燃料油组合物的制作方法

文档序号:5127281阅读:328来源:国知局
专利名称:燃料油组合物的制作方法
技术领域
本发明涉及燃料油组合物及其制备方法,和它们在压缩点火式发动机中的应用。
正如WO 95 33805(Exxon)中所述,人们对环境问题的关心导致了对低硫含量燃料,特别是柴油和煤油的需求。但是,生产低硫含量燃料的炼油法也会导致产品粘度低和燃料油中有助于润滑性的其它组分如多环芳烃和极性物质含量低的问题。另外,含硫化合物一般被认为能够提供耐磨性,据报道,由于其比例的减少,连同其它提供润滑性组分比例的减少使采用低硫燃料柴油发动机的燃料泵故障增多,这些故障是由例如凸轮盘、辊、轴和驱动轴的磨损引起的。
可以预料,今后为满足更为严格的废气排放要求,一般要引入高压燃料泵,例如转缸和组合式喷射系统,预料它们对润滑性要求比现有装备更为迫切,则此问题将会更加严重,同时也普遍要求燃料中的含硫量更低。
目前,柴油燃料中典型的含硫量约为0.25%(重)(2500ppmw)。欧洲的最高含硫值已降到0.05%(500ppmw),瑞典也已引入各等级燃料的含硫值在0.005%(50ppmw)(2等)和0.001%(10ppmw)(1等)以下。
本说明书的内容中。低硫燃料是指含硫值在0.05%(重)(500ppmw)以下的燃料。
多年以来,已有许多关于用来提高发动机清净性添加剂的描述,例如,用于减少或清除在吸入系统(如化油器、进油管口、吸入阀)或火花点火式发动机燃烧室表面的沉积物的添加剂,或是用于减少或防止压缩点火式发动机喷嘴污垢的添加剂。
例如,1964年6月10日公开的UK-960,493(California ResearchCorporation)描述了在内燃机基础油中共混以聚烯烃取代的丁二酰亚胺形式的非金属清净剂。所披露的丁二酰亚胺相应通式
其中,R来自含2到5个碳原子烯烃的聚合物RH,该聚合物含从30到200个碳原子。据称R基的分子量从400到3000范围,优选900到1200,最好是由分子量约为1000的异丁烯衍生而来。制备这种丁二酰亚胺的唯一实例是基于分子量约1000的聚异丁烯,所描述的试验是将得到的丁二酰亚胺用于汽油和高硫柴油(含硫0.5wt%,即5000ppmw)中。
近期的公开资料,例如自专利UK-960,493及其等效专利期满后的资料描述了一些略有不同的丁二酰亚胺和其它丁二酸衍生物在燃料油组合物中的应用。
例如,EP-B-147 240(Ethyl)描述了一种用于间接喷射压缩点火式发动机的馏出燃料油组合物,该燃料油组合物含有添加量足以使采用该燃料操作的间接喷射压缩点火式发动机的喷嘴结焦现象得到抑制且优选最少的添加剂,该添加剂是由(a)有机硝酸酯点火加速剂和(b)烃基取代的丁二酰亚胺或丁二酰胺,且任选(c)有从3到60个碳原子和从1到10个氮原子的烃基胺,或烃基胺(c)与(d)N,N-二亚水杨基-1,2-二氨基丙烷的组合胺组合而成。烃基取代的丁二酰亚胺优选是一种烯烃聚合物取代的丁二酰亚胺,其中烯烃聚合物取代基的平均分子量为500~500000,优选平均分子量为700-5000的聚异丁烯取代基。丁二酰亚胺部分优选由式H2N-(R-NH)n-H的多亚烷基胺衍生而来,其中R为2到4个碳原子的二价脂族烃基且n为1到10的整数,包括其混合物,多亚烷基胺优选是一种有2到6个亚乙基单元的多亚乙基胺。最优选的丁二酰亚胺-丁二酰胺组分是市售产品“HITEC E-644”(商品名),应用于实施例中,且描述成“通过两分子聚异丁烯基丁二酸酐与一分子的平均组成相当于四亚乙基五胺的多亚乙基胺混合物反应来制备”(第7页,4-6行),该实施例所用基础油为高硫燃料油(含硫0.41%,即4100ppmw)。
EP-A-482 253描述了一种液体中间馏分烃类燃料,含有至少一种可溶于燃料的无灰分散剂,添加量至少50ppm,足以促使所述燃料组合物燃烧释放出的排出物减少。在实施例中,无灰分散剂被描述为“四亚乙基五胺的聚异丁烯基丁二酰亚胺,其中聚异丁烯基的数均分子量为950;以在高级芳烃溶剂中的75%溶液形式使用”(第10页,11-13行),且基础油为高硫燃料油(含硫0.125%(第10页,27行),即1250ppmw)。涉及包括四亚乙基五胺的亚乙基多胺丁二酰亚胺的一般性描述简单说成“这些亚乙基多胺在链两端有伯胺基团,使其能够形成单亚烷基丁二酰亚胺和双亚烷基丁二酰亚胺”(第3页,9和10行)。单和双亚烷基丁二酰亚胺之间区别表达的不太明显,或没有表达出优选倾向。
EP-A-613 938(BP)描述了烃燃料组合物,包括烃燃料和由仲胺衍生而来的烃基丁二酰二胺。烃燃料“适合包括汽油馏程的烃馏分或柴油馏程的烃馏分”(第5页,10和11行)。未讨论硫含量。实施例中的发动机试验是一种Open Kadett发动机(显然是火花点火式发动机),作为对比实施例,使用了(1)由PIB的Mn约为1000的聚异丁烯基丁二酸酐和四亚乙基五胺衍生而来的单丁二酰亚胺和(2)由同样的聚异丁烯基丁二酸酐和三亚乙基四胺衍生而来的双丁二酰亚胺。单丁二酰亚胺得到的结果要显著劣于双丁二酰亚胺(沉积物mg/阀229比40;阀评价值8.0比9.7)(第9页,表2)。
EP-B-557 561(Chevron)披露的燃料油组合物包括主要量的汽油馏程或柴油馏程烃和有效清净量的包括如下组分的添加剂组合物(a)下式的聚异丁烯基丁二酰亚胺
其中,R为数均分子量在1200到1500,优选1200到1400,更优选1250到1350,且最优选约1300范围的聚异丁烯基,且x是1或2;和(b)不挥发的链烷烃或环烷烃类或是混合烃载体油。据称(第3页,8到12行)该发明是“基于意外地发现,由乙二胺或二亚乙基三胺和数均分子量为1200到1500的聚异丁烯基衍生而来的聚异丁烯基丁二酰亚胺和载体油的独特组合,较之低分子量聚异丁烯基丁二酰亚胺的先有技术能提供更为优异的控制沉积性能”。未讨论燃料的含硫量。实施例中的沉积控制试验在汽油中进行,作为对比实施例,描述了乙二胺的单丁二酰亚胺(PIB Mn 950)(实施例1)和二亚乙基三胺的单丁二酰亚胺(PIB Mn 950)(实施例2),表明吸入阀沉积物重量(分别为平均127.9mg和105.2mg)要比由Mn1300的PIB衍生而来的同等物的情况差很多(分别为平均72.2和35.1mg)。
美国专利5,478,367(ass.Exxon)公开的柴油燃料组合物含有一定量的由聚异丁烯基丁二酸酐与一定的多胺反应得到的大环多胺,用于减少燃烧时的颗粒物排放。实施例所用的柴油燃料是高硫燃料(含硫0.23%w,即2300ppmw)。通过IR谱图表征该大环多胺在波数1900和1500间有四个峰,而非环的同等物则不同,它们在此区域只有三个峰(第9栏,16到22行)。
WO-94 20593(Mobil)公开的低排放柴油燃料十六烷值在50到60范围,包括(i)一种直馏烃馏分,其初沸点在170℃到190℃,终沸点不超过315℃,含硫小于0.1%(重)(优选含硫从0.005到0.05%w,即50到500ppmw),且芳烃含量18到30%(重),15℃时的最大比重为0.83,API比重为38到43,和(ii)一种成套添加剂(additive package),包括清净剂,减摩添加剂,和十六烷值改进剂。实施例中使用两种基础油,其中一种含硫0.01%w(100ppmw)而另一种含硫0.06%w(600ppmw)。实施例所用聚异丁烯基丁二酰亚胺清净剂并未特别指明,但一般性描述中却特别声明(第6页,10到14行)“优选的清净剂是由聚丁烯基丁二酸酐和四亚乙基五胺(比例2∶1,PB数均分子量约1200)与乙二胺四乙酸结合所生产的聚丁烯基双(丁二酰亚胺)”。
WO 96 23855(Exxon)详细讨论了低硫柴油燃料的润滑性问题,并公开了一种燃料油组合物,包括主要的量含不高于0.05%(重)硫(即500ppmw)和95%馏出点不超过350℃的燃料油,和次要量的包括如下组分的添加剂组合物(a)一种包括酰化氮化合物的无灰分散剂,和(b)一种羧酸,或是2到50个碳原子的羧酸与一或多个碳原子的醇形成的酯。优选的酰化氮化合物是通过聚异丁烯基丁二酸酐与亚乙基多胺混合物反应制成的化合物。在实施例中,所用无灰分散剂描述为“丁二酰亚胺无灰分散剂是1.5当量PIBSA(聚异丁烯基丁二酸酐,聚异丁烯的数均分子量约950,用凝胶渗透色谱仪测定)与1当量平均组成近似五亚乙基六胺的多亚乙基多胺的反应产物”。在含硫0.05%w(500ppmw)的低硫柴油燃料中,此分散剂与例如(b)“等摩尔量乙醇与二亚油酸的反应产物”一起使用;或是在含硫0.03%w(300ppmw)的低硫柴油燃料中,与同一反应产物一起使用,和例如与另一种(b)“市售的二聚脂肪酸混合物,主要是二亚油酸”一起使用获得高频往复试验机试验数据。另一实施例采用含硫0.00045%(4.5ppmw)的低硫柴油燃料,并将该无灰分散剂与例如(b)单油酸脱水山梨糖酯或单油酸甘油酯一起使用进行可滤过性试验。
还有一些根据Denping Wei和H.A.Spikes在《Wear》,III(1986)217-235页的论文“柴油燃料的润滑性”研究发展的专利涉及低硫柴油燃料的润滑性改进剂,例如以下专利。
WO 95 33805(Exxon)描述使用冷流改进剂来提高低硫燃料的润滑性。
WO 94 17160(Exxon)描述使用某些由2到50个碳原子的羧酸与一或多个碳原子的醇形成的酯,特别是单油酸甘油酯和己二酸二异癸酯作为燃料油添加剂,用于压缩点火式发动机喷射系统的减磨。
美国专利5,484,462(Texaco)提及二聚亚油酸作为一种市售低硫柴油燃料的润滑剂(第1栏,38行),该专利提供氨基烷基吗啉作为燃料润滑性改进剂。
美国专利5,490,864(Texaco)描述某些二硫代磷酸二酯--二醇作为低硫柴油燃料的抗磨润滑添加剂。
本申请人1996年7月5日申请的欧洲专利申请No.96304975(申请人卷号TS 7520 EPC)披露某些芳核部分至少连有一个羧基的烷基芳族化合物掺混入燃料油,特别是低硫柴油燃料时,能赋予其抗磨润滑性。烷基芳族化合物是指芳核部分至少连有一个6到30个碳原子的烷基和至少一个羧基,且芳核部分任选连有一到两个羟基的化合物。优选的烷基芳族化合物是烷基苯甲酸或烷基水杨酸,含1到2个烷基,优选6到30个碳原子的烷基,更优选C8-C20烷基,最好是C8-C18烷基。
现在很意外地发现,在低硫柴油燃料中使用某些窄频带分散添加剂较一些非常类似的添加剂对提高喷射器的清净性有更神奇的效果。当在传统的高硫柴油燃料中使用各种分散添加剂时,未观察到也未预料到如此神奇的差异。
按照本发明,所提供的燃料油组合物包括主要部分的硫浓度至多0.05%(重)的液体烃中间馏程燃料油,和次要部分通过A∶B摩尔比为4∶3到1∶10范围的A与B反应得到的分散添加剂,其中(A)为单烯类不饱和C4-C10二元羧酸物质的聚烯烃基衍生物,其中聚烯烃基链的数均分子量为850到1150范围,(B)为以下通式的多胺H2N(CH2)m-[NH(CH2)m]n-NH2(I)其中,m从2到6范围,n从1到6范围。
另一方面,本发明提供的燃料油组合物包括主要部分的硫浓度至多0.05%(重)的液体烃中间馏程燃料油,和次要部分包括分散添加剂和润滑添加剂的添加剂组合物,其中分散添加剂是通过A∶B摩尔比为4∶3到1∶10范围的A与B反应得到的,其中(A)为单烯类不饱和C4-C10二元羧酸物质的聚烯烃基衍生物,其中聚烯烃基链的数均分子量(Mn)为850到1150范围,(B)为以下通式的多胺H2N(CH2)m-[NH(CH2)m]n-NH2(I)其中,m从2到4范围,n从1到6范围。
中间馏程燃料油来自石油,一般馏程为100℃到500℃范围,例如150℃到450℃。此类来自石油的燃料油可包括常压蒸馏或减压蒸馏馏分,或裂化瓦斯油,或任何比例的直馏和热和/或催化裂化馏分的调和油。本发明优选的燃料油组合物是柴油燃料组合物。,根据燃料等级和应用,柴油燃料一般的初馏温度约160℃,终馏温度290-360℃。
燃料油本身可以是添加型(含添加剂)油,或非添加型(无添加剂)油。若燃料油是添加型油,将含少量一或多种添加剂,例如一或多种选自抗静电剂、管道减阻剂、流动改进剂(例如乙烯/醋酸乙烯酯共聚物或丙烯酸酯/马来酸酐共聚物)和抗蜡沉降剂(例如,商标为“PARAFLOW”(例如“PARAFLOW”450,Paramins出品)、“OCTEL”(例如“OCTEL”W5000;Octel出品)和“DODIFLOW”(例如“DODIFLOW”v 3958;Hoechst出品)的市售品)。
燃料油含硫至多为0.05%(重)(500ppmw)(“ppmw”是百万分之一重量份数)。当含硫低于0.005%w(50ppmw),甚或低于0.001%w(10ppmw)时,也获得本发明优良组合物。
单烯类不饱和C4-C10二元羧酸物质的聚烯烃基衍生物是已知的化合物,或可通过类似已知工艺的方法制备。例如,此类衍生物可例如按照GB-A-949,981的描述,通过将聚烯烃与指定量的单烯类不饱和C4-C10二元羧酸物质混合,然后将混合物通过氯气的常规方法来制备。另一种方法是例如按照GB-A-1,483,729的描述,通过在适当温度下,将聚烯烃与指定量的二元羧酸物质进行热反应来制备该衍生物。制备该衍生物的最好方法是按EP-A-542,380所述,将聚烯烃与二元羧酸物质按照二元羧酸物质∶聚烯烃大于1∶1的摩尔比,在150到260℃范围的温度下进行反应,若需要,可存在阻聚量的硫酸。
聚烯烃常规可以是例如至少一种C2-C10单烯烃的均聚物或共聚物。聚烯烃优选至少一种C2-C5单烯烃的聚合物,例如乙烯-丙烯共聚物。单烯烃优选为C3-C4烯烃,优选的聚烯烃来源包括聚异丁烯和无规或等规丙烯齐聚物。
单烯烃最优选为异丁烯,因此聚异丁烯是最优选的聚烯烃形式。适用的市售聚异丁烯的实例是BP公司出售的商品名为“HYVIS 10”、“NAPVIS10”和“ULTRAVIS 10”的产品,Exxon公司出售的商品名为“PARAPOL 950”的产品,BASF公司出售的商品名为“GLISSOPAL 1000”的产品和Amoco公司出售的商品名为“INDOPOL H 100”的产品。
聚烯烃的数均分子量Mn可由若干技术测定,得到类似结果。常规上,Mn由例如现代化凝胶色谱仪(GPC)来测定,例如,参见W.W Yau、J.J.Kirkland和D.D.Bly所著的“现代化体积排出液相色谱”(JohnWiley and Sons出版社,New York,1979)的描述。
聚烯烃基链的数均分子量在从850到1150范围,优选850到1000。
C4-C10二元羧酸物质(例如参见US-A-4,086,251和US-A-4,235,786)例如可以是酸酐,诸如马来酸、柠康酸(甲基马来酸)、衣康酸(亚甲基丁二酸)和乙基马来酸的C4-C6二元羧酸的酸酐。C4-C10二元羧酸物质优选马来酸酐。
当C4-C10二元羧酸物质为马来酸酐时,聚烯烃衍生物将是聚烯烃基丁二酸衍生物。
每个聚烯烃基链与二元羧酸部分比例(当C4-C10二元羧酸物质为马来酸酐时,称作丁二酸化比例)r可以很容易由下文所述方法测定。在实施例中,优选r不大于1.2∶1。
上式多胺的实例包括二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、五亚乙基六胺、六亚乙基七胺、三亚丙基四胺,及相应的市售混合物,如“Polyamine H”、“Polyamine 400”和“Polyamine S”。优选n在1到3范围。优选m为2,因此,优选的多胺是多亚乙基胺。
摩尔比A∶B优选小于6∶5,优选在6∶5到1∶2范围。所用多胺过量时,未反应的胺可很方便地通过蒸发或例如用诸如甲醇/水混合物的水介质洗涤的方法除去。
按红外光谱显示,分散添加剂一般是酰胺和酰亚胺类的混合物。
在总组合物中,分散添加剂优选以从10到400ppmw,更优选40到200ppmw活性物质的量存在。
本发明组合物优选另含有从50到500ppmw量(以总组合物为基准)的润滑添加剂。润滑添加剂例如可以是上述的任何润滑添加剂。市售润滑添加剂包括EC 831(Paramins出品)、“HITEC”(商标)E580(EthylCorporation出品)和“PARADYNE”(商标)655(Exxon Chemical Ltd出品)。
本发明进一步提供一种制备按上文定义的本发明燃料油组合物的方法,包括将分散添加剂或含分散添加剂的添加剂浓缩液与燃料油混合。
适合掺混入燃料油组合物的分散添加剂浓缩液含有分散添加剂,优选同时含有润滑添加剂,和与燃料油相容的稀释剂,稀释剂可包括载体油(如矿物油),聚醚(可封端或未封端),非极性溶剂如甲苯、二甲苯、石油溶剂和Royal Dutch/Shell集团成员公司出售的商标为“SHELLSOL”的溶剂,和/或极性溶剂如酯类且特别是醇类,例如己醇、2-乙基己醇、癸醇、异十三醇和诸如Royal Dutch/Shell集团成员公司出售的商标为“LINEVOL”的混合醇,特别是“LINEVOL”79的醇,该醇是C7-C9伯醇的混合物,或是法国Sidobre Sinnova出售的商标为“SIPOL”的C12-C14的混合醇。
添加剂浓缩液和由其制成的燃料油组合物可进一步含有另外的添加剂,如降浊度剂(dehazers),例如市售的“NALCO”(商标)EC5462A(以前称7D07)(Nalco出品)和“TOLAD”(商标)2683(Prtrolite出品)烷氧基化酚醛聚合物;消泡剂(例如市售的“TEGOPREN”(商标)5851、Q25907(DOW Coring出品)、“SAG”(商标)TP-325(Osi出品)、或“RHODORSIL”(商标)(Rhone Poulenc出品)的聚醚改性聚硅氧烷);点火改进剂(例如硝酸2-乙基己酯、硝酸环己酯、过氧化二叔丁基及美国专利4,208,190的第2栏27行到第3栏21行所述的化合物);防锈剂(例如德国Manheim的Rhein Chemie公司出售的称作“RC 4801”的四丙基丁二酸1,2-丙二醇半酯,或丁二酸衍生物多元醇酯,丁二酸衍生物的至少一个α-碳上有一个未取代的或取代的2到50个碳原子脂族烃,例如聚异丁烯取代的丁二酸季戊四醇二酯);香味剂;抗磨添加剂;抗氧剂(例如酚类抗氧剂如2,6-二叔丁基苯酚,苯二胺类抗氧剂如N,N’-二仲丁基-对苯二胺);和金属减活剂。
除非另有说明,柴油燃料中加入的每种添加剂的(活性物质)浓度优选在1%(重)以内,更优选在从5到1000ppmw范围(每百万份柴油燃料所含添加剂的重量份数),最好在75-300ppmw例如95-150ppmw。
柴油燃料中的降浊度剂(活性物质)浓度优选从1到20ppmw范围,更优选从1到15ppmw,再优选从1到10ppmw,且最好是从1到5ppmw。柴油燃料中的其它添加剂(除点火改进剂外)(活性物质)浓度每种都优选从0到20ppmw范围,更优选从0到10ppmw。柴油燃料中的点火改进剂(活性物质)浓度优选从0到600ppmw范围,更优选从0到500ppmw。若将点火改进剂掺混入柴油燃料,适宜的用量为300到500ppmw。
本发明进一步提供一种压缩点火式发动机的操作方法,包括将所述按上文定义的本发明燃料组合物引入所述发动机的燃烧室。
由下面制备试验材料的例示性实施例可进一步了解本发明。
以下描述中,所有百分数均为重量百分数,除非另有说明,温度均为摄氏度。当使用缩写时,含义如下所述。
“AV”表示酸值,该值的测定使用“Metrohm 670”(商标)电位滴定仪,按基于ASTMD 664-89的方法,用修改的溶剂体系(75%甲苯,12.5%w乙腈,12.5%乙酸)进行测定;“TBN”表示总的碱性氮,该值的测定使用“Metrohm 670”(商标)电位滴定仪,按基于ASTM D 2869的方法,用修改的溶剂体系(75%甲苯,12.5%w乙腈,12.5%乙酸)进行测定;“AM”表示活性物质含量,该值的测定通过在氧化铝柱子上,用乙醚作洗脱剂,将得到的产物中的非活性物质与所需的活性物质分离进行,表示为相对于得到产物的百分比;“丁二酸化比例”r是指在聚异丁烯与马来酸酐反应得到的反应产物中每个聚异丁烯基链与丁二酸酐部分的比例,可由下式计算r=Mn×AV20×AM-AV×MDA]]>其中
Mn=聚烯烃的数均分子量AV=反应产物的酸值(毫克当量/克)AM=反应产物中的活性物质(%w)MDA=二元羧酸物质的分子量(马来酸酐为98)其它缩写可从上下文中很清楚地看出。
本文所给出的Mn是通过凝胶色谱仪(GPC)来测定,例如,参见W.WYan、J.J.Kirkland和D.D.Bly所著的“现代化体积排出液相色谱”(JohnWiley and Sons出版社,New York,1979)的描述。
聚异丁烯基丁二酸酐(PIBSA)材料可通过两种已知的热方法准备之一。第一种方法(1)是将聚异丁烯与马来酸酐(MALA)在高压釜中加压下以摩尔比PIB∶MALA为1∶1.5进行反应。未反应的MALA减压蒸馏脱除。残留物用约20%w的矿物油(“HVI”基础油--一种澄清的高粘度指数基础油,100℃时的粘度为4.4到4.9mm2/s(ASTM D 445))稀释,滤出不溶物。第二种方法(2)是将PIB在装有冷凝器和顶部搅拌器的三颈瓶中于搅拌下加热到210℃,将MALA经30分钟时间加入,使最终的PIB∶MALA摩尔比为1∶3,得到的混合物于210℃下搅拌8小时。未反应的MALA减压蒸馏脱除,残留物用正庚烷稀释,滤出不溶物,减压蒸发除去正庚烷。
下表1给出通过以上方法制备的PIBSA材料的详细情况及其在分散添加剂材料制备过程中的应用。
表1
分散添加剂试验材料按如下某一方法制备方法A(对照表2的试验材料1)在装有顶部机械搅拌器、Dean-Stark分水器、回流冷凝器和温度计的三颈瓶中加入四亚乙基五胺(TEPA)(34.7g,0.184mol)于二甲苯(150ml)中的溶液。搅拌溶液,在油浴中加热到90℃,滴加聚异丁烯基丁二酸酐(PIBSA A)(233g,0.125mol,56.8%活性物质)于二甲苯(200ml)中的溶液,历时1.5小时。加完后,将反应混合物在回流温度下加热4小时,同时,移出反应生成的水。收集到的水量为2ml(理论量2.25ml)。
用旋转蒸发器除去二甲苯溶剂,剩下的残留物为棕色油状物。将油溶解在1升庚烷中,用9∶1的甲醇/水混合物洗涤(3×30ml),除去过量胺。再用旋转蒸发器脱除溶剂,得到264g预期产物。方法B(对照表2的试验材料2)在装有顶部机械搅拌器、Dean-Stark分水器、回流冷凝器和温度计的三颈瓶中加入聚异丁烯基丁二酸酐(PIBSA A)(1000g,0.536mol,56.8%活性物质)。搅拌下加热到140℃,加入TEPA(101.46g,0.536mol),历时10分钟。加完后,将反应混合物升至160℃,并维持160℃ 2小时。用旋转蒸发器除去挥发物,得到预期产物1136g,棕色液体。
方法C(对照表2的试验材料3)在装有顶部机械搅拌器、Dean-Stark分水器、回流冷凝器和温度计的三颈瓶中加入E二亚乙基三胺(DETA)(18.0g,0.175mol)。搅拌下加热到60℃,加入聚异丁烯基丁二酸酐(PIBSA B)(170g,0.09mol,52%活性物质)。将反应混合物加热至160℃,并维持160℃2小时,然后冷却并溶解于1升庚烷中。用9∶1的甲醇/水混合物洗涤(3×30ml),除去过量胺。再用旋转蒸发器脱除溶剂,得到91g预期产物,为棕色油状物。
下表2给出所得试验材料的详细情况,其中酰亚胺、仲酰胺、叔酰胺羰基的含量通过将试验材料溶解于四氯化碳制成样品进行红外光谱分析来评价。酰亚胺含量由1710cm-1附近的吸收带计算,仲酰胺含量由1680cm-1附近的吸收带计算,叔酰胺含量由1660cm-1附近的吸收带计算。
表2
<p>上表中的IR羰基峰数据证实这些化合物是未环合材料,可对照一下美国专利5,478,367中的大环化合物,每种在1900和1500cm-1间都有四个IR峰(参见美国专利5,478,367的第9栏13到21行)。
为应用于添加剂浓缩液组合物和试验燃料配方,表2的分散添加剂试验材料通过加入“SHELLSOL R”(商标)溶剂稀释成27%w活性物浓度。“SHELLSOL R”溶剂是一种沸程为205到270℃且平均分子量为156的芳烃溶剂(74%芳烃)。所得分散剂溶液以200ppmw和250ppmw的处理量加入柴油燃料中时,按比例,则分别对应54ppmw和68ppmw活性物质。
用于低硫柴油燃料的添加剂浓缩液组合物通过将(A)200份(重)或(B)250份(重)(pbw)上述分散剂溶液与300pbw硝酸2-乙基己酯(EHN)点火改进剂、5pbw防锈剂、5pbw消泡剂、5pbw降浊度剂、100pbw醇溶剂和100pbw润滑添加剂混合来制备。
具体使用的防锈剂是四丙基丁二酸羟丙酯(四丙基丁二酸丙二醇半酯)(参见专利UK-1,306,233)。
消泡剂是Osi Specialites(UK)公司,Harefield,UK出售的商品名“SAG TP-325”(“SAG”为商标)的硅烷消泡添加剂。
降浊度剂是一种Nalco公司出售的“NALCO”(商标)EC5462A(以前称7D07)烷氧基化酚醛聚合物。
醇溶剂是一种Royal Dutch/Shell集团子公司出售的“LINEVOL”79(商标)的C7-C9伯醇的混合醇。
润滑剂是一种Exxon化学公司,Fareham,UK出售的商品名为“PARADYNE 655”(“PARADYNE”为商标)的合成含酯润滑添加剂。
为进行对比,通过将(A)200份(重)或(B)250份(重)(pbw)上述分散剂溶液与300pbw EHN、5pbw上述防锈剂、5pbw上述消泡剂、5pbw上述降浊度剂、25pbw上述醇溶剂混合制备适合(高硫)柴油燃料的添加剂浓缩液组合物。
为制备试验燃料配方,将不同添加剂浓缩液组合物按上述的每1“重量份数”(pbw)成为燃料配方中的1ppmw的量加入基础油,例如,每个燃料配方含有300ppmw EHN。
所用基础油如下
实施例1和2按下述方法进行稳态喷嘴结垢试验,采用1896cc容量的四缸VWPassat AAZ 1.9 TD(汽轮柴油型)IDI(间喷式)柴油发动机,装备有采用DNO SD 308喷嘴的Bosch燃料喷射系统。
在本试验方法中,发动机加温所用喷嘴与稳态沉积积累阶段所用喷嘴相同。每个试验均使用用正庚烷清洗的新喷嘴。
发动机以1500rpm的引擎速度和25Nm测力计负荷预热20分钟,然后在15秒内将发动机速度升到2000rpm,测力计负荷增到90Nm,发动机在此速度和负荷下工作3小时。
结垢指数是由通过测量喷嘴的空气流速导出的,对新喷嘴,即试验开始前的喷嘴(清洁流速)和实验后的喷嘴(结垢流速)作出评定。按ISO4010,在Ricardo空气流速试验仪上测量空气流速,在探针升高0.1、0.2和0.3mm时,记录测量值,真空压力600mbar(60000Pa)。
喷嘴在沉积物的积累造成所测空气流速降低,喷嘴的结垢度按下式计算
一个喷嘴的结垢值是通过将三个不同探针点得到的三个F值平均起来计算。结垢指数(FI)是将所有四个喷嘴的结垢值平均起来得到的。
对上述含200ppmw和250ppmw试验材料1的分散剂溶液的低硫燃料配方进行试验(实施例1和实施例2),材料组合物A作为对比(比较实施例I和II)。对上述含200ppmw和250ppmw试验材料1的分散剂溶液的高硫燃料配方也进行比较试验(比较实施例III和IV),材料组合物A试验作为对比(比较实施例V和VI)。基础燃料的值作为比较实施例VII和VIII。
试验结果列于下表3表3
从上表可看出,比较例III到VI中,比较例III和比较例V及比较例IV和比较例VI之间基本类似。比较例III和比较例IV对应于UK专利申请No.960,493第5页28到52行描述的燃料,其中由Mn为950的PIB和TEPA的胺反应得到的聚异丁烯基单丁二酰亚胺在十六烷值36和含硫0.5%(5000ppmw)的高硫燃料中以200ppmw的浓度进行试验。
应该注意,当分散添加剂组合物A用于低硫柴油燃料时,FI值要高于其用于高硫柴油燃料时的FI。
意外的是,当分散添加剂1用于低硫柴油燃料时,不仅FI大大低于其用于高硫柴油燃料时的FI,且分散添加剂1的FI值仅是组合物A的FI值的一半。实施例3和4按照实施例1和2的步骤,对各含250ppmw的试验材料1和2和比较试验材料组合物A、组合物D、组合物E和组合物G,及370ppmw的比较试验材料组合物B和组合物C进行一系列试验。试验结果列于表4。
表4
由上表容易看出,通过将实施例3和4与比较例XI、比较例XII和XIII对比,这些材料除PIB的Mn不同外,其它基本类似,本发明材料的PIB Mn为950,其结果大大优于PIB Mn780或以下或者PIB 1300的材料。
与此类似,通过将实施例3和4与比较例I、比较例IX对比可以看出,本发明分散添加剂有较低的偶合比,其结果大大优于其它偶合比(PIBSA∶胺)为1.5∶1或2∶1的类似材料。
此外,通过将实施例3和4与比较例X对比,可以看出,本发明分散添加剂大大优于其它由不同结构的胺,即3-二甲基氨基丙胺反应形成的类似材料。实施例5和6用上述大致相同的方法制备添加剂浓缩液组合物,不同之处是分散剂溶液的量不相同,用300pbw的“SHELLSOL R”溶剂代替100pbw醇溶剂,消泡剂是Th.Goldschmidt A.G.,Essen,Germany出售的商品名为“TEGOPREN 5851”(“TEGOPREN”是商标)的硅烷消泡剂,润滑剂是美国St.Louis的Ethyl石油添加剂公司出售的商品名为“HITEC E580”(“HITEC”是商标)的脂肪酸二聚体基材料。
试验燃料配方按上述方法制备,使用低硫燃料LS作为基础油。
使用得到的燃料进行稳态喷嘴结垢试验,采用Fiat IDI 1299cc,149A1.000型,Fiat Regata柴油汽车使用的柴油发动机,装备采用DN 125D1750型喷嘴的Bosch喷射系统。
发动机以1500rpm的引擎速度和25Nm测力计负荷预热20分钟,然后将喷嘴换为试验喷嘴。
随后,将发动机速度升到2700rpm,测力计负荷增到75Nm,发动机在此速度和负荷下工作8.5小时,之后关掉发动机,冷却油/水温维持在90±4℃。
通过测量发动机喷嘴中生成的不同结垢程度的空气流速定性评定每种柴油燃料的操作性能。将Bosch DN 12 SD 1750型喷嘴放在Ricardo空气流速试验仪上,按ISO 4010,在探针升高0.1、0.2和0.3mm时,记录空气流速测量值,真空压力600mbar(60000Pa)。
由空气流速测量值,通过实施例1和2所描述的计算方法得到结垢指数。
下表5列出这些试验结果,其中处置量中所给的ppmw数值也代表在添加剂浓缩液组合物中所用的重量份数。
表5
由这些试验可以看出,本发明的两种分散添加剂试验材料能获得极好的结果。比较例XIV与实施例5类似,但偶合比不同,所得结果非常差,比较例XV与实施例VI类似,只是其PIB Mn较低,为350,导致喷嘴严重结垢,使探针粘在喷嘴中。
权利要求
1.一种燃料油组合物,包括主要部分的硫浓度至多0.05%(重)的液体烃中间馏程燃料油,和次要部分通过A∶B摩尔比为4∶3到1∶10范围的A与B反应得到的分散添加剂,其中(A)为单烯类不饱和C4-C10二元羧酸物质的聚烯烃基衍生物,其中聚烯烃基链的数均分子量(Mn)为850到1150范围,(B)为以下通式的多胺H2N(CH2)m-[NH(CH2)m]n-NH2(I)其中,m从2到4范围,n从1到6范围。
2.按权利要求1的组合物,其中聚烯烃基链是由至少一种C2-C5单烯烃聚合物衍生而来。
3.按权利要求2的组合物,其中单烯烃是异丁烯。
4.按权利要求1-3任一项的组合物,其中n为1到3范围。
5.按权利要求1-4任一项的组合物,其中(A)∶(B)的摩尔比在6∶5到1∶2。
6.按权利要求1-5任一项的组合物,其中分散添加剂在总组合物中的存在量为从10到400ppmw活性物质范围。
7.按权利要求1-6任一项的组合物,其中分散添加剂在总组合物中的存在量为从40到200ppmw活性物质范围。
8.按权利要求1-7任一项的组合物,其中总组合物中另含有从50到500ppmw范围量的润滑添加剂。
9.一种制备按前面权利要求1-8任一项的燃料油组合物的方法,包括将分散添加剂或含分散添加剂的添加剂浓缩液与燃料油混合。
10.一种压缩点火式发动机的操作方法,包括将所述的按前面权利要求1-8任一项的燃料油组合物引入所述发动机的燃烧室。
全文摘要
本发明提供一种燃料油组合物,包括主要部分的硫浓度至多0.05%(重)的液体烃中间馏程燃料油,和次要部分通过A:B摩尔比为4∶3到1∶10范围的A与B反应得到的分散添加剂,其中(A)为单烯类不饱和C
文档编号C10L1/18GK1253578SQ98804533
公开日2000年5月17日 申请日期1998年3月20日 优先权日1997年3月21日
发明者M·J·古兰德, M·比尔森 申请人:因芬优姆控股有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1