气进行热回收,可以进行蒸气轮机发电,或者可以对系统进行热供应。此外,在通过化石燃料及废弃物等的改性及热分解气化获得合成气体的系统的情况下,也可以作为改性或热分解用的热源使用。
按上述方式进行过成分调整的精制气体301a,在利用气体压缩装置107’升压到甲醇合成必需的压力之后,导入到甲醇合成装置系统300中。此外,气体压缩装置107’,也和压缩装置107一样,根据所处理的气体的流量和压力,可以采用离心式或容积式压缩机。
对于甲醇合成装置系统300,在后面参照附图详细描述,但一般地,为了提高在甲醇合成中的收率,将反应后的气体冷却,在将除合成的甲醇之外还含有水和乙醇等杂质的液体成分(粗甲醇)与未反应的气体成分进行气液分离之后,将未反应的气体再循环而提供给合成装置。在这种情况下,为了避免氮及氩等惰性气体及碳氢化合物等不进行甲醇合成的气体成分的积累,有必要一直将一定量的未反应气体作为液体燃料合成剩余气体的剩余气体307a抽出到系统之外。
该剩余气体307a,由于和前述氢分离装置剩余气体k一样,是可燃性,具有发热量,所以也可以在系统内作为热源使用,但由于含有未反应的氢,所以,通过配管412返回到氢分离装置120的上游。这样,通过回收利用氢,可以提高整个系统的反应效率。
这里,参照图2的流程图,作为氢分离装置的一个例子,说明本实施形式中使用的压力摆动式氢分离装置(氢PSA)。本压力摆动式氢分离装置120,包括三座吸附塔121、122、123和剩余气体保持器124。
吸附塔121、122、123,包括容器121e、122e、123e,以及其内部分别填充的吸附材料121d、122d、123d。本实施形式中,吸附材料用沸石系材料构成。
将导入合成气体i的配管405,向三座吸附塔分支,分别经由阀121a、122a、123a,连接到吸附塔的容器121e、122e、123e上。阀121a、122a、123a与吸附塔121、122、123之间的各个配管,被分别分支,在分别经过阀121c、122c、123c之后,汇流,汇流的配管连接到剩余气体保持器124上。
在剩余气体保持器124上,连接有导出剩余气体k的配管129,在该配管上设置阀124a。
另一方面,在三座吸附塔的容器121e、122e、123e上,分别连接有导出高纯度的氢j用的配管,在各配管上分别设置阀121b、122b、123b。各配管在阀121b、122b、123b的下游侧汇流成一个配管407。
下面,对压力摆动式氢分离装置120的作用进行说明。该氢分离装置120,是一种利用包含在气体i内的各种气体成分在吸附材料中的物理吸附速度的不同,进行气体成分的分离的装置。成为原料的合成气体(混合气体)i,被压缩到为了剩余成分k的吸附所必需的压力后,被导入吸附塔内。利用填充到吸附塔内的吸附材料,优先地吸附包含在混合气体i中的气体成分中分子量大的气体。
从而,由于分子量最小的氢,被吸附材料吸附的速度最慢,所以,通过将吸附塔内混合气体的滞留时间,即,将混合气体和吸附材料的接触时间设计成最恰当的值,包含在混合气体中的氢之外的剩余成分几乎全部被吸附到吸附材料上,吸附塔出口的制品气体基本上变成纯氢。一般地,由于氢气的一部分也被吸附到吸附材料上,所以,在成为原料的混合气体中的氢气中,作为制品气体(纯氢)被回收约为80%左右,但是,制品气体的氢的纯度,可以很容易获得99.99%以上。
由于吸附材料能够吸附的剩余气体成分的量是有限度的,所以,当在将一定程度的混合气i通过足够的时间时,不能进行剩余气体成分k的吸附,制品气体(纯氢)j的纯度下降。从而,在通过一定时间的混合气体后,有必要将吸附到吸附材料上的剩余气体成分脱吸附。
剩余气体成分k向吸附材料上的吸附量,因压力不同有很大的差异,压力越高,吸附的气体成分k越多。利用这一性质,通过使吸附塔内的压力在高压和低压之间变化(压力摆动),可以反复地进行剩余气体k向吸附材料上的吸附和脱吸附。
吸附时的压力和脱吸附时的压力差越大,越可以提高气体分离效率,但由于进行原料气体i的压缩时的动力消耗变大,所以,压力差过分大并不一定恰当。一般地,吸附塔内的压力优选在1.5Mpa以上,更优选在2.0MPa以上。此外,脱吸附,在大气压左右的压力下进行,但如后面所述的,在考虑到剩余气体k的利用的情况下,优选在0.1~0.2MPa的微小的加压状态下进行。
此外,吸附、脱吸附,全都在从常温到50℃的温度下进行。由于在剩余气体的脱吸附过程中,不能进行原料混合气体i的处理,所以,如图2所示,设置多个吸附塔121、122、123,切换进行脱吸附操作的吸附塔,总是在其中的一个吸附塔中进行吸附操作。
此外,剩余气体保持器124,是暂时贮存脱吸附后的剩余气体k用的容器。由于脱吸附工序间歇地进行,所以,在将脱吸附后的剩余气体k作为燃料气体加以利用等情况下,这种暂时将脱吸附后的剩余气体k贮存起来是很有益的。这样,可以连续地供应气体。也可以根据气体k的用途,设置剩余气体保持器。
进而,参照图2,说明包括三座吸附塔121、122、123的压力摆动式氢分离装置120的具体动作。这里,在具有三座的吸附塔121,、122、123中,分别对吸附、脱吸附、加压的动作进行加以说明。
原料混合气体i,在压力摆动式氢分离装置120中,被加压到必要的压力。此外,剩余气体保持器124,通过调节阀124a的开度,一直将一定流量的剩余气体k排放到外部,将保持器124的内部,保持在大气压左右的低压状态。
首先,用吸附塔121进行吸附操作。阀121a和121b打开,阀121c关闭,被加压的原料混合气体i通过塔121的内部,将混合气体i中的剩余气体成分k吸附到吸附材料121d上。这时未被吸附的残留的氢气,经由阀121b作为制品气体(纯氢)j被排出到外部。
这时,在吸附塔122中进行脱吸附操作。阀122a和122b关闭,阀122c打开,将塔122内的压力减压到和剩余气体保持器124的压力大致相等。这样,在以前的吸附操作中被吸附材料122d吸附的剩余气体k,经由阀122c,排放到剩余气体保持器124中。
这时,在吸附塔123中,阀123a打开,阀123b关闭,通过将被加压的原料混合气体i导入到塔123内,将塔内加压。由于直到塔123内被充分加压之前,吸附材料123d充分吸附剩余气体成分k是不充分的,所以,通过关闭阀123b防止剩余气体成分k混入制品气体(纯氢)j内。
通过在三座吸附塔121、122、123中,依次重复上述3个动作,可以连续地进行从原料混合气体i中分离氢。
塔的数目越多,一个吸附塔进行脱吸附的时间间隔越长,所以,可以确保充分的吸附时间,提高制品气体(纯氢)的回收效率。一般地,如图所示,塔数在三座以上即可,优选为4~10座。
在以上所述的实施形式中,作为吸附材料,对于使用吸附剩余气体的沸石系材料的情况进行了说明,但是,反之,也可以利用吸附氢的合金例如氢吸藏合金。通过使压力摆动,可以引起氢的吸附和脱吸附。在装置情况下,氢流过保持器124侧,剩余气体流过阀121b、122b、123b侧。从而,优选在阀121b、122b、123b的下游侧,设置和保持器124同样的保持器。
其次,参照图3的流程图说明甲醇合成装置系统300的一个例子。该合成装置系统300,是隔热骤冷型反应装置。利用气体压缩机107’升压到甲醇合成反应压力的气体301b,通过配管411被送入甲醇合成装置系统300中。被送往甲醇合成装置系统300的压缩气体301b,与后面所述的未反应的循环气体307b汇流,被供应给循环机322的吸入侧。作为循环机322使用离心式鼓风机。
在隔热骤冷型反应装置中,在将合成气体用热回收器预热到反应所需的温度之后,将全部原料合成气体的量的40~60%的气体303供应给甲醇合成塔321的第一催化剂层。为了将第二催化剂层以下的催化剂层的温度控制在适当的温度,将剩余的气体304作为骤冷气体,供应给各催化剂层之间,与通过上部催化剂层的气体均匀混合。借此,使由于在催化剂层上进行的隔热反应而上升的反应气体的温度降低,将下一个催化剂层的温度控制在适当的温度。作为热回收器323,使用热交换器。
甲醇合成塔321的出口气体305所保持的热量,在热回收器323中,通过将供应给合成塔321的原料合成气体303、304预热,以及在后面所述的蒸馏工序中使用的低压蒸气的产生等,被进行热回收,冷却。该被冷却的气体306,在高压分离器324中,被分离成粗甲醇308和未反应气体307。为了将蓄积在未反应气体307中的甲烷、氮等惰性成分的浓度抑制在所定的水平,将一定量的气体作为清扫气体307a通过配管412被抽出。剩余的气体307b作为循环气体,如前面所述,和从压缩工序送出的合成气体310b一起,在循环机322中被压缩,在热回收器323被预热之后,供应给甲醇合成塔321。
被分离的粗甲醇308,在蒸馏塔325中供应给蒸馏工序。粗甲醇308经过蒸馏工序,被精制成制品甲醇309。蒸馏塔325由图中未示出的初馏塔和精馏塔2个塔构成。初馏塔基本上在常压下运行,从粗甲醇中蒸馏除去甲酸甲酯,二甲醚,丙酮等低沸点成分310和石蜡类。精馏塔基本上在常压或在0.1Mpa左右的加压情况下运行,除去水及高级醇等高沸点的成分311,获得制品甲醇309。该制品甲醇通过配管413被抽取出来。
在甲醇合成塔321内,使一氧化碳和氢为主成分的合成气体,在压力5~10MPa、温度200~300℃的条件下,在以铜、锌为主成分的催化剂上反应,合成甲醇。该反应是发热反应,产生大量的热。该反应热按如前面所述被热回收器323回收利用,由于该反应热,有效地除去,对于提高反应效率是有效的,所以,为了热回收,也可以通过图中未示出的供应管将锅炉水供应给热回收器323,将反应热作为中压200℃左右的蒸气进行热回收。
此外,由于甲醇合成反应是平衡反应,只通过合成塔321一次,收率不会很高,所以,如前面所述,利用循环机(循环鼓风机)322使反应气体进行循环。有必要一直从该循环系统将生成的甲醇和与反应无关的氮、氩等惰性成分抽出。惰性气体成分作为清扫气体(purge gas)被排出系统之外,但是,由于不能只将惰性气体成分从反应系统中清除,从而,抽出一定量的循环气体,通过使包含在其中的惰性气体成分的量与投入量相等,保持反应系统内的惰性气体成分的浓度恒定。
由于抽出的清扫气体307a包含很多可燃性成分,所以,能够作为燃料加以利用,但由于该抽出量越多,越将本来用于合成甲醇合成用的有效成分抽出,所以,甲醇收率降低。从而,最好是在最初合成气体中尽可能地不包含惰性气体成分。在本实施形式中,如前面所述,通过清扫气体307a经过配管412返回到氢分离装置120的上游侧,防止甲醇收率的降低(参照图1)。即,有必要将包含在清扫气体307a中的氮、氩等惰性气体成分最终排出到系统之外,但由于在清扫气体307a中也包含未反应的氢气,所以,在将清扫气体307a排出到系统之外以前,使之通过氢分离装置120,由此可以回收未反应的氢。此外,由于在清扫气体307a中也包含未反应的一氧化碳和二氧化碳,所以,例如在使之返回三通阀452的上游的情况下,也可以将未反应的一氧化碳和二氧化碳回收。但是,在这种情况下,特意从甲醇合成工序去除的惰性气体成分的一部分通过配管406再次流入甲醇合成工序,导致甲醇收率降低。
与此相对,如图4所示,在将清扫气体307a返回到氢分离装置120之前的情况下,由于清扫气体307a中的惰性气体成分作为剩余气体被确实地排出到甲醇合成工序的外部,可以防止甲醇收率的降低,由于可以将清扫气体307a中的氢气体作为纯氢j的一部分回收使甲醇收率提高,所以是特别优选的。
上面,对于以甲醇为例从合成气体进行液体燃料合成工艺进行了说明,但即使是二甲醚、汽油、煤油、轻油等其它种类的燃料,通过仅仅使催化剂的种类和反应条件部分不同,其工艺的基本结构大致是相同的。
在二甲醚合成的情况下,在和甲醇合成催化剂基本上相同的催化剂中添加脱水催化剂,在温度250~300℃、压力5~10MPa的条件下进行反应。即,反应条件和甲醇合成基本上相同。
在汽油、煤油、轻油等碳氢化合物燃料合成的情况下,利用铁系催化剂或钴系催化剂。在铁系催化剂的情况下,一般地,在温度250~350℃、压力2.0~4.0MPa的条件下进行反应。此外,在钴系催化剂的情况下,在温度220~250℃、压力0.5~2.0MPa的条件下进行反应。它被称之为费-托(Fisher-Tropsh)反应,与甲醇合成相比,压力稍低,温度条件基本上相等。此外,在该工艺过程中,由于获得汽油、煤油、轻油等各种碳氢化合物燃料,所以,通过将蒸馏装置制成多级,可以将汽油、煤油、轻油等分离。
在上述任何一种工艺过程中,为了根据其特性高效率地进行液体燃料的合成,有以下要求。
首先,第一,合成气体的发热量必须高,即,作为有效成分的H2、CO气体的浓度必须高。这意味着,不含有很多剩余气体成分,特别是不含有很多CO2、H2O的燃烧气体成分,在部分燃烧气化的情况下,部分燃烧比例尽可能低是特别重要的。
第二,氮、氩等惰性气体最好尽可能地低。这是因为在液体燃料合成工序之前很难将它们除去,所以和反应系统的循环气体一起作为清扫气体除去。因此,当惰性气体多时,抽出对反应有效的成分(H2、CO等)的量增多,最终成为使液体燃料的收率降低的原因。
以上两点,意味着“对于反应剩余气体成分最好尽可能地少”。这是由于剩余气体成分越少,可以降低生成气体的压缩动力,可以提高工艺过程的能量效率,所以也是很重要的。
第三,合成气体的H2/CO比有必要是恰当的值。从定量的角度来说,如果在甲醇合成的情况下,H2/CO=2、在二甲醚合成的情况下H2/CO=1的话,反应效率变得最高。在H2/CO比较低的情况下,有必要通过CO转化工序调整H2/CO比,但当该比值更高的情况下,无需CO转化工序,可以降低成本。
第四,合成气体中的氯成分,硫成分,灰尘成分等杂质最好是尽可能的低。这样,可以降低清洗工序、脱硫工序等的成本。
除上面所述之外,液体燃料的合成反应,通常是发热反应,在考虑到能够回收中压蒸气,或者在最终的制品蒸馏工序中,作为热源所需的低压蒸气,以包括气化工序在内的全部过程中能够最大限度地进行热量的利用方式构成工艺过程,对于提高能量效率是很重要的。
其次,利用图4和图5对本发明的第二种实施形式进行说明。
第二种实施形式的甲醇合成系统,其特征为,作为形成甲醇合成的原料的合成气体的制造装置,通过利用下面说明的综合型气化炉,将废弃物及固体燃料作为原料,获得具有适合于甲醇合成的组成的合成气体。
图4是根据本发明的第二种实施形式的甲醇合成系统的流程图。和第一种实施形式的情况相同或者相当的构件,给予相同或类似的符号,省略重复的说明。
在第二种实施形式中的甲醇合成相系统,包括将被处理物a热分解气化获得合成气体(生成气体)b的综合型气化炉101,以及将合成气体b分离成氢气j和剩余气体k的气体精制装置102’。
在第二种实施形式中,气体精制装置102’被构成为,除清洗装置103、气体压缩装置107、氢分离装置120之外,还包括将合成气体b脱硫的脱硫装置105。脱硫装置105设置在清洗装置103和气体压缩装置107之间。此外,不配备在第一种实施形式中的三通阀451和CO转化装置104。从而,从气体压缩装置107的吐出口来的配管401直接连接到三通阀452上。此外,从甲醇合成装置系统300来的剩余气体配管412,以汇流到三通阀452和氢分离装置120之间的配管405上的方式连接。
第二种实施形式的甲醇合成系统,进一步包括回收从综合型气化炉101中排出的废气来的废热的废热锅炉201,除去伴随着从废热锅炉201排出的气体的固体成分的除尘装置202以及排出用除尘装置202除尘的气体的烟囱203。
气体清洗装置103的塔顶部的排气口,连接到脱硫装置105上。脱硫装置105是将脱硫催化剂填充到罐型容器中的装置,特别是除去H2S的装置。在脱硫装置105的下游侧,连接有气体压缩装置107。用气体压缩装置107压缩脱硫的合成气体。压缩时的压力等,和第一种实施形式一样。
此外,从氢分离装置120来的剩余气体k用的配管129,连接到后面描述的综合型气化炉101d上。
其次,参照图5的示意性剖面图,说明根据本实施形式的综合型气化炉101。本综合型气化炉101包括分别承担热分解,即气化,炭燃烧,热回收三个功能的气化室1,炭燃烧室2,热回收室3,例如,其整体被容纳在圆筒形或矩形的炉体内。气化室1,炭燃烧室2,热回收室3,由间隔壁11、12、13、14、15分割,在各自的底部形成作为包含流动介质的浓厚层的流化床。为了使各室的流化床(即气化室流化床,炭燃烧室流化床,热回收室流化床)的流动介质流动,在作为各个室1、2、3的底的炉底上,设置将流动化气体吹入到流动介质中的空气分散装置。空气分散装置被构成为,包括敷设在炉底部的例如多孔板,将该多孔板沿宽度方向划分,分割成多个室,为了改变各室内的各部分的空塔速度,改变从空气分散装置的各室通过多孔板吹出的流动化气体的流速。由于空塔速度在室的各部分相对地各自不同,所以,各室内的流动介质在室的各部分的流动状态也不同,因此形成内部旋流。此外,由于在室的各部流动状态不同,所以,内部旋流在炉内的各室循环。图中,表示于空气分散装置上的带有阴影线的箭头的大小,表示吹出的流动化气体的流速。例如,用符号2b表示的部位的粗的箭头,比用符号2a表示的部位的细的箭头的流速大。
气化室1和炭燃烧室2之间,被间隔壁11和间隔壁15隔开,炭燃烧室2和热回收室3之间被间隔壁12隔开,气化室1和热回收室3之间被间隔壁13隔开(此外,由于在图5中,是将炉平面地展开的图示,所以,间隔壁11没有在气化室1和炭燃烧室2之间,并且,间隔壁13没有位于气化室1和热回收室3之间)。即,综合型炉101各室不作为单独的炉构成,而是作为一个炉成一整体地构成。进而,在与炭燃烧室2的气化室1接触的面附近,设置流动介质将会下降的沉降炭燃烧室4。即,炭燃烧室2分成沉降炭燃烧室4和沉降炭燃烧室4之外的炭燃烧室主体部。因此,设置将沉降塔燃烧室4和炭燃烧室2的其它部分(炭燃烧室主体部)间隔开用的间隔壁14。此外,沉降炭燃烧室4和气化室1,被间隔壁15间隔开。
这里,对于流化床和界面进行说明。流化床由位于其铅直方向下部的、富含由流动化气体引起的处于流动状态的流动介质(例如硅砂)的浓相(流化)层,以及位于该浓相层的铅直方向的上方部的流动介质和大量气体共存、流动介质剧烈飞溅的飞溅区构成。在流化床的上方,即,在飞溅区的上方,具有基本上不含流动介质、以气体为主体的自由空间(free board)部分。界面是指具有一定的厚度的前述飞溅区,是位于飞溅区的上面和下面(浓相层的上面)的中间假想的面。
此外在谈到“在比流化床的界面的铅直方向的上方、以气体不流通的方式用间隔壁隔开”时,优选进一步使比位于界面的下方的浓相层的上面的上方处,气体不流通。
气化室1和炭燃烧室2之间的间隔壁11,从炉的顶部19向炉底(空气分散装置的多孔板)基本上全部间隔开,但下端不与炉底接触,在炉底附近具有第二开口部21。但是,该开口部21的上端并没有达到比气化室流化床界面、炭燃烧室流化床界面中任何一个界面的上部的位置处。更优选地,开口部21的上端,也没有达到比气化室流化床的浓相层的上面、炭燃烧室流化床的浓相层的上面的任何一个的上部处。换句话说,开口部21优选总是潜入到浓相层的下方。即,气化室1和燃烧室2,至少在自由空间部分、进而在界面的上方、更优选在浓相层的上面,以气体不流通的方式用间隔板隔开。
此外,炭燃烧室2和热回收室3之间的间隔壁12,其上端位于界面附近,即,比浓相层的上表面的上方,但位于飞溅区的上表面的下方,间隔壁12的下端,一直达到炉底附近,和间隔壁11一样,其下端不与炉底接触,在炉底附近具有不达到浓相层的上表面的上方的开口22。换句话说,炭燃烧室2和热回收室3之间,只有流化层部被间隔壁12隔开,该间隔壁12在炉床附近,具有开口部22,炭燃烧室2的流动介质,从间隔壁12的上部流入热回收室3,具有通过间隔壁12的炉床面附近的开口部22再次返回炭燃烧室2的循环流。
气化室1和热回收室3之间的间隔壁13,从炉底到炉顶全部隔离。为了设置沉降炭燃烧室4、将炭燃烧室2内部间隔开的间隔壁14的上端,在流化床的界面附近,下端与炉底接触。间隔壁14的上端和流化床的关系,和间隔壁12与流化床的关系一样。将沉降炭燃烧室4和气化室1间隔开的间隔壁15,和间隔壁11一样,从炉的顶部向炉底全部间隔开,其下端不与炉底接触,在炉底附近有第一开口部25,该开口部的上端,位于浓相层的上表面的下方。即,第一开口部25和流化床的关系,与开口部21和流化床的关系一样。
投入到气化室1内的废弃物或固体燃料a,接受从流动介质c1来的热量,被热分解气化。典型地,废弃物或燃料a在气化室1中不燃烧,被干馏。残留的干馏炭h和流动介质c1一起,从位于间隔壁11的下部的开口部21流入炭燃烧室2。这样,从气化室1被导入的炭h,在炭燃烧室2中燃烧,加热流动介质c2。在炭燃烧室2中,被炭h的燃烧热加热的流动介质c2越过间隔壁12的上端流入热回收室3,在热回收室3内由配置在界面下方的层内传热管41吸热,被冷却后,再通过间隔壁12的下部开口22流入炭燃烧室2。
这里,热回收室3,在本发明的实施形式中的气体供应装置中,并不是必须的。即,如果在气化室1中,在将主要的挥发成分气化后残留的主要由碳构成的炭h的量,与在炭燃烧室2中加热流动介质c2所需的炭的量基本上相等的话,可以不要从流动介质夺走热量的热回收室3。此外,如果前述炭的量之差小的话,例如,以增高气化室1中的气化温度,增加气化室1中产生的CO气体量的形式,保持平衡状态。
但是,如图5所示,在配备热回收室3的情况下,从炭的产生量大的煤,直到基本上不产生炭的城市垃圾,可以适应于范围很广的多种废弃物或燃料。即,对于任何一种废弃物或燃料,通过热回收室3中的热回收量的增减,可以适当地调节炭燃烧室2的燃烧温度,恰当地保持流动介质的温度。
另一方面,在炭燃烧室2中加热的流动介质c2,越过间隔壁14的上端流入沉降炭燃烧室4,其次从位于间隔壁15的下部的开口部25流入气化室1。
这里,对各室间的流动介质的流动状态及移动进行说明。
在气化室1的内部与沉降炭燃烧室4之间的间隔壁15接触的面的附近,构成与沉降炭燃烧室4的流动化相比,保持强的流动化状态的强流动化区域1b。为了促进作为整体投入的燃料和流动介质的混合扩散,可以随场所的不同,使流动化气体的空塔速度变化,作为一个例子,如图5所示,除强流动化区域1b之外,设置弱流动化区域1a,使得形成旋流。
炭燃烧室2,在中央部具有弱流动化区域2a、在周边部有强流动化区域2b,流动介质和炭形成内部旋流。优选地,气化室1、炭燃烧室2内的强流动化区域的流动化速度在5Umf以上,弱流动化区域的流动化速度在5Ufm以下,但如果对于弱流动化区域和强流动化区域设置相对明确的差的话,即使超过这一范围,也没有太大的妨碍。也可以在与炭燃烧室2内的热回收室3,以及沉降炭燃烧室4接触的部分上,配置强流动化区域2b。此外,根据需要,也可以在炉底设置从弱流动化区域侧向强流动化区域侧下降的倾斜度(图中为示出)。这里,所谓Ufm,是将最低流动化速度(流动化开始的速度)作为1Ufm的单位。即,5Ufm是最低流动化速度的5倍的速度。
这样,通过将炭燃烧室2和热回收室3的间隔壁12附近的炭燃烧室侧的流动化状态保持在比热回收室3侧的流动化状态相对强的流动化状态,流动介质越过位于间隔壁12的流化床的界面附近的上端,从炭燃烧室侧流入热回收室3侧,由于流入的流动介质处于相对的弱的流动化状态,即,因为是高密度状态,所以向下方(炉底方向)移动,潜入位于间隔壁12的炉底附近的下端(的开口22),从热回收室3侧向炭燃烧室2侧移动。
同样,通过将炭燃烧室2的主体部与沉降炭燃烧室4的间隔壁14附近的炭燃烧室主体部侧的流动化状态保持在比沉降炭燃烧室4侧的流动化状态相对较强的流动化状态,流动介质越过位于间隔壁14的流化床的界面附近的上端,从炭燃烧室2主体部侧移动流入沉降炭燃烧室4侧。流入沉降炭燃烧室4侧的流动介质,由于处于沉降炭燃烧室4内的相对的弱的流动化状态,即高密度状态,所以向下方(炉底方向)移动,穿过间隔壁15的位于炉底附近的下端(的开口25),从沉降炭燃烧室4侧移动到气化室1侧。这里,气化室1和沉降炭燃烧室4的间隔壁15附近的气化室1侧的流动化状态,保持在比沉降炭燃烧室4侧的流动化状态相对强的流动化状态。从而,借助诱导作用协助流动介质从沉降炭燃烧室4向气化室1的移动。
同样,将气化室1和炭燃烧室2之间的间隔壁11附近的炭燃烧室2侧的流动化状态,保持在比气化室1侧的流动化状态相对强的流动化状态。从而,流动介质通过位于间隔壁11的流化床的界面的下方,优选位于浓相层的上表面的下方(潜入浓相层)的开口21,流入炭燃烧室2侧。
热回收室3,全体均匀地流动化,通常,即使最大也保持在比和热回收室接触的炭燃烧室2的流动化状态弱的流动化状态。从而,将热回收室3的流动化气体的空塔速度控制在0~3Ufm之间,流动介质缓慢地流动的同时形成沉降流动层。此外,这里,所谓0Ufm,是指流动化气体停止的状态。如果形成这种状态的话,可以使热回收室3的热回收最小。即,热回收室3,通过使流动介质的流动化状态变化,可以将回收热量在从最大到最小的范围内任意进行调节。此外,在热回收室3内,可以在整个室内同样地产生和停止流动化或者调节强弱,也可以将其一部分区域的流动化停止,其它的处于流动化状态、调节所述一部分的区域的流动化状态的强弱。
包含在废弃物或燃料中的比较大的不燃物,从设于气化室1的炉底的不燃物排出口33排出。此外,各室的炉底面可以是水平的,但为了不形成流动介质流的滞留部分,也可以随着炉底附近的流动介质的流动使炉底倾斜。此外,不燃物排出口33,不仅在气化室1的炉底,而且也可以设置在炭燃烧室2或热回收室3的炉底上。
作为气化室1的流动化气体,最优选的是将生成气体b升压而再循环使用。这样,从气化室1出来的气体只成为纯粹从燃料产生的气体,可以获得质量非常高的气体。在不可能这样作的情况下,可以利用水蒸气,二氧化碳气(CO2)或者从炭燃烧室2获得的燃烧排放气体等尽可能不含有氧的气体(无氧气体)。通过气化时的吸热反应降低流动介质的层的温度的情况下,可以根据需要供应温度比热分解温度高的燃烧排放气体,或者,除了无氧气体之外,还可以供应氧或含有氧的气体例如供给空气,使生成气体的一部分燃烧。供应给炭燃烧室2的流动化气体是,供给包括炭燃烧所必需的氧的气体,例如供给空气、氧和水蒸气的混合气体。在燃料a的发热量(卡路里)低的情况下,最好是增多氧的量,直接地供应氧。此外,供应给热回收室3的流动化气体,使用空气、水蒸气、燃烧排放气体等。
比气化室1和炭燃烧室2的流化床的上表面(飞溅区的上面)的上方的部分,即,自由空间部分,完全被间隔壁11、15隔开。换句话说,由于比流化床的浓相层的上表面的上方的部分,即,飞溅区和自由空间部分,完全被间隔壁隔开,所以,炭燃烧室2和气化室1的各自的自由空间部分的压力平衡稍有混乱,通过使两个流动层的界面位置之差,或者浓相层的上表面的位置之差,即层的高度差稍稍变化,就可以吸收这种混乱。即,由于气化室1和炭燃烧室2被间隔壁11、15隔开,所以,即使各个室的压力变化,也可以用层的高度差吸收该压力差,一直到任何一个层下降到开口21、25的上端,都能够吸收。从而,能够用层的高度差吸收的炭燃烧室2与气化室1的自由空间的压力差的上限值,基本上等于从将相互隔开的间隔壁11、15的下部开口21、25的上端的气化室流化床的顶部与炭燃烧室流化床的顶部的顶部差。
在上面说明的综合型气化炉101中,在一个流化床炉的内部,分别经由间隔壁设置气化室,炭燃烧室,热回收室3个室,进而炭燃烧室和气化室,炭燃烧室和热回收室分别相邻设置。该综合型气化炉101,由于在炭燃烧室和气化室之间能够使大量的流动介质循环,所以,只用流动介质的显热,就可以充分提供气化用的热量。
进而,在上述综合型气化炉中,由于炭燃烧气体和生成气体之间被完全密封,所以,可以很好地控制气化室和炭燃烧室的压力平衡,燃烧气体和生成气体不会混合,不会降低生成气体的性能。
此外,由于作为热介质的流速介质c1和炭h从气化室1侧流入炭燃烧室2侧,进而,相同量的流动介质c2从炭燃烧室2侧返回到气化室1侧,所以,质量自然平衡,为了将流动介质从炭燃烧室2侧返回到气化室1侧,无需使用输送机等机械搬运,不存在高温粒子的运送困难、显热损失多等问题。
根据本实施形式的综合型气化炉101,在氢分离装置120中进一步包括将与氢分离的剩余气体k燃烧的剩余气体燃烧器101d。利用剩余气体燃烧器101d进行的燃烧,在炭燃烧室2或热回收室3中进行。剩余气体在燃烧器101d的前边与空气m混合、在炭燃烧室2内燃烧。
回到图4,对作为第二种实施形式的甲醇合成系统的作用进行说明。供应给综合型气化炉101的气化室1的废弃物或燃料a,通过热分解,分解成可燃性气体b,炭,和灰分。这里,作为废弃物或燃料a,优选是废塑料,废轮胎,汽车粉碎碎屑,木质类废弃物,一般废弃物RDF,煤,重质油,焦油,具有某种程度的高发热量的有机性废弃物或燃料。
在气化室1中由热分解生成的炭中,粒径大、不伴随着可燃性气体的炭h,与流动介质c1一起被移送到炭燃烧室2中。在炭燃烧室2内,作为流动化气体g,采用空气,以及富氧化的空气或氧等有氧气体,使炭h完全燃烧。通过炭h的燃烧产生的热量的一部分,向气化室1循环,作为返回的流动介质c2的显热供应给气化室1,用作在气化室1中热分解所必需的热量。
根据这种方法,由于在气化室1中通过废弃物或固体燃料a的热分解产生的可燃性气体,即合成气体b,与炭燃烧室2中通过炭燃烧产生的燃烧气体e不混合,所以获得高卡路里的适合于液体燃料合成的合成气体。
特别是,在气化室1的流动化气体g1中,采用完全不含空气或氧的气体,例如采用蒸气等,通过将炭燃烧室2中炭h的燃烧产生的热量经由流动介质c2的显热提供热分解所需热量的全部,在气化室1中完全不会部分燃烧,CO2、H2O等在燃烧气体中的浓度低,可以获得高卡路里的合成气体。
在气化室1的流动化气体g1中采用水蒸气的情况下,由于可以使得完全不包含氮气,氩气等惰性气体,所以,可以保持合成气体b中的氮、氩等惰性气体的浓度很低。从而,由于可以减少合成气体的流量,所以,除可以使后级的气体压缩装置107及CO转化装置(图4中没有示出),氢分离装置120等设备小型化之外,还可以降低气体压缩动力。
在一般的部分燃烧式的气化炉的情况下,为了在合成气体中不混入氮,作为氧化剂,有必要供应纯氧,但在采用本实施形式中的综合型气化炉101的情况下,由于作为炭燃烧室2中的氧化剂,即使使用空气,空气中的氮也不会混入合成气体b侧,所以,既可以减少氧的制造动力,又可以使合成气体b中的氮浓度降低,可以说具有特殊的效果。
在本实施形式的综合型气化炉101中,其特征在于,将使热分解被处理物a时产生的炭等的重质成分燃烧获得的热量,用作被处理物a的热分解气化所需的热量加以利用。
这里,炭等重质成分,含有很多碳,由于它们在炭燃烧室2中完全燃烧,所以,由包含在炭等重质成分中的碳的燃烧生成的二氧化碳,不会混入在气化室1中产生的合成气体b中。这相当于选择性地改变将被处理物a中的氢的成分和碳的成分,分离回收到合成气体b和燃烧气体e中的比例。即,被处理物a中的氢成分较多地被回收到合成气体侧,被处理物中的碳成分,较多地被回收到燃烧气体侧。借此,与采用现有技术的一般的部分燃烧方式的气化装置的情况相比,合成气体b中的氢含量多。典型地,很容易获得氢和一氧化碳的摩尔比在2以上的、氢含量多的合成气体。
由以上获得的合成气体b,被导入到气体精制装置102’中。此外,也可以根据合成气体b的温度,由图中未示出的废热锅炉进行热回收,将合成气体降温后,导入气体精制装置。
作为本实施形式中的气体精制装置102’,由作为不需要的物质的除去装置的气体清洗装置103,脱硫装置105,合成气体压缩装置107,氢分离装置120构成。在气体清洗装置103中,在除去包含在合成气体b中的氯成分的同时,进行灰尘成分的去除。此外,在脱硫装置105中,进行合成气体b中的硫成分的去除。
进行不需要的物质的除去后的合成气体,为了将其一部分导入到氢分离装置120中,需要提高到氢分离装置120的运行所必要的压力。这里,并不需要将全部合成气体导入到氢分离装置120内,所以,在氢分离装置120之前,只将进行氢分离的合成气体的一部分升压即可,但如图4所示,优选地,采用将在合成气体压缩装置107中除去不需要的物质之后的合成气体的全部升压的结构。这是因为,由于甲醇的合成一般地在5MPa以上的高压下进行,合成气体的升压总之是必要的,在CO转化装置是必要的情况下,通过使其运转压力上升,在可以缩小反应器的容积的同时,可以提高反应效率。
这里,通过在脱硫装置105的前级进行合成气体的压缩的构成,还能够缩小脱硫装置105的容积,但是,在这种情况下,由于将含有硫成分的气体通过气体压缩装置107,所以,必须采取应对由硫成分造成的对压缩装置107的腐蚀的对策。从而,在合成气体中的硫成分非常高,在直接通过合成气体压缩装置的情况下,在有产生腐蚀的危险时,如图4所示,优选将脱硫装置105配置在合成气体压缩装置107的前级。
另一方面,在合成气体中的硫成分并是非常高,在直接通过合成气体压缩装置107时不必担心腐蚀的情况下,优选将脱硫装置105配置在压缩装置107的后级。
此外,也可以在合成气体压缩装置107的前级,设置第一脱硫装置,进行脱硫、达到不必担心合成气体压缩装置107的腐蚀的程度,在合成气体压缩装置107的后级,设置第二脱硫装置,进行脱硫,达到对CO转化装置(图4中没有示出)及氢分离装置120不会产生影响的程度。
在氢分离装置120的运行压力中考虑到各配管的压力损失以及在需要CO转化装置的情况下,从合成气体压缩装置107中出来后的合成气体的压力,需要具有由其造成的压力损失时的压力。该压力一般在1MPa以上,优选在1.5MPa以上,更优选在2MPa以上。
此外,在综合型气化炉101的运行压力所为负压或者不足1MPa左右的正压的情况下,有必要进行如上所述的合成气体的压缩,但如果综合型气化炉101的运行压力在1MPa以上左右的话,合成气体压缩装置107并不一定是必需的。
在合成气体压缩装置107中被压缩的合成气体,和第一种实施形式一样,在CO转化装置中,可以进行氢和一氧化碳的摩尔比例的调整,但如本实施形式那样,采用综合型气化炉101将被处理物a热分解获得合成气体的情况下,如前面所述,由于很容易获得氢和一氧化碳的摩尔比在2以上的合成气体,所以CO转化装置并不一定是必须的。
当然,根据被处理物a的特性及气化炉101的运行条件,在氢和一氧化碳的摩尔比不足2的情况下,与第一种实施形式一样,也可以在氢分离装置120之前设置CO转化装置。对于这时的详细情况,在第一种实施形式的说明中已经描述过,这里将其省略。
压缩后的合成气体,将其一部分通过配管405,导入到氢分离装置120中,通过将分离后的纯氢j与不经过氢分离装置120的通过旁路配管406的合成气体的残余部分混合,进行氢、一氧化碳、二氧化碳的摩尔比的调整,获得R=2以上的精制气体。对于其详细情况,由于在第一种实施形式中已经说明,在此省略其重复说明。
通过上述方式调整过成分的精制气体,在利用精制气体压缩装置107’升压到甲醇合成所必需的压力之后,导入到甲醇合成装置系统300中。
由于从甲醇合成装置系统300抽出的剩余气体307a,是可燃性的,具有发热量,所以,在系统内可以作为热源使用,但由于包含未反应的氢,所以,经由配管412返回到氢分离装置120的上游。这样,通过回收利用氢,可以提高系统的整体的反应效率。
另一方面,从氢分离装置120,获得除一氧化碳、二氧化碳之外,作为纯氢还包含若干未被回收的氢的剩余气体k。由于该剩余气体k是可燃性的,具有发热量,所以,在系统内可以作为热源使用。特别是,在本实施形式的情况下,优选使该剩余气体k在综合型气化炉101的炭燃烧室2中燃烧,借助其燃烧热,加热流动介质c2。在这种情况下,在综合型气化炉101中,由于使被处理物a部分燃烧的比例降低,可以获得高的气化效率,所以特别有效。
对于剩余气体k的热量的利用,例如,不仅在综合型气化炉101的炭燃烧室2内使剩余气体k燃烧,也可以另外在图中未示出的燃烧装置中使剩余气体k燃烧,将获得的高温燃烧气体作为炭燃烧室2的流动化气体g2使用。但是,在这种情况下,流动化气体g2中的氧浓度降低,有可能使炭燃烧室2的流动的一部分中的炭的燃烧效率降低。
与此相对,如图4或图5所示,在炭燃烧室2内使剩余气体k燃烧的情况下,不必担心炭燃烧室2的流化层部的氧浓度降低,利用使剩余气体燃烧产生的火焰的辐射热可以有效地加热流动介质c2,从而是优选的。
从作为由炭燃烧室2来的燃烧气体的高温排放气体e中,利用废热锅炉201可以作为蒸气进行热回收。除此之外,也可以如前面所述,从气化室1来的合成气体b中进行热回收,或者,由于CO转化反应及甲醇合成反应是发热反应,所以,也可以从CO转化装置及甲醇反应装置进行热回收。由这些热回收获得的蒸气,可以作为流动化气体g1供应给气化室1的蒸气,以及,甲醇蒸馏装置330的热源用的蒸气等,系统必须的蒸气使用,或者,通过利用蒸气轮机进行发电,可以使之产生系统所必需的电力。
在本甲醇合成系统中,合成气体压缩装置107及精制气体压缩装置107’中气体压缩动力占据所需动力的一大半。因此,优选的是,利用前述蒸气轮机发电产生的电力,作为这些气体压缩装置所需要的电力。更优选的是,可以不用电动机而是将蒸气轮机(图中未示出)作为这些气体压缩装置的驱动机,利用前述热回收获得的蒸气,直接驱动气体压缩装置。
此外,不使前述剩余气体k在炭燃烧室2内燃烧,可以使之另外在图中未示出的热回收用锅炉中燃烧,作为蒸气进行热回收,或者,使剩余气体k的一部分在炭燃烧室2内燃烧,将残余部分在热回收锅炉内燃烧。在这种情况下,优选的是,按照将获得的合成气体的压缩动力为主的系统所需的动力,与从热回收的蒸气获得所产生的动力相等的方式,调整使剩余气体k在热回收用锅炉内燃烧的比例。
即,在系统所需的动力比所产生的动力大的情况下,通过减少使剩余气体k在炭燃烧室2内燃烧的比例,增加在热回收用锅炉内燃烧的比例,使气化效率降低,减少合成气体b的产生量,在降低合成气体的压缩动力、即系统所需的动力的同时,增大用热回收产生的动力,借此,可以使所需动力和产生动力到达平衡。
此外,系统所需的动力在比产生动力小的情况下,通过增加使剩余气体k在炭燃烧室2内燃烧的比例,或者减少在热回收锅炉中燃烧的比例,提高气化效率而使合成气体b的产生量增加,在使合成气体的压缩动力机系统所需的动力增加的同时,减少通过热回收造成的产生动力,可以达到所需动力和产生动力的平衡。在这样构成的情况下,在被处理物a的发热量有变动的情况下,可以保持系统内的所需动力和产生动力的平衡进行运转,可以将从外部来的电力和供热量最小化,所以可以实现减少系统的运行成本。
此外,使从甲醇合成装置系统300来的气体307a在燃烧室2和热回收锅炉内燃烧,也可以获得与上面所述相同的效果。
如上所述,根据本发明,气体精制装置,具有将氢分离装置和给氢分离装置旁路的旁通管路,将使前述合成气体的一部分通过前述氢分离装置获得的高纯度的氢,与通过旁通管路的合成气体混合,所以,可以提供一种能够调整精制气体中的氢与一氧化碳和二氧化碳的比例,适合于将含有氢、一氧化碳和二氧化碳的合成气体作为原料,进行液体燃料的合成的的液体燃料合成系统。
本发明适合用于将含有氢、一氧化碳、二氧化碳的合成气体,例如,将天然气、石油,煤等化石燃料,以及生物燃料,各种废弃物等热分解获得的合成气体的可燃性气体作为原料,适合于进行液体燃料的合成的液体燃料合成系统。
权利要求
1.一种液体燃料合成系统,包括进行含有氢和一氧化碳的合成气体或含有氢和一氧化碳和二氧化碳的合成气体的成分调整、获得精制气体的气体精制装置;将从前述气体精制装置获得的精制气体作为原料,合成液体燃料的液体燃料合成装置;前述气体精制装置被构成为,具有氢分离装置和给该氢分离装置设旁路的旁通管路,将前述合成气体的一部分通过氢分离装置获得的高纯度的氢,与通过前述旁通管路的合成气体混合,调整前述精制气体中的氢和一氧化碳或氢和一氧化碳和二氧化碳的比例。
2.如权利要求1所述的液体燃料合成系统,包括将被处理物热分解,产生供应给前述气体精制装置的前述合成气体的气化装置。
3.如权利要求2所述的液体燃料合成系统,前述氢分离装置被构成为,从前述合成气体除去可燃性的剩余成分,获得高纯度的氢;前述气化装置被构成为,将前述被除去的剩余成分燃烧获得的热量,作为前述热分解气化所必需的反应热的一部分或者全部加以利用。
4.一种液体燃料合成系统,包括使高温流动介质在内部流动,形成具有第一界面的气化室流化床,在前述气化室流化床内将被处理物气化而产生含有氢和一氧化碳和二氧化碳的合成气体的气化室;使高温流动介质在内部流动,形成具有第二界面的炭燃烧室流化床,使伴随着前述气化室产生的炭在前述炭燃烧室流化床内燃烧而将前述流动介质加热的炭燃烧室;进行前述气化室内产生的合成气体的成分调整,获得精制气体的气体精制装置;以前述精制气体作为原料,合成液体燃料的液体燃料合成装置;其中前述气化室和前述炭燃烧室被构成为,被第一间隔壁隔开,使得在前述各个流化床的界面的铅直的上方气体不流通,在前述第一间隔壁的下部形成将前述气化室和前述炭燃烧室连通的连通口,该连通口的上端的高度是使得在前述第一界面和第二界面以下形成连通口,在前述炭燃烧室中被加热的流动介质,通过该连通口从前述炭燃烧室侧向前述气化室侧移动;前述气体精制装置被构成为,具有氢分离装置和给该氢分离装置设旁路的旁通管路,将前述合成气体的一部分通过氢分离装置获得的高纯度的氢和通过前述旁通管路的合成气体混合,调整前述精制气体中的氢和一氧化碳和二氧化碳的比例。
5.如权利要求4所述的液体燃料合成系统,前述氢分离装置被构成为,从前述合成气体中除去可燃性的剩余成分,获得高纯度氢;前述气化装置被构成为,将前述除去的剩余成分燃烧获得的热量,作为前述炭燃烧室中将前述流动介质加热的热源的一部分或全部加以利用。
6.如权利要求1至5中任何一个所述的液体燃料合成系统,前述氢分离装置被构成为,具有吸附前述剩余成分的吸附材料,容纳前述吸附材料的容器,将前述合成气体导入前述容器内,通过使该容器内的压力在相对的高压和低压之间变化,反复地进行前述剩余成分的吸附和脱吸附。
7.如权利要求1至6中任何一个所述的液体燃料合成系统,前述液体燃料合成装置被构成为,在液体燃料合成时产生可燃性剩余气体;将前述液体燃料合成装置产生的可燃性剩余气体,在前述氢分离装置的上游侧与前述合成气体混合。
全文摘要
本发明的液体燃料合成系统,包括进行含有氢和一氧化碳的合成气体或含有氢和一氧化碳和二氧化碳的合成气体的成分调整、获得精制气体的气体精制装置(102);将气体精制装置获得的精制气体(301a)作为原料,合成液体燃料(309)的液体燃料合成装置(300);气体精制装置被构成为,具有氢封口装置(120)和给氢分离装置设旁路的旁通管路(406),和将合成气体的一部分通过氢分离装置获得的高纯度氢(j)和通过旁通管路的合成气体混合,调整精制气体中的氢和一氧化碳或氢和一氧化碳和二氧化碳的比例。
文档编号C10G2/00GK1564859SQ0380124
公开日2005年1月12日 申请日期2003年2月7日 优先权日2002年2月7日
发明者松冈庆, 内野章, 小林幸博 申请人:株式会社荏原制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1