一种由碳氢工业尾气合成代用天然气的甲烷化方法

文档序号:5129477阅读:250来源:国知局
专利名称:一种由碳氢工业尾气合成代用天然气的甲烷化方法
一种由碳氢工业尾气合成代用天然气的甲烷化方法
技术领域
本发明属于碳氢工业尾气合成代用天然气技术领域。更具体地,本发明涉及由碳氢工业尾气合成代用天然气的甲烷化方法。
背景技术
我国炼焦、电石、兰碳、炼钢等工业发达,副产大量工业尾气,这些富含碳、氢的工
业尾气得不到有效利用,不仅造成资源浪费,而且污染环境。如果以这些碳氢工业尾气为原
料,合成代用天然气,不仅能够变废为宝,还能够节能减排,具有较高的经济效益和社会效.、/■
Mo合成代用天然气的甲烷化反应如下:C0+3H2 — CH4+H20十206.2KJ/molC02十4H2 — CH4 十 2H20+165kj/mol甲烷化是目前解决我国天然气短缺的有效补充渠道,尤其是能够解决我国偏远地区资源短缺,缺乏天然气困境。目前合成天然气主要来源于煤气化过程,通过变换、净化、合成等工艺获得天然气产品。整个工艺复杂,操作单位多,投资规模大,资源利用率低。另一方面,我国炼焦、电石、炼钢、兰炭等工业发达,副产大量碳氢工业尾气,这些富含碳氢的工业尾气得不到有效利用,不仅造成资源浪费,而且污染环境。如果以这些碳氢工业尾气为原料,生产合成代用天然气,不仅能够变废为宝,还能够节能减排,具有较高的经济效益和社会效益。目前碳氢工业尾气 ,特别是焦炉煤气的应用方面,已经有了许多努力和进展,CN191985A、CN101391935A和CN101100622A等均公开了利用焦炉煤气合成天然气的方法,但均不能充分利用焦炉煤气中的H2,不能将CO2完全转化为甲烷,反应后的气体需要通过PAS或者低温甲醇洗提纯,同时反应过程需要通过压缩机将工艺气体部分循环来降低放热,其投资和运行成本均较高。CN101607859A,CN10712897A, CN101818087A也采用循环工艺,并通过在焦炉煤气中配入纯CO2或补碳气,将多余H2消耗掉。整个甲烷化工艺过程中气体压缩机的能耗占整个工艺90%以上。上述专利申请中,无论是将甲烷化反应后的气体返回一段甲烷化反应器前进行循环,降低C0+C02含量,还是将外界CO2或者补碳气补入原料气中进行循环,均需要循环压缩机,甲烷化工艺能耗高,经济效益低。ZL101597521B采用在焦炉气中补充CO2方法来调节氢碳比,达到合理利用焦炉煤气目的,其CO2来自外界或者甲烷化后的CO2循环。因此,本发明针对上述合成甲烷方法中碳氢资源利用低,设备投资大、运行成本高、效益差等缺点,提出了一种新的合理利用包括焦炉煤气、黄磷尾气、电石炉气、炼钢转炉气、乙炔尾气和兰炭尾气等在内的碳氢工业尾气的新途径。

发明内容[要解决的技术问题]本发明的目的是提供一种由碳氢工业尾气合成代用天然气的甲烷化方法。
[技术方案]本发明是通过下述技术方案实现的。本发明针对现有技术存在的这些问题,提供一种合理高效利用碳氢工业尾气合成代用天然气的新方法。该方法根据碳氢比不同让碳氢工业尾气一次通过甲烷化反应器,或者让碳氢工业尾气通过一段甲烷化反应器后进行碳氢调节,再依次通过甲烷化反应器,这样可以完全利用碳氢工业尾气中的C0、C02和H2,无须循环便可以直接制成符合国标的天然气,同时有效回收热量。本发明涉及一种由碳氢工业尾气合成代用天然气的甲烷化方法。该甲烷化方法步骤如下:在所述碳氢工业尾气中,氢气、一氧化碳与二氧化碳含量符合关系式(H2_3C0)/C02=4要求时,将所述碳氢工业尾气预热达到温度200 300°C,然后进入第一段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%C0和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第一段甲烷化反应器进入第一段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350 0C ;然后所述的第一段甲烷化混合气体进入第二段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第一段甲烷化混合气体中剩余的CO和70 90体积%C02转换为CH4,得到第二段甲烷化混合气体,它的温度同时升高至300 600°C ;接着它由第二段甲烷化反应器进入第二段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;然后所述的第二段甲烷化混 合气体进入第三段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第二段甲烷化混合气体中剩余的C0、C02转换为CH4,得到第三段甲烷化混合气体,它的温度同时升高至280 600°C ;接着它由第三段甲烷化反应器进入第三段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至30°C,然后进入气液分离器,脱除冷凝水,得到所述的合成代用天然气。本发明还涉及另一种由碳氢工业尾气合成代用天然气的甲烷化方法。该甲烷化方法步骤如下:在所述碳氢工业尾气中,氢气、一氧化碳与二氧化碳含量不符合关系式(H2_3C0)/C02=4要求时,将所述碳氢工业尾气预热达到温度200 300°C,然后进入第一段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%C0和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第一段甲烷化反应器进入第一段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350 0C ;然后往所述的第一段甲烷化混合气体中加入碳氢工业尾气和水蒸汽,使第一段甲烷化混合气体中的氢气、一氧化碳与二氧化碳含量符合关系式(H2-3C0)/C02=4要求,进入第二段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第一段甲烷化混合气体中60 90体积%C0和一部分CO2转换为CH4,得到第二段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第二段甲烷化反应器进入第二段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;然后
所述的第二段甲烷化混合气体进入第三段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第二段甲烷化混合气体中70 90体积%C02和一部分CO转换为CH4,得到第三段甲烷化混合气体,它的温度同时升高至280 600°C ;接着它由第三段甲烷化反应器进入第三段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230 3500C ;然后所述的第三段甲烷化混合气体进入第四段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第三段甲烷化混合气体中剩余的CO2和CO转换为CH4,得到第四段甲烷化混合气体,接着它由第四段甲烷化反应器进入第四段废热锅炉进行冷却,它的温度同时升高至280 400°C;将所述的甲烷化混合气体冷却降温至30°C,然后进入气液分离器,脱除冷凝水,得到所述的合成代用天然气。在本发明中,所述的Ni系甲烷化催化剂的组成如下:以重量份计Al2O327 54 份;MgO10 40 份;NiO10 32 份;La2O35 10 份;TiO2, CeO2或ZrO2及其混合物5 10份;它的孔体积0.25 0.4ml/g ;平均孔径9.5 13.5nm ;孔比表面积76.8 96.8m2/g°根据本发明的一种优选实施方式,第一段甲烷化反应器是入口温度230 350°C与压力1.0 5.0MPa 、出口温度350 650°C与压力1.0 3.0MPa、空速2000 150001Γ1 ;第一段废热锅炉排出1.0 4.0MPa饱和蒸汽。根据本发明的另一种优选实施方式,第二段甲烷化反应器是入口温度230 300 °C与压力1.0 5.0MPa、出口温度350 650°C与压力1.0 3.0MPa、空速1000 8000^1 ;第二段废热锅炉排出1.0 4.0MPa饱和蒸汽。根据本发明的另一种优选实施方式,第三段甲烷化反应器是入口温度230 350 °C与压力1.0 5.0MPa、出口温度280 600°C与压力1.0 5.0MPa、空速1000 8000^1 ;第三段废热锅炉排出1.0 4.0MPa饱和蒸汽。根据本发明的另一种优选实施方式,第四段甲烷化反应器是入口温度230 350 °C与压力1.0 5.0MPa、出口温度280 400°C与压力1.0 5.0MPa、空速1000 8000^1 ;第三段废热锅炉排出1.0 4.0MPa饱和蒸汽。根据本发明的另一种优选实施方式,第一段甲烷化反应器热点温度是350 650°C,第二段甲烷化反应器热点温度是300 650°C,第三段甲烷化反应器热点温度是280 450°C,第四段甲烷化反应器热点温度是280 400°C。根据本发明的另一种优选实施方式,第一段甲烷化反应器、第二段甲烷化反应器、第三段甲烷化反应器与第四段甲烷化反应器的结构相同,都是绝热反应器。根据本发明的另一种优选实施方式,所述的合成天然气中甲烷选择性大于98%。下面将更详细地描述本发明。一种由碳氢工业尾气合成代用天然气的甲烷化方法(第一种方法)步骤如下:在所述碳氢工业尾气中,氢气、一氧化碳与二氧化碳含量符合关系式(H2_3C0)/C02=4要求时,将所述碳氢工业尾气预热达到温度200 300°C,然后进入第一段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%CO和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第一段甲烷化反应器进入第一段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350 0C ;碳氢工业尾气是炼焦、电石、炼钢等工业副产的尾气,这些富含碳氢的工业尾气含有大量的氢气、一氧化碳与二氧化碳。除去其各种机械杂质的净化碳氢工业尾气与蒸汽通过预热器6预热达到温度200 300°C,然后进入第一段甲烷化反应器,在入口温度230 350°C,入口压力1.0 5.0MPa、出口温度350 650°C、出口压力1.0 3.0MPa的条件下以空速2000 ΙδΟΟΟΙΓ1通过第一段甲烷化反应器1,在其中在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%C0和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它通过第一段废热锅炉7进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;同时排出1.0 4.0MPa饱和蒸汽。第一段甲烷化反应器热点温度是350 650°C。所述的CO、CO2与CH4含量都是采常规分析方法进行分析得到的,例如CO、0)2、与CH4分析采用气相色谱进行分析。优选地,第一段甲烷化反应器是入口温度230 350°C与压力1.0 5.0MPa、出口温度350 650°C与压力L O 3.0MPa、空速2000 ΙδΟΟΟΙΓ1 ;第一段废热锅炉排出1.0
4.0MPa饱和蒸汽。在第一段甲烷化反应器中装有Ni系甲烷化催化剂,其催化剂填充床通常是高与直径之比为3的反应床。·本发明使用的Ni系甲烷化催化剂的组成如下:以重量份计Al2O327 54 份;MgO10 40 份;NiO10 32 份;La2O35 10 份;TiO2, CeO2或ZrO2及其混合物5 10份;它的孔体积0.25 0.4ml/g ;平均孔径9.5 13.5nm ;孔比表面积76.8 96.8m2/g°所述Ni系甲烷化催化剂是按照下述制备方法制备的:A、催化剂载体制备将Al(NO3)3.9H20与Mg(NO3)2.6H20加水配制成金属离子总当量浓度为0.1
0.5mol/L 的溶液,其中 Al(NO3)3.9Η20 与 Mg(NO3)2.6Η20 的重量比为 20 40:3.8 12.7,再加入以所述硝酸铝水合物与硝酸镁水合物总重量计的I 4%含氧有机物,搅拌均匀,将其混合物加热到温度30 90°C,然后加入沉淀剂,使其终点pH达到7.0 9.5,生成的沉淀物用水进行洗涤,洗涤的沉淀物接着在温度80 120°C下烘干6 12小时,再在温度400 900°C下焙烧3 6小时,冷却后对焙烧沉淀物进行粉碎,取100 200目粉体作为催化剂载体。其中,所述的含氧有机物是一种或多种选自十二烷基苯磺酸钠、纤维素、葵烷、月旨肪酸聚乙二醇酯或甘油的含氧有机物。所述的沉淀剂是Na2C03、NaHCO3、氨水、尿素或NaOH。B、扩孔与浸溃将步骤A制备的催化剂载体加到0.1 1.0M聚乙二醇6000扩孔剂乙醇溶液中,其以克计催化剂载体与以毫升计扩孔剂乙醇溶液的比为1:10 100,搅拌均匀,然后再加入以所述硝酸铝水合物与硝酸镁水合物总重量计的2.5 11.2%硝酸镧、2.4 17.9%硝酸锆、硝酸铈或钛酸四丁酯及其混合物、14.8 65.4%硝酸镍,充分搅拌混合,再在常温下浸溃10 16小时,得到浸溃活性组分的催化剂载体;C、干燥与焙烧让步骤B得到的浸溃活性组分的催化剂载体在温度80 150°C下进行搅拌烘干;然后在温度350 900°C下焙烧2 4小时,得到所述的粉末状甲烷化催化剂;D、成型往步骤C得到的粉末状甲烷化催化剂中加入以该甲烷化催化剂总重量计3 10%水,混合均匀,再压制成型,得到成型甲烷化催化剂。然后,来自第一段废热锅炉7的第一段甲烷化混合气体进入第二段甲烷化反应器2,在入口温度230 300°C与压力1.0 5.0MPa、出口温度350 650°C与压力1.0
3.0MPa、空速1000 SOOOtr1的条件下,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第一段甲烷化混合气体中剩余的CO和70 90体积%C02转换为CH4,得到第二段甲烷化混合气体,它的温度同时升高至300 600°C ;接着它由第二段甲烷化反应器2进入第二段废热锅炉8进行冷却,将所述的甲烷化混合`气体冷却降温至230-350°C,排出1.0 4.0MPa饱和蒸汽。第二段甲烷化反应器热点温度是300 650°C。接着,来自第二段废热锅炉8的第二段甲烷化混合气体然后进入第三段甲烷化反应器3,在入口温度230 350°C与压力1.0 5.0MPa、出口温度280 600°C与压力1.0
5.0MPa、空速1000 SOOOtr1的条件下,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第二段甲烷化混合气体中剩余的C0、C02转换为CH4,得到第三段甲烷化混合气体,它的温度同时升高至280 600°C ;接着它由第三段甲烷化反应器3进入第三段废热锅炉9进行冷却,将所述的甲烷化混合气体冷却降温至30°C,然后进入气液分离器,脱除冷凝水,得到所述的合成代用天然气。本发明所得到合成代用天然气的化学组成以体积百分数计如下:CH4..............................91% 以上C0+C02........................< 80ppmH2................................1.8% 以下N2................................7.5%。本发明涉及另一种由碳氢工业尾气合成代用天然气的甲烷化方法(第二种方法)。该甲烷化方法步骤如下:在所述碳氢工业尾气中,氢气、一氧化碳与二氧化碳含量不符合关系式(H2_3C0)/C02=4要求时,将所述碳氢工业尾气与蒸汽通过预热器6预热达到温度200 300°C,然后进入第一段甲烷化反应器1,在入口温度230 350°C,入口压力LO 5.0MPa、出口温度350 650°C、出口压力L O 3.0MPa的条件下以空速2000 150001Γ1通过第一段甲烷化反应器1,在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%CO和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它通过第一段废热锅炉7进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;同时排出1.0 4.0MPa饱和蒸汽。第一段甲烷化反应器热点温度是350 650°C。然后,往来自第一段废热锅炉7的第一段甲烷化混合气体中通过阀12加入用于调节碳氢比的碳氢工业尾气和水蒸汽,使第一段甲烷化混合气体中的氢气、一氧化碳与二氧化碳含量符合关系式(H2_3C0) /C02=4要求,进入第二段甲烷化反应器2,在入口温度230 300 °C与压力1.0 5.0MPa、出口温度350 650 °C与压力1.0 3.0MPa、空速1000 SOOOtr1的条件下,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第一段甲烷化混合气体中60 90体积%C0和一部分CO2转换为CH4,得到第二段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第二段甲烷化反应器2进入第二段废热锅炉8进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C,排出1.0 4.0MPa饱和蒸汽。第二段甲烷化反应器热点温度是300 650°C。所述的用于调节碳氢比的碳氢工业尾气是与一段出口碳氢比例不同的碳氢工业尾气,如一段入口为焦炉煤气,则二段可以使用电石炉气进行调节,反之也行。主要遵循的是将“碳多氢少”的碳氢工业尾气与“碳少氢多”的碳氢工业尾气互相搭配,综合利用。接着,来自第二段废热锅炉8的第二段甲烷化混合气体然后进入第三段甲烷化反应器3,在入口温度230 350°C与压力1.0 5.0MPa、出口温度280 600°C与压力1.0
5.0MPa、空速1000 δΟΟΟΙΓ1的条件下,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第二段甲烷化混合气体中70 90体积%C02和一部分CO转换为CH4,得到第三段甲烷化混合气体,它的温度同时升高至280 600°C ;接着它由第三段甲烷化反应器3进入第三段废热锅炉9进行冷却,将所述的甲烷化混合气体冷却降温至230 350°C,排出1.0 4.0MPa饱和蒸汽。第三段甲烷化反应器热点温度是280 400°C。来自第三段废热锅炉9的第三段甲烷化混合气体进入第四段甲烷化反应器4,在入口温度230 350°C与压力1.0 5.0MPa、出口温度280 400°C与压力1.0 5.0MPa、空速1000 SOOOtr1的条件下,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第三段甲烷化混合气体中剩余的CO2和CO转换为CH4,得到第四段甲烷化混合气体,接着它由第四段甲烷化反应器4进入第四段废热锅炉10进行冷却降温至30°C,然后进入气液分离器,脱除冷凝水,得到所述的合成代用天然气。本发明所得到合成代用天然气的化学组成以体积百分数计如下:CH4..............................87% 以上;C0+C02........................< 80ppmH2................................6.1% 以下N2................................6.9% 以下。根据本发明,甲烷选择性应该理解:原料(C0+C02)经几种不同反应可生成不同产物时,可用消耗的原料(C0+C02)中转变为特定产物CH4的分率来表示,即用实际生成的特定产物CH4之摩尔数除以所耗用的原料(C0+C02)在理论上能生成的同一产物之摩尔数。其表达式如 下:
权利要求
1.一种由碳氢工业尾气合成代用天然气的甲烷化方法,其特征在于该甲烷化方法步骤如下: 在所述碳氢工业尾气中,氢气、一氧化碳与二氧化碳含量符合关系式(H2-3C0)/C02=4要求时,将所述碳氢工业尾气预热达到温度200 300°C,然后进入第一段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%CO和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第一段甲烷化反应器进入第一段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;然后 所述的第一段甲烷化混合气体进入第二段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第一段甲烷化混合气体中剩余的CO和70 90体积%C02转换为CH4,得到第二段甲烷化混合气体,它的温度同时升高至300 600°C ;接着它由第二段甲烷化反应器进入第二段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;然后 所述的第二段甲烷化混合气体进入第三段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第二段甲烷化混合气体中剩余的C0、C02转换为CH4,得到第三段甲烷化混合气体,它的温度同时升高至280 600°C ;接着它由第三段甲烷化反应器进入第三段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至30°C,然后进入气液分离器,脱除冷凝水,得到所述的合成代用天然气。
2.一种由碳氢工业尾气合成代用天然气的甲烷化方法,其特征在于该甲烷化方法步骤如下: 在所述碳氢工业尾气中,氢气、一氧化碳与二氧化碳含量不符合关系式(H2-3C0)/C02=4要求时,将所述碳氢工业尾气预热达到温度200 300°C,然后进入第一段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将其中60 90体积%C0和一部分CO2转换为CH4,得到第一段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第一段甲烷化反应器进入第一段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;然后 往所述的第一段甲烷化混合气体中加入碳氢工业尾气和水蒸汽,使第一段甲烷化混合气体中的氢气、一氧化碳与二氧化碳含量符合关系式(H2-3C0)/C02=4要求,进入第二段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第一段甲烷化混合气体中60 90体积%C0和一部分CO2转换为CH4,得到第二段甲烷化混合气体,它的温度同时升高至350 650°C ;接着它由第二段甲烷化反应器进入第二段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230-350°C ;然后 所述的第二段甲烷化混合气体进入第三段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第二段甲烷化混合气体中70 90体积%C02和一部分CO转换为CH4,得到第三段甲烷化混合气体,它的温度同时升高至280 600°C ;接着它由第三段甲烷化反应器进入第三段废热锅炉进行冷却,将所述的甲烷化混合气体冷却降温至230 350°C ;然后 所述的第三段甲烷化混合气体进入第四段甲烷化反应器,在Ni系甲烷化催化剂作用下进行甲烷化反应,将第三段甲 烷化混合气体中剩余的CO2和CO转换为CH4,得到第四段甲烷化混合气体,接着它由第四段甲烷化反应器进入第四段废热锅炉进行冷却,它的温度同时升高至280 400°C ;将所述的甲烷化混合气体冷却降温至30°C,然后进入气液分离器,脱除冷凝水,得到所述的合成代用天然气。
3.根据权利要求1或2所述的方法,其特征在于所述的Ni系甲烷化催化剂的组成如下:以重量份计 Al2O3 27 54 份; MgO10 40 份; NiO10 32 份; La2O35 10 份; TiO2、CeO2或ZrO2及其混合物 5 10份; 它的孔体积0.25 0.4ml/g ;平均孔径9.5 13.5nm ;孔比表面积76.8 96.8m2/g。
4.根据权利要求1或2所述的方法,其特征在于第一段甲烷化反应器是入口温度230 350°C与压力1.0 5.0MPa、出口温度350 650°C与压力1.0 3.0MPa、空速2000 ΙδΟΟΟΙΓ1 ;第一段废热锅炉排出1.0 4.0MPa饱和蒸汽。
5.根据权利要求1或2所述的方法,其特征在于第二段甲烷化反应器是入口温度230 300°C与压力1.0 5.0MPa、出口温度350 650°C与压力1.0 3.0MPa、空速1000 8000^1 ;第二段废热锅炉排出1.0 4.0MPa饱和蒸汽。
6.根据权利要求1或2所述的方法,其特征在于第三段甲烷化反应器是入口温度230 350°C与压力1.0 5.0MPa、出口温度280 600°C与压力1.0 5.0MPa、空速1000 8000^1 ;第三段废热锅炉排出1.0 4.0MPa饱和蒸汽。
7.根据权利要求1或2所述的方法,其特征在于第四段甲烷化反应器是入口温度230 350°C与压力1.0 5.0MPa、出口温度280 400°C与压力1.0 5.0MPa、空速1000 8000^1 ;第三段废热锅炉排出1.0 4.0MPa饱和蒸汽。
8.根据权利要求1或3所述的方法,其特征在于第一段甲烷化反应器热点温度是350 650°C,第二段甲烷化反应器热点温度是300 650°C,第三段甲烷化反应器热点温度是280 450°C,第四段甲烷化反应器热点温度是280 400°C。
9.根据权利要求1或3所述的方法,其特征在于第一段甲烷化反应器、第二段甲烷化反应器、第三段甲烷化反应器与第四段甲烷化反应器的结构相同,都是绝热反应器。
10.根据权利要求1或3所述的方法,其特征在于所述的合成天然气中甲烷选择性大于98%。
全文摘要
本发明涉及由碳氢工业尾气合成代用天然气的甲烷化方法,该方法包括包括碳氢工业尾气原料气通过三级或四级甲烷化反应、热回收、冷却分离等步骤,生产出合格的合成天然气产品。本发明将碳氢工业尾气中的CO、CO2全部转化成甲烷,实现了CO2的零排放。本发明甲烷化方法采用气体一次通过多级甲烷反应器,不需要CO变换,CO2分离,同时工艺气不需要分段循环,无需压缩机,能极大地降低投资成本和运行成本,工艺流程简单可靠高效,操作方便稳定,温度易于控制,能耗低,经济效益明显。本发明由碳氢工业尾气生产的合成天然气,符合国标,可直接生产压缩天然气、液化天然气。
文档编号C10L3/08GK103194286SQ20131011854
公开日2013年7月10日 申请日期2013年4月8日 优先权日2013年4月8日
发明者张勇, 周晓奇, 李速延, 房根祥, 齐小峰, 高超, 张睿 申请人:西北化工研究院, 西安元创化工科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1