由VGO和妥尔油沥青的混合物生产高辛烷值汽油组分的方法与流程

文档序号:15361397发布日期:2018-09-05 00:48阅读:451来源:国知局
本发明一般涉及生产汽油的方法。更具体地说,本发明涉及使用可再生原材料作为原料生产高辛烷值汽油组分的方法。发明背景汽油是一种主要是己烷、庚烷和辛烷的挥发性易燃烃类混合物,由石油获得并用作溶剂和内燃机的燃料。它主要由通过石油分馏获得的有机化合物组成,并用各种添加剂增强。通过其辛烷值评定具体汽油混合物抵抗自燃的特性,所述自燃引起爆震并降低往复式发动机的效率。辛烷值或辛烷数是发动机或航空燃料性能的标准度量。辛烷值越高,燃料在点燃之前所能承受的压缩就越多。汽油以数个辛烷值等级生产。铅化合物不再用于调节和提高辛烷值,但许多其他添加剂被加入汽油中以提高其化学稳定性、控制腐蚀并决定预期用途下的性能特征。传统上汽油是由化石来源的原油生产的。可再生/可持续能源需求正在大幅增加。例如,欧盟要求可再生能源在2020年前至少拥有10%的运输能源份额,甚至区域内正在尝试更高的份额。对于可再生生物基汽油而言,迄今为止的努力主要集中在乙醇方面。就燃料技术规格而言,与乙醇类似的其他汽油生物组分包括例如生物丁醇和生物甲醇以及由其制造的生物醚,例如甲基叔丁基醚(mtbe)。虽然乙醇是全球主要的液体生物燃料,但技术制约使其在传统汽油汽车中的使用限制在10-15v/v%(生物能源7-10%)。其他醇类和醚类作为氧化燃料的使用受到相同制约的限制。由于目前传统汽车至少在未来10-20年将继续占据汽油车队的主要份额,因此有必要为他们建立和评估生物组分的选择。有兴趣的汽油生物组分由生物质原料生产。生物质可以通过热化学转化路线转化成生物烃,其中包括将富含烃的固体、液体或气体原料气化并催化调节成合成气,然后可以进一步精制成更高价值的产品如汽油和柴油的过程。普遍公认的生物质难题在于不像传统的烃燃料,它含有氧,并且历史上还没有很容易转换成可以容易地整合到现有的以烃为基础的基础设施中的形式。生物进料物质通常会导致例如传统燃料生产工艺中使用的催化剂材料的中毒和堵塞。而且,现有的蒸汽裂解装置并不是设计用于去除这些生物原料的蒸汽裂解所产生的大量碳氧化物。用原油生产石油产品的炼油厂的部分原油可以用生物基原材料替代(所谓的“共进料”)以生产生物汽油。使用这些方法生产的生物汽油与醇和醚相比具有相当高的能量含量,并且适用于现有车辆,而不受任何技术的发动机制约。wo2008114033公开了一种通过流体催化裂化(fcc)生物油(特别是鱼油)与矿物油形成生物汽油的方法。在这个过程中,裂化产生生物石脑油和生物液化石油气(lpg)。所获得的生物lpg组分通过烷基化或催化聚合后处理,然后与生物石脑油组合以形成生物汽油。wo2014210150公开了一种方法,其包括在fcc或现场提质操作中将由生物质热生产的液体与石油馏分原料共处理。由生物质热生产的液体是通过在商业快速热解过程中快速热处理木渣原料生产的,并被认为是可再生燃料油(rfo)。若干出版物公开了在循环流化床反应器中使用催化剂作为固体循环介质的生物质或其他含氧碳质原料的直接处理,试图直接脱氧生物质并产生运输燃料或燃料混合物以及其他烃。尽管生产了一些烃产品,但产率却低得令人无法接受,并且产生炭或焦炭和副产品气体的产率很高。此外,通常当燃料或燃料混合物的生物能含量增加时,燃料质量降低。尽管在生物燃料领域取得了良好进展,但仍需要一种高效、简单和经济的过程,该过程能够以高产率由可再生原料生产高质量燃料,特别是汽油,并且提高产品质量。还需要适合用于汽油混合而不降低汽油品质的优质生物组分。发明概述因此,本发明的目的是提供一种方法以减轻上述缺点。本发明的目的通过以独立权利要求中陈述的内容为特征的方法来实现。本发明的优选实施方案在从属权利要求中公开。本发明提供了一种由可再生原材料生产高辛烷值汽油组分的方法。该方法包括获得生物衍生组分和矿物组分,将它们引导至裂化单元,然后进一步蒸馏成不同的馏分。具体而言,该方法包括获得生物衍生组分-妥尔油沥青(top)和矿物组分-减压瓦斯油(vgo),并将其引导至催化裂化单元以提供裂解产物,所述裂解产物可进一步蒸馏成汽油产品。此外,本发明提供了一种具有高生物能含量的汽油燃料组分,通过在催化裂化单元中共处理减压瓦斯油和妥尔油沥青获得。本发明基于这样的认识,即使用top作催化裂化单元中(优选在热催化裂化单元中)的热裂化和催化剂辅助裂化工艺中的共进料,并进一步蒸馏成不同的馏分时,与没有top的常规vgo进料的馏出物相比,在轻质(汽油)馏分中实现了研究辛烷值(ron)和马达辛烷值(mon)均增加。因此,本发明提供了具有高ron和mon的优质燃料组分,并且vgo的提质较少。所获得的汽油组分具有高生物能含量和良好的总体质量,并因此提供了调和的可能性,特别是对于汽油品质具有高辛烷值要求的。所述汽油组分可以被认为是一种“插入”燃料;换句话说,不像乙醇那样,可以与汽油等石油产品混合使用的可再生燃料组分,不需要对现有的燃料分配基础设施进行重大改造或改造汽车发动机。这种生物基燃料的能量含量与相应的石油基燃料相当。本发明人还发现,尽管top是粘稠的并且具有高密度,但它可以成功地用作裂化时的原料而无需任何预处理。由于预处理可能很昂贵,这是一个重要的优点。还有利的是,本发明的方法可以在常规的炼油过程设备中执行,即现有单元或改造的之前完全用于化石石油的现有单元。附图的简要说明下面将参照附图借助于优选实施例更详细地描述本发明,其中:图1显示了tcc单元中过程的简化方案。发明详述本发明涉及生产汽油组分的方法。汽油组分是适用于汽油混合的烃组分。当生产满足en228质量要求的汽油时,它可以用作组份。包含本发明汽油组分的燃料或汽油混合物是生物燃料或生物汽油。生物燃料是指可再生燃料油、生物质衍生的燃料油、由生物质转化而成的燃料油或具有与矿物油混合的生物质衍生组分的燃料的混合物。燃料在此指运输燃料,是具有用于汽油(0-210℃)的标准化的蒸馏曲线的蒸馏馏分或馏分或烃。生物来源的可再生原料用于本发明的方法中。尤其是妥尔油沥青(top)用作原料,但也可以使用替代原料例如动物脂肪和用过的食用油。top是在粗妥尔油减压蒸馏中分离的非挥发性馏分。妥尔油是作为纤维素纸浆蒸煮过程的副产物获得的木质纤维素原料油。它包括树脂酸、脂肪酸、中性物质,即主要是甾醇,以及这些醇和酸的酯。妥尔油通常在低压下蒸馏精制。初级油、脂肪酸和树脂酸作为蒸馏残料回收,top作为蒸馏残渣生成。top本身包括脂肪酸和树脂酸的醇酯,脂肪酸和树脂酸的低聚物,植物甾醇,高沸点中性物质如酒精、烃等。top的使用受到限制,首先是其高粘度(3000cp/50℃),其次,由于top从来不会完全硬化。因此,它被用于燃烧火炬和室外火盆及类似物。此外,它用作水泥粘合剂、胶粘剂和沥青乳化剂。用于热裂化和催化剂辅助裂化的常用原料是减压瓦斯油(vgo),其是从一个或多个石化炼油厂单元操作中回收的烃流,典型地作为减压塔、原油蒸馏塔和/或焦化分馏塔的侧馏分。vgo含有大量的环状和芳香化合物以及杂原子,如硫和氮,以及其他较重的化合物,这取决于原油来源和vgo馏分。vgo可以包括例如轻质减压瓦斯油、重质减压瓦斯油、重质焦化瓦斯油、轻质焦化瓦斯油和/或重质常压瓦斯油。生产高辛烷值汽油组分的方法包括提供减压瓦斯油(vgo)和妥尔油沥青(top)并将它们混合以提供原料;使原料经受催化裂化单元裂化以提供裂化产物;分馏裂化产物以至少提供气体流、汽油产物、轻油和蒸馏塔底物并回收汽油产物。在该方法中,通过将top和vgo共同引入到催化裂化单元中将它们组合,或者在引入vgo之前、之后或之前和之后将top以混合进料流或作为单独进料流进料。原料含有5至25体积%的top,优选10至20体积%的top,余量为vgo。top可以预处理或者可以不经过任何预处理就加入到催化裂化单元中。优选将top保持在约50-60℃或更低的温度以避免top中游离脂肪酸的腐蚀。还优选的是,原料在进入催化裂化单元之前被混合。裂化,特别是催化裂化是炼油厂中熟知的方法,用于将较大的烃组分裂解成可用作交通燃料组分的较小的短链烃。通常通过在裂化催化剂存在下破坏c15至c45的烃链中的碳-碳键来实现裂解。最终产品的性质取决于进料的性质和进行工艺的工艺条件,如温度、压力和催化剂的性质。用于进行高沸点、高分子量烃馏分的石油原油的催化裂化的广泛使用的方法是流化催化裂化(fcc)方法,其中使用粉末状催化剂。催化剂颗粒悬浮在重瓦斯油进料的上升流中以形成流化床。进料通常预热,然后通过进料喷嘴喷入提升管的底部,使进料与热流化催化剂接触。fcc裂解器的温度通常在500℃和800℃之间。在一个优选的实施方案中,本发明使用热催化裂化器(tcc)。tcc单元的操作在本领域中是众所周知的。在典型的tcc单元中,预热的原料通过重力流过催化反应器床。蒸汽与催化剂分离并送至分馏塔。废催化剂被再生、冷却并再循环。来自再生的烟气被送到一氧化碳锅炉进行热量回收。在一个优选实施方案中,催化剂是无定形二氧化硅-氧化铝催化剂,并且热催化裂化单元中的温度为400至650℃。在裂化期间,焦炭沉积在催化剂上,这导致活性和选择性的损失。通过从裂化反应器中连续除去失活的催化剂并通过在再生器中使其与空气接触而使其氧化再生,从而除去焦炭。焦炭的燃烧不仅除去焦炭,还用于将催化剂加热到适合裂化反应的温度。催化剂从反应器连续循环至再生器并返回反应器。优选地,催化剂在热催化裂化单元外部的单独的再生单元中再生。图1显示了在tcc单元中生产高辛烷值汽油组分的方法的一个实施方案。将包含vgo(减压瓦斯油)和top(妥尔油沥青)(5)的原料流供给到原料炉(10)中,其中将原料加热至450℃。将原料流(11)供应到含有催化剂(无定形硅酸铝)的tcc反应器(12)。用过的tcc催化剂(13)通过tcc催化剂再生(15)再循环并且再生的催化剂(16)供给回tcc反应器(12)。tcc产品线(14)将fcc产物供给到蒸馏塔(17),其中馏分被分离成蒸馏塔底再循环流(18),或作为轻油(19)、汽油产物流(20)或气体流(21)回收。汽油产物流进一步供给到汽油脱硫单元(22)。反应在0.7巴左右的超压下进行,进料温度约为450℃,催化剂回收的温度约为620℃。发明人已经认识到,特别是在tcc过程中实现了高度的裂化。tcc催化剂可以耐受大量的重金属和其他杂质,并且催化剂的再生是有效的。因此,top的裂化发生时没有严重的活性损失。离开tcc单元的裂化混合物进入分馏塔,在那里分离成各种馏分。分馏塔的操作在本领域中是众所周知的。在塔中形成的馏分是气体流、汽油产品、轻油和蒸馏塔底物。根据进料的性质不同,形成的每个馏分的数量都会有很大差异。通常30%的产物是汽油产品,25%是柴油。包括top在内的原料的产物与仅以vgo为原料的产物相同。所获得的汽油产品可以在脱硫单元中进一步加工,其中硫化合物通过氢化除去。烃的组成和辛烷值应保持其脱硫前的状态。本发明还涉及汽油燃料组分,其包含可从催化裂化过程,优选tcc过程获得的裂化产物,在所述过程中使用包含vgo和top的混合物作为原料。优选地,汽油燃料组分可以从包含5至25体积%top,优选10至20体积%top,其余为vgo的混合物获得。令人惊讶地发现,使用top作为原料与vgo组合制备的汽油燃料组分具有比仅由vgo精炼的燃料显著更高的研究辛烷值(ron)。这是一个非常重要的结果,因为更高的ron燃料对市场来说变得至关重要,以满足更新的发动机规格和排放要求。具有更高ron的燃料意味着需要更少的矿物油提质。辛烷值或辛烷数是马达或航空燃料性能的标准量度。辛烷值越高,燃料在起爆前可承受的压缩就越多。研究辛烷值(ron)是全球最常见的辛烷值评级。通过在受控条件下以可变压缩比在测试发动机中运行燃料并将结果与异辛烷和正庚烷混合物的结果进行比较来确定ron。另一种辛烷值称为马达辛烷值(mon),是在900rpm的发动机转速下测定的,而不是ron的600rpm。mon测试使用与ron测试中使用的类似的测试发动机,但采用预热的燃料混合物、更高的发动机转速和可变的点火定时,以进一步强调燃料的抗爆性。根据燃料的组成,现代泵汽油的mon比ron低约8-12辛烷值,但ron和mon之间没有直接联系。本发明进一步涉及top在热催化裂化过程中用作原料以获得汽油产品的用途。本发明显示辛烷值的增加实际上源于top原料而不是例如,源于改变工艺条件。对于本领域技术人员而言显而易见的是,随着技术的进步,本发明构思可以以各种方式实施。本发明及其实施例不限于上述示例,而是可以在权利要求的范围内变化。实施例实施例1.vgo和top的完全规模(fullscale)共处理使用将减压瓦斯油(vgo)裂解成包括汽油组分的各种轻质烃产物的大规模生产设备进行测试运行。测试运行使用图1所示的工艺方案进行。通过进料纯vgo到该过程开始测试运行,并且随着时间的推移原料中的top量增加。首先top量增加到4t/h进料,并且在一天之后top量进一步增加到7-8t/h,这相当于总原料的约20vol%。在测试运行期间在不同时间取出汽油产品的样品并分析各种性质,其结果可见于下表1中。通过将原料在烘箱中加热至约550℃并与来自再生单元的催化剂一起加入到反应器中来操作热催化裂化过程。反应器在高于大气压0.7巴的压力下操作,所用催化剂为无定形二氧化硅-氧化铝催化剂。催化剂与油的比例约为3-4:1,反应器中的催化剂停留时间约为150s。油原料在反应器中裂化并收集裂化产物并进料到蒸馏单元。裂化器的出口温度约为510℃。将用过的催化剂与裂化产物分离,并在重新进入裂化器之前在再生单元中在约620℃的温度下再生。裂化产物在具有多个出口的蒸馏塔中分馏。分析汽油范围沸腾的产物并与用纯vgo作为原料获得的汽油产物进行比较(表1)。表1.来自top测试运行的汽油产品的分析结果对汽油产品的分析表明,当top加到原料中时,mon和ron值都会增加。另一方面,当将top加入原料中时,汽油产物中环烷烃和链烷烃的量减少,而烯烃的量增加。因此可以得出结论,向原料中添加top不仅能够从可再生原料生产汽油产品,而且实际上产生具有更好性能的汽油产品并且能够生产具有增加的生物能含量的高品质汽油组分。实施例2.使用100%top进行实验室规模反应使用中试规模的反应器研究设备来模拟tcc单元。中试规模反应器装有1.5kg无定形氧化铝-二氧化硅催化剂(来自实际裂解单元的用过的再生催化剂)。重时空速(whsv)设定为0.021/h。所用的反应温度为460℃,反应器在大气压下运行。使用vgo作为参比原料,并且纯的100%top作为测试原料。使用蒸馏对裂化产物进行分馏并收集汽油沸程产物,沸腾范围为0-180℃。从试验中收集的样品量很小,ron或mon不能直接从纯净产品中测量。替代的,该产品与98e5品质汽油以10和20体积%混合物混合。ron值从纯汽油组分和混合物中测得。从所述结果中计算裂解产物的ron,为汽油组分和混合物的值之间的差异。来自纯vgo测试运行的汽油组分的计算ron值为82,纯top计算ron值为89。因此,可以确定,完全规模过程中的辛烷值的增加也可以使用测试反应器再现,并且可以建立具有生物能含量的高等级汽油。还表明辛烷值的增加实际上源于top原料而不是例如,源于tcc单元中改变的工艺条件。还使用gc-ms方法分析了裂解的top产物,以鉴别具有已知高辛烷值的化合物。选择具有最高已知ron值的十种化合物作为标记化合物(表2)。所有十种化合物都可以在top裂解产物中鉴别出来。top裂化汽油产品中这些化合物的量在0.1重量%至3重量%之间变化。表2.在汽油沸程中在top裂解产物中鉴别的十种标记化合物的ron和mon值(作为标准汽油中的混合组分测量)。化合物ron(混合)mon(混合)12,3-二甲基-2-丁烯18514422,3-二甲基-2-戊烯16514532-甲基-2-戊烯1591484顺式-2-戊烯1541375反-3,4,4-三甲基-2-戊烯15114461,3,5-三甲基苯17113771-甲基-3-异丙基苯15413681,3-二乙基苯15514491-甲基-4-丙基苯152139101,2,4-三甲基苯148124当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1