可变压缩比内燃机的制作方法

文档序号:5210462阅读:121来源:国知局
专利名称:可变压缩比内燃机的制作方法
技术领域
本发明涉及通过改变燃烧室容积而使压缩比变化的内燃机。
背景技术
以往,例如,如特开昭60-230522号公报中所述的那样,公开有通过机械性地改变燃烧室容积而使气缸容积与燃烧室容积之比即压缩比(机械压缩比)变化的可变压缩比机构。采用具有可变压缩比机构的内燃机,通过与运转状态相应地改变压缩比,可以高水平地使输出及燃料费的改善与爆燃的防止达到平衡。
在特开平1-106958号公报中公开有下述技术,该技术用于在具有多个气缸的可变压缩比内燃机中,基于非燃烧中的缸内压力控制各气缸中的点火时间或者燃料供给量。
在特开平1-45965号公报、日本注册实用新型第2510247号公报以及特开平2-40056号公报中,公开有在压缩比切换时控制点火时间等的方法。
在特开昭63-18142号公报、再公表97-13063号公报中公开有下述技术,该技术用于在具有可变气门机构和可变压缩比机构的内燃机中,在爆燃检测时,控制可变气门机构而使有效压缩比降低。
可变压缩比内燃机,例如,使气缸体和曲轴箱相对于移动、或者通过将连杆折弯而改变活塞的行程量,由此而使燃烧室的容积在低压缩比时增加并且在高压缩比时减小。
在压缩比改变的过渡时,活塞相对于气缸的实际的行程量(以气缸盖为基准的活塞的行程量),与压缩比恒定时的情况不同。
这样,如果活塞相对于气缸的行程量变化,则活塞相对于气缸的相对速度也变化。即,如果活塞相对于气缸的行程量变短,则活塞相对于气缸的相对速度降低;如果活塞相对于气缸的行程量变长,则活塞相对于气缸的相对速度升高。
因此,在可变压缩比内燃机中,压缩比改变的过渡时和压缩比保持恒定时,活塞相对于气缸的行程量及活塞相对于气缸的相对速度不同。因此,在压缩比改变的过渡时处于进气行程的气缸中,与压缩比保持恒定的情况相比,即使内燃机负载、内燃机转速等的运转状态相同,吸入空气量(以下称为缸内进气量)也不同。
为了使排气空燃比变为适于排气净化催化剂进行排气净化的空燃比,根据内燃机负载、内燃机转速等的运转状态而确定内燃机的燃料喷射量。即,对内燃机的燃料喷射量进行控制,以使混合气的空燃比达到作为目标的空燃比。
对于在压缩比改变的过渡时处于进气行程的气缸而言,如果喷射与内燃机负载、内燃机转速等的运转状态相应的量的燃料,则有时会出现混合气的空燃比偏离目标空燃比的情况。如果混合气的空燃比偏离目标空燃比,则排气空燃比也偏离适于排气净化催化剂进行排气净化的空燃比。结果,有可能导致排气净化催化剂的排气净化能力降低、排气特性恶化。
另一方面,对于在压缩比改变的过渡时处于排气行程的气缸而言,如果为了减小压缩比而增大燃烧室容积,则气缸内的燃烧气体的残留量增大。
在燃料室容积已增大时,如果燃烧气体的残留体积与燃烧室容积的增大量相应地增大,则在新气的吸入特性方面不会变化。但是,由于残留的燃烧气体会在气缸内膨胀,所以实际的燃烧气体的残留体积会超过燃烧室容积的增大量。新气的吸入量,与燃烧气体的残留体积超过燃烧室容积增大量的量相应地减少。
相反,在燃烧室容积减小时,燃烧气体的残留体积减小得有可能超过燃烧室容积的减小量。如果燃烧气体的残留体积超过燃烧室容积的减小量,则新气的吸入量相应地增加。
在燃烧室容积改变的过渡时,由于利用排气空燃比反馈进行的燃料喷射量的调整,跟不上吸入特性的变化,所以空燃比的紊乱很容易变严重。结果,导致排气性能恶化和燃料费恶化的可能性变高。

发明内容
本发明的目的在于提供一种技术,该技术在具有可变压缩比机构的内燃机中,可以抑制因燃料室容积的改变所引起的空燃比的紊乱,其中上述可变压缩比机构是通过改变燃烧室容积而改变压缩比的。
本发明为解决上述问题而采用下述方法。本发明的特征在于在具有可变压缩比机构的内燃机中,在压缩比改变的过渡时,控制决定空燃比的主要因素,以使气缸内的混合气的空燃比与压缩比改变前后基本相同,其中上述可变压缩比机构通过改变燃烧室容积而改变压缩比。
例如,本发明涉及的可变压缩比内燃机,具有设在排气通路中的排气净化催化剂,通过改变燃烧室的容积而改变压缩比,在压缩比改变的过渡时,对燃料喷射量进行校正,以使气缸内的混合气的空燃比与压缩比改变前后基本相同。
该发明,在压缩比改变的过渡时对燃料喷射量进行校正,以使混合气的空燃比与压缩比改变前后的空燃比基本相同。即,该发明,随着因压缩比改变而引起的缸内进气量的变化,相应地对燃料喷射量进行校正。
因此,根据本发明,在压缩比改变的过渡时,可以使排气空燃比与压缩比改变前后的排气空燃比基本相同。因此,可以使排气空燃比维持在适于排气净化催化剂进行排气净化的空燃比。由此,可以在压缩比改变的过渡时抑制排气特性的恶化。
本发明也可以进行下述校正在将压缩比向高压缩比改变的过渡时,与压缩比保持恒定时相比减少燃料喷射量。
在压缩比向高压缩比改变的过渡时处于进气行程的气缸,与压缩比保持恒定时的情况相比,活塞相对于气缸的行程量变短,并且活塞相对于气缸的相对速度降低,因此缸内进气量减少。
此时,如果与压缩比恒定时相比减少燃料喷射量地进行校正,则气缸内的混合气的空燃比变为与压缩比改变前后基本相同。
因此,在将压缩比向高压缩比改变的过渡时,如果与压缩比保持恒定时相比减少燃料喷射量地进行校正,则可以使排气空燃比变为与压缩比改变前后的排气空燃比基本相同。
本发明也可以进行下述校正在将压缩比向低压缩比改变的过渡时,与压缩比恒定时相比增加燃料喷射量。
在压缩比向低压缩比改变的过渡时处于进气行程的气缸,与压缩比保持恒定时的情况相比,活塞相对于气缸的行程量变长,并且活塞相对于气缸的相对速度提高,因此缸内进气量增加。
此时,如果与压缩比恒定时相比增加燃料喷射量地进行校正,则气缸内的混合气的空燃比变为与压缩比改变前后基本相同。
因此,如果在将压缩比向低压缩比改变的过渡时,与压缩比恒定时相比增加燃料喷射量地进行校正,则可以使排气空燃比变为与压缩比改变前后的排气空燃比基本相同。
此外,在本发明中,校正燃料喷射量时的校正量,也可以根据压缩比的变化量(换言之为燃烧室容积的变化量)确定。
本发明为了解决上述问题,也可以具有通过改变燃烧室容积而改变压缩比的可变压缩比机构;检测通过上述可变压缩比机构所实现的实际的燃烧室容积的燃烧室容积检测装置;以及,基于利用上述燃烧室容积检测装置所检测的上述实际的燃烧室容积,对决定空燃比的主要因素进行控制的控制装置。
根据该发明,由于基于实际的燃烧室容积,对决定空燃比的主要因素进行控制,所以即使新气的吸入特性随着燃烧室容积的变化而变化,也可以抑制空燃比的紊乱。
上述控制装置也可以基于上述实际的燃烧室容积而控制燃料喷射量。
如果燃烧室容积变化,则在残留气体量变化的同时,新气的吸入量也发生变化,但是如果基于实际的燃烧室容积控制燃料喷射量,则可以达到与新气的吸入量相应的燃料喷射量,从而可以抑制空燃比的紊乱。
在本发明所涉及的内燃机具有改变进气阀和/或排气阀的开阀特性的可变气门机构的情况下,上述控制装置也可以求出与内燃机的运转状态相应的目标缸内进气量,基于目标缸内进气量和实际的燃烧室容积来控制可变气门机构的动作。
如果基于实际的燃烧室容积控制可变气门机构的动作,则即使新气的吸入量因燃烧室容积的变化而发生变化,也可以使实际的缸内进气量接近目标缸内进气量,从而可以抑制空燃比的紊乱。
在本发明所涉及的内燃机具有改变EGR量的EGR机构的情况下,上述控制装置也可以求出与内燃机的运转状态相应的目标EGR量,基于目标EGR量和实际的燃烧室容积来控制EGR机构的动作。
如果燃烧室容积发生变化,则残留气体量、即EGR气体量发生变化,但由于基于实际的燃烧室容积来控制EGR机构的动作,因此即使燃烧室容积发生变化,也可以使实际的EGR量接近目标EGR量,从而可以抑制空燃比的紊乱。
此外,控制装置在利用可变压缩比机构改变压缩比时,基于燃烧室容积检测装置所检测出的实际的燃烧室容积,对决定空燃比的主要因素进行控制。
在压缩比改变的过渡运转时,由于利用排气空燃比反馈进行的燃料喷射量的调整,跟不上新气的吸入特性的变化,所以空燃比的紊乱很容易变严重,但是由于在这种过渡运转时基于实际的燃烧室容积对决定空燃比的主要因素进行控制,所以无论吸入特性如何变化,都可以抑制空燃比的紊乱。
根据本发明,可以在压缩比改变的过渡时抑制空燃比的紊乱。结果,可以将排气空燃比维持在适于排气净化催化剂进行排气净化的空燃比,由此在压缩比改变的过渡时可以抑制排气特性的恶化。


图1是表示本发明的实施例所涉及的可变压缩比内燃机的简略结构的图。
图2是表示活塞相对于气缸的行程量的图。图2(a)是表示压缩比恒定时,活塞相对于气缸的行程量的图。图2(b)是表示压缩比向高压缩比改变的过渡时,活塞相对于气缸的行程量的图。图2(c)是表示压缩比向低压缩比改变的过渡时,活塞相对于气缸的行程量的图。
图3是表示在从高负载运转变换到低负载运转时处于进气行程的气缸的、节气门的开度与压缩比、缸内进气量、燃料喷射量、混合气的空燃比之间的关系的时间图。
图4是表示在从低负载运转变换到高负载运转时处于进气行程的气缸的、节气门的开度与压缩比、缸内进气量、燃料喷射量、混合气的空燃比的关系的时间图。
图5是表示本发明的实施例1涉及的内燃机的简略结构的图。
图6是表示在本发明的实施例1中所执行的燃烧室容积计算程序的流程图。
图7是表示在本发明的实施例1中所执行的燃料喷射量计算程序的流程图。
图8是表示在本发明的实施例2中所执行的目标缸内进气量计算程序的流程图。
图9是表示在本发明的实施例2中所执行的目标配气定时计算程序的流程图。
图10是表示在本发明的实施例2中所执行的目标缸内进气量及目标EGR量计算程序的流程图。
图11是表示在本发明的实施例3中所执行的目标配气定时计算程序的流程图。
图12是表示在本发明的实施例4中所执行的EGR阀开度计算程序的流程图。
具体实施例方式
以下,根据附图对本发明的具体实施方式
进行说明。
实施例1首先,根据图1~图4对本发明的第1实施例进行说明。
可变压缩比内燃机的简略结构图1是表示本实施例涉及的可变压缩比内燃机的简略结构的图。另外,可变压缩比内燃机1是多气缸的内燃机,图1是表示多个气缸中的一个气缸的剖面图。
可变压缩比内燃机1(以下简称为内燃机1),包括具有气缸5的气缸体2、设置在气缸体2的上部的气缸盖4、以及连接有活塞6的曲轴箱3。此外,利用压缩比可变机构8使气缸体2相对于曲轴箱3沿气缸5的轴方向移动,从而改变燃烧室7的容积而改变压缩比。
在此,作为可变压缩比机构8,采用特开2003-206771号公报所提出的结构。该机构通过使气缸体2相对于曲轴箱3沿气缸5的轴方向移动而改变压缩比,采用凸轮轴作为使气缸体2移动的装置。凸轮轴由轴部11、凸轮部9和可动轴承部10构成;其中该凸轮部9以相对于轴部11的中心轴偏心的状态固定在轴部11上,具有圆形的凸轮外形;该可动轴承部10,具有和凸轮部9相同的外形,被以相对于轴部11偏心的状态可旋转地进行安装。凸轮部9可旋转地安装在气缸体2上,可动轴承部10可旋转地安装在曲轴箱3上。如果通过电动机24对凸轮部9进行旋转驱动,则凸轮部9和可动轴承部10的轴间距离发生变化而使气缸体2相对于曲轴箱3进行移动。
该可变压缩比机构8,通过使气缸体2相对于曲轴箱3移动而改变气缸5内的活塞6的往复位置。结果,虽然由活塞6的行程所决定的行程容积没有改变,但活塞6处于上止点时的燃烧室7的余隙容积即燃烧室容积发生变化。由此,燃烧室容积与气缸容积之比即压缩比改变。此外,虽然压缩比的改变速度由电动机24的速度决定,但有时也需要直到压缩比改变结束为止左右的时间。
在气缸盖4上设置有在燃烧室7上开口而形成的进气口12和排气口13。进气口12与进气管14连接,在进气管14上设置节气门22。另一方面,排气口13与排气管15连接,在排气管15上设置排气净化催化剂23。作为该排气净化催化剂23,例如可以采用三元催化剂及吸留还原型NOx催化剂等。
进气口12的和排气口13的朝向燃烧室7的开口部,分别通过进气阀16和排气阀17进行开闭。进气阀16和排气阀17,分别通过进气侧凸轮18和排气侧凸轮19的旋转而进行驱动。进气侧凸轮18和排气侧凸轮19相互联动地旋转。
此外,在进气口12上配置有燃料喷射阀20,在燃烧室7上配置有对该燃烧室7内所形成的混合气进行点火的火花塞21。
虽然省略了图示,但是在气缸盖4上,在每个气缸上形成进气口12,进气管14的前端在每个气缸上产生分支并连接到各进气口12上。在进气管14在每个气缸上产生分支而形成的各部分设置燃料喷射阀20,能够以气缸为单位供给燃料。
在内燃机1上设有下述各种传感器等凸轮位置传感器31,输出与压缩比可变机构8的凸轮轴11的旋转角相应的电信号;进气凸轮位置传感器32,输出与进气侧凸轮轴18的旋转角相应的电信号;油门开度传感器33,输出与油门开度相应的电信号;以及曲轴位置传感器34,输出与设置在曲轴箱3上并连接有活塞6的曲轴的转角相应的电信号。
并且,在内燃机1中还一并设有用于控制该内燃机1的电子控制单元(ECU)30。该ECU30,是根据内燃机1的运转条件、运转者的要求对内燃机1的运转状态等进行控制的单元。在ECU30上通过电气布线连接有凸轮位置传感器31、进气凸轮位置传感器32、油门开度传感器33及曲轴位置传感器34等各种传感器,将它们的输出信号输入到ECU30。此外,在ECU30上电连接有燃料喷射阀20、火花塞21、节气门22及电动机24等,这些可以通过CU30进行控制。
作为利用ECU30所进行的控制之一,有对可变压缩比机构8进行驱动而改变内燃机1的机械压缩比的压缩比控制。在该压缩比控制中,首先,通过油门开度传感器33、曲轴位置传感器34,检测油门开度(内燃机负载)、内燃机转速等的内燃机1的运转状态,基于所检测出的运转状态,根据映像图计算出目标缸内进气量。
根据以内燃机转速和目标气缸进气量作为参数的映像图计算出目标压缩比,并对可变压缩比机构8的电动机24的旋转量进行控制,以使凸轮位置传感器31所检测出的内燃机1的实际压缩比与目标压缩比一致。目标压缩比相对于内燃机转速及目标缸内进气量的设定属于设计事项,并不特别加以限定,例如可以如下地设定。
假设本实施例的内燃机1为汽油发动机,一般在汽油发动机中,考虑到高负载时发生爆燃而将压缩比设定得较低。因此,在不易发生爆燃的部分负载时(特别是低负载时),压缩比存在宽余,因而具有通过提高压缩比而改善输出以及燃料费的余地。
因此,在采用可变压缩比机构8的压缩比控制中,可以将高负载时的目标压缩比设定为基准目标压缩比,并将部分负载时(低负载时)的目标压缩比设定为比基准目标压缩比高。即,在高负载时将目标压缩比设定得较低,在低负载时将目标压缩比设定得较高。这样通过与内燃机负载相应地改变目标压缩比,可以高水平地同时实现输出及燃料费的改善和爆燃的防止。此外,上述的目标压缩比的设定例仅为一例,当然也可以采用其他设定。
此外,作为推断实际压缩比的方法,也可以采用检测气缸体2相对于曲轴箱3的相对位置的传感器来取代凸轮位置传感器31,在可变压缩比机构8的电动机24是伺服电动机的情况下,也可以基于对电动机24的指令值来计算出压缩比。
ECU30,除了上述的压缩比控制之外,还另外进行从燃料喷射阀20喷射的燃料量(燃料喷射量)的控制。在压缩比固定的稳定运转时,ECU30与现有技术相同地,根据内燃机运转状态确定燃料喷射量,并且在每个循环和/或每个气缸中对燃料喷射量进行反馈控制,以使未图示的排气空燃比传感器所检测出的排气空燃比达到目标空燃比。
此外,在通过可变压缩比机构8改变压缩比的过渡时,由于新气的吸入特性发生变化,所以空燃比发生紊乱。因此,ECU30在压缩比改变的过渡时,如下所述进行燃料喷射控制。
压缩比改变的过渡时的燃料喷射量控制根据图2~图4对本实施例所涉及的压缩比改变的过渡时的燃料喷射控制进行说明。
图2(a)是表示非压缩比改变的过渡时、即压缩比恒定时,活塞6相对于气缸5(气缸盖4)的行程量L的图。图2(b)是表示压缩比向高压缩比改变的过渡时,活塞6相对于气缸5的行程量L1的图。图2(c)是表示压缩比向低压缩比改变的过渡时,活塞6相对于气缸5的行程量L2的图。
关于向高压缩比改变的过渡时在压缩比向高压缩比改变时,由于气缸体2接近曲轴箱3(燃烧室容积缩小),因此,如图2(b)所示,在压缩比向高压缩比改变的过渡时,活塞6下降的气缸5内的活塞6的行程量L1,与压缩比恒定时的行程量L相比变短。随之而来,活塞6相对于气缸5的相对速度降低。
因此,虽然内燃机负载、内燃机转速等的运转状态相同,但是在压缩比向高压缩比改变的过渡时处于进气行程的气缸5的缸内进气量,与压缩比恒定时相比减少。
因此,此时,如果从燃料喷射阀20喷射与压缩比恒定时相同量的燃料,则上述气缸5内的混合气的空燃比有可能比目标空燃比低(浓)。
在此,在本实施例中,如图3所示,对于在压缩比向高压缩比改变的过渡时处于进气行程的气缸5进行校正,使得从燃料喷射阀20喷射的燃料喷射量比压缩比恒定时减少。
图3是表示从高负载运转变换到低负载运转时,节气门22的开度、压缩比、此时处于进气行程的气缸5的缸内进气量、该气缸5的燃料喷射量以及该气缸5内的混合气的空燃比的关系的时间图。在图3中表示到(1)为止的期间为高负载运转;(2)以后的期间为低负载运转;从(1)到(2)的期间处于过渡运转。
在从高负载运转变换到低负载运转时,在从(1)到(2)的期间内,节气门22的开度减小。结果导致缸内进气量减少。而且,在该期间内,燃料喷射量也减少。此外,在本实施例中,内燃机1的压缩比,到(2)为止为低压缩比。
在(2)中,如果节气门22的开度和燃料喷射量达到目标值(变换到低负载运转),则在从(2)到(3)的期间内,压缩比变为高压缩比。如上所述,该过渡时(图3中的(2)~(3)的期间)的缸内进气量,与压缩比恒定时相比减少。
因此,在从(2)到(3)的期间,ECU30如图3中的实线所示地对燃料喷射量进行控制,使其与压缩比恒定时(图3中的虚线)相比减少。此时的减少量根据压缩比的变化量确定,以使混合气的空燃比与压缩比改变前后基本相同。
另外,ECU30基于进气凸轮位置传感器32和曲轴位置传感器34的输出值,对从(2)到(3)的期间内处于进气行程的气缸5进行判断。
如果在压缩比变为高压缩比的过渡时(图3的从(2)到(3)的期间),未对燃料喷射量进行减量校正,如上所述,则混合气的空燃比与压缩比改变前后(即压缩比恒定时)相比,有可能降低(图3的虚线)。即,在压缩比变为高压缩比的过渡时,混合气的空燃比有可能变得比目标空燃比低。
相对于此,ECU30在上述过渡时进行减少燃料喷射量的校正,由此如图3中的实线所示,将上述过渡时的空燃比保持为与压缩比改变前后基本相同。即,在上述过渡时,也可以把混合气的空燃比保持在目标空燃比。
因此,根据本实施例,在可变压缩比内燃机中,即使在将压缩比改变为高压缩比的过渡时,也可以把排气空燃比维持为适于排气净化催化剂23的空燃比,由此可以抑制排气特性的恶化。
关于向低压缩比改变的过渡时接下来,在压缩比向低压缩比改变时,由于气缸体2远离曲轴箱3(燃烧室容积扩大),因此,如图2(c)所示,在压缩比向低压缩比改变的过渡时,活塞6下降的气缸5内的活塞6的行程量L2,与压缩比恒定时的行程量L相比变长。随之而来,活塞6相对于气缸5的相对速度上升。
因此,虽然内燃机负载、内燃机转速等的运转状态相同,但是在压缩比向低压缩比改变的过渡时处于进气行程的气缸5的缸内进气量,与压缩比恒定时相比增加。
因此,此时,如果从燃料喷射阀20喷射与压缩比恒定时相同的量的燃料,则气缸5内的混合气的空燃比有可能变得比目标空燃比高(稀)。
在此,在本实施例中,如图4所示,对压缩比向低压缩比改变的过渡时处于进气行程的气缸5进行校正,使得从燃料喷射阀20喷射的燃料喷射量比压缩比恒定时增加。
图4是表示从低负载运转变换到高负载运转时,节气门22的开度、压缩比、此时处于进气行程的气缸5的缸内进气量、该气缸5的燃料喷射量以及该气缸5内的混合气的空燃比的关系的时间图。在图4中表示到(1)为止的期间为低负载运转;(2)以后的期间为高负载运转;从(1)到(2)的期间处于过渡运转。
在从低负载运转变换到高负载运转时,在从(1)到(2)的期间内,节气门22的开度增加。结果导致缸内进气量增加。而且,在该期间内燃料喷射量也增加。此外,在本实施例中,内燃机1的压缩比到(2)为止一直为高压缩比。
在(2)中,如果节气门22的开度和燃料喷射量达到目标值(变换到高负载运转),则在从(2)到(3)的期间内压缩比变为低压缩比。如上所述,该过渡时(图4中的(2)~(3)的期间)的缸内进气量,与压缩比恒定时相比增加。
因此,在从(2)到(3)的期间,ECU30如图4中实线所示地使燃料喷射量与压缩比恒定时(图4中的虚线)相比增加。此时的增加量根据压缩比的变化量确定,以使混合气的空燃比与压缩比改变前后基本相同。
如果在压缩比变为低压缩比的过渡时(图3的从(2)到(3)的期间),未对燃料喷射量进行增量校正,则如上所述,混合气的空燃比与压缩比改变前后(即压缩比恒定时)相比有可能变高(图4的虚线)。即,在压缩比变为低压缩比的过渡时,混合气的空燃比有可能变得比目标空燃比高。
相对于此,ECU30在上述过渡时进行增加燃料喷射量的校正,由此如图4中的实线所示将上述过渡时的空燃比保持为与压缩比改变前后基本相同。即,在上述过渡时,可以将混合气的空燃比保持在目标空燃比。
因此,根据本实施例,在可变压缩比内燃机中,即使在将压缩比改变为低压缩比的过渡时,也可以将排气空燃比维持为适于排气净化催化剂23的空燃比,由此可以抑制排气特性的恶化。
另外,虽然在本实施例中,在使内燃机负载变换到低负载或高负载之后,将压缩比改变为高压缩比或低压缩比,但是也可以在内燃机负载的变换过程中改变压缩比。此时,只要能够在改变压缩比的同时进行燃料喷射量的校正即可。
实施例2接下来,根据图5~图7对本发明所涉及的可变压缩比内燃机的控制装置的实施例进行说明。在此,对于与上述实施例1不同的结构进行说明,省略对相同结构的说明。
本实施例与上述实施例1的不同之处在于上述实施例1,使在压缩比改变的过渡时处于进气行程的气缸5的空燃比达到最佳,与此相反,本实施例主要是使在压缩比改变的过渡时处于排气行程的气缸5的空燃比达到最佳。
通过可变气门机构35、36分别对本实施例的进气阀16和排气阀17进行开闭驱动。作为可变气门机构35、36,可以采用凸轮机构之类的机械性机构、电磁螺线管之类的电机构。在此,作为进气阀16的可变气门机构35,特别采用下述可变气门机构,该机构可以通过电磁螺线管35a对进气阀16进行开闭驱动,由此可以对开闭时间进行可变控制。
此外,在进气管14与排气管15之间设置有EGR(废气再循环)装置37,用于使通过排气管15的燃烧气体的一部分回流到进气管14。该EGR机构37,通过使燃烧气体的一部分在燃烧室7内再循环而降低混合气的燃烧温度,由此抑制混合气燃烧时所生成的NOx的量。
EGR机构37包括用于连接排气管15和进气管14的EGR管38、和设置在EGR管38的中间部分的EGR阀39。EGR阀39是用于控制通过EGR管38而回流到进气管14的燃烧气体(EGR气体)的量的装置,可以通过控制阀体的开度或开启时间而调整燃烧气体的回流量。
上述可变气门机构35的电磁螺线管35a及EGR阀39,连接在ECU30的输出侧。
在压缩比改变的过渡时处于排气行程的气缸5中,由于残留在该气缸5内的燃烧气体量改变,所以之后的进气行程中的缸内进气量也改变。
例如,在压缩比向高压缩比改变的过渡时处于排气行程的气缸5中,随着燃烧室容积的缩小,燃烧气体的残留量变少。由此,在之后的进气行程中,向气缸5内吸入的空气量(缸内进气量)增加。
另一方面,在压缩比向低压缩比改变的过渡时处于排气行程的气缸5中,随着燃烧室容积的扩大,燃烧气体的残留量变多。由此,之后的进气行程中的缸内进气量减少。
此外,在压缩比向高压缩比改变的过渡时处于排气行程的气缸5中,由于相对于活塞6的上升,气缸体2及气缸盖4下降,所以活塞6的行程量增加。因此,残留在气缸5内的气体量变少,所以之后的进气行程中的缸内进气量增加。
另一方面,在压缩比向低压缩比改变的过渡时处于排气行程的气缸5中,由于相对于活塞6的上升,气缸体2及气缸盖4也上升,所以活塞6的行程量减少。因此,残留在气缸5内的燃烧气体量变多,所以之后的进气行程中的缸内进气量减少。
ECU30,相对于上述的缸内进气量的变化,按照图6及图7的流程图所示的程序,对燃料喷射量进行校正。
在图6所示的程序中,计算出燃烧室容积。对每个循环、每个气缸执行该程序。下面对程序进行具体说明。首先,在开始的步骤100中,读取可变压缩比机构8的状态量。在此,读取凸轮位置传感器31的检测值作为状态量。在接下来的步骤102中,基于在步骤100中所读取的状态量计算出实际压缩比,进而,根据实际压缩比计算出燃烧室7的实际的燃烧室容积。
在图7所示的程序中,基于实际的燃烧室容积计算出燃料喷射量的校正量(燃料喷射校正量)。也对每个循环、每个气缸执行该程序。下面对于程序进行具体说明。首先,在开始的步骤200中读取燃烧室容积、内燃机转速以及内燃机负载等的信息。读取通过步骤102所计算出的值作为燃烧室容积。并且,读取基于曲轴位置传感器34的检测信息而计算出的值作为内燃机转速,读取基于未图示的吸入空气量传感器(空气流量计)的检测信息和内燃机转速所计算出的值作为内燃机负载。
在步骤202中,基于在步骤200中所读取的各种信息计算出气缸5的填充效率。在此,备有以燃烧室容积、内燃机转速和内燃机负载为参数的三元映像图,根据映像图计算出与各参数的当前值相应的填充效率。
另外,作为填充效率相对于各参数的趋势,设定成至少对于燃烧室容积而言,燃烧室容积越大,填充效率越低。这是因为,如果燃烧室容积变大,则气缸5内的燃烧气体的残留体积,与其相同地或者比其幅度更大地变大,新气的吸入量相应地减少。
在接下来的步骤204中,基于通过步骤202所计算出的填充效率计算出燃料喷射校正系数。在燃料喷射校正系数的计算中,例如可以采用下述的式(1)或式(2)。
校正系数=本次填充效率值/上次填充效率值 …(1)校正系数=本次填充效率值/基准值 …(2)上述(1)式中的本次填充效率值,是在本次的步骤202中所计算出的填充效率的值;上次填充效率值,是同一气缸在上次循环中所计算出的填充效率的值。此外,上述(2)式中的基准值是根据内燃机转速、内燃机负载而改变的变量,可以从以内燃机转速及内燃机负载为参数的映像图读取。
ECU30,将由上述式(1)或式(2)所计算出的校正系数,与基本燃料喷射量相乘,将所得到的值作为燃料喷射量信号输出给燃料喷射阀20。基本燃料喷射量,既可以根据内燃机1的运转状态从映像图计算得出,也可以通过排气空燃比反馈控制得到。由各式(1)、(2)可知,燃料喷射量随着填充效率的升高而进行增量校正,随着填充效率的降低而进行减量校正。
此外,虽然各式(1)、(2),都是用于求出对于基本燃料喷射量的校正系数的式子,但也可以将这些式子变形为求出燃料校正量的式子,将所求得的燃料校正量与基本燃料喷射量相加(或相减)。此外,也可以不采用上述式子,而根据以填充效率为参数的映像图计算出燃料校正量。或者,也可以不计算填充效率,而根据以燃烧室容积、内燃机转速、内燃机负载为参数的三元映像图,直接计算出燃料校正量。
通过执行图7的程序,可以根据实际的燃烧室容积的变化而相应地对燃料喷射量进行校正。具体而言,在为了减小压缩比而增大燃烧室容积时,可以随着填充效率的降低而相应地减少燃料喷射量。相反,在为了增大压缩比而减小燃烧室容积时,可以随着填充效率的上升而相应地增加燃料喷射量。这样,通过基于实际的燃烧室容积对燃料喷射量进行控制,可以达到与新气的吸入量相对应的燃料喷射量。
因此,根据本实施例,可以抑制因燃烧室容积的改变所引起的空燃比的紊乱、抑制排气性能的恶化和燃料费的恶化。
在上述实施例1中,通过利用ECU30执行图6的程序可以实现本发明的“燃烧室容积检测装置”,通过执行图7的程序可以实现本发明的“控制装置”。
实施例3以下,参照图8及图9对本发明的第3实施例进行说明。
在本实施例中,ECU30不执行上述实施例2中的图7所示的程序,而执行图8及图9所示的程序。
伴随燃烧室容积的改变而引起的空燃比的紊乱,其原因在于,因燃烧气体的残留量的变化而导致实际的缸内进气量偏离目标缸内进气量。在实施例2中虽然基于实际的燃烧室容积校正燃料喷射量,由此抑制空燃比的紊乱,但是如果可以使实际的缸内进气量接近目标缸内进气量,那么即使不对燃料喷射量进行校正,也可以抑制空燃比的紊乱。
在本实施例中,利用可变气门机构35对进气阀16的关闭时间进行可变控制,由此使实际的缸内进气量接近目标缸内进气量。在可变压缩比机构8中,改变压缩比需要一些时间,与其相比,通过可变气门机构35进行的配气定时控制,其响应性优良,可以瞬时地进行缸内进气量的调整。图8及图9所示的程序,是用于计算进气阀16的关闭时间的程序。
利用图8所示的程序计算出目标缸内进气量。对每个循环、每个气缸执行该程序。在理想运转的汽油内燃机中,由于输出转矩由空气量决定,所以目标缸内进气量大体与对应于运转状态的目标转矩相对应。下面对程序进行具体说明,首先,ECU30,在开始的步骤300中读取内燃机1的运转状态。这里所说的运转状态是指油门开度、内燃机转速等确定目标转矩所需的信息。在接下来的步骤302中,ECU30基于在步骤300中所读取的运转状态,根据未图示的映像图计算出目标缸内进气量。此外,在为了设定目标压缩比而已算出目标缸内进气量的情况下,也可以采用此时所计算出的目标缸内进气量。
利用图9所示的程序计算出用于实现目标缸内进气量的进气阀16的目标配气定时。也对每个循环、每个气缸执行该程序。此外,这里所说的目标配气定时是指进气阀16的关闭时间,进气阀16的开启时间被设定为由内燃机1的运转状态所决定的通常的配气定时。通过使进气阀16的关闭时间接近下止点,可以使缸内进气量增大;在将其设定在相对于下止点处于提前角一侧的情况下通过进一步使角度提前、在将其设定在滞后角一侧的情况下通过进一步使角度滞后,可以使缸内进气量减少。
在图9的程序中,ECU30首先在步骤400中读取计算出目标配气定时所需的信息。在此,读取利用图6的程序所计算出的燃烧室容积和利用图8的程序所计算出的目标缸内进气量。
在步骤402中,基于在步骤400中所读取的信息计算出进气阀16的目标配气定时。作为计算目标配气定时的方法,例如有以下两种方法一种是,利用考虑到燃烧室容积的影响的物理模型,计算出用于实现目标缸内进气量的目标配气定时;另一种是,根据目标缸内进气量计算出目标配气定时的基本值,并且以燃烧室容积所导出的填充效率的变化为参数,根据映像图计算出目标配气定时的校正值。无论是哪种方法,都是以燃烧室容积越小(压缩比越高)越减少吸入空气量的方式设定目标配气定时。这是由于,如果燃烧室容积变小,其与燃烧室容积大时相比,填充效率提高,在与燃烧室容积大时相同的配气定时下,会吸入超过目标缸内进气量的过剩的空气。
通过执行图9的程序,可以根据实际的燃烧室容积的变化对进气阀16的关闭时间进行调整。具体而言,在为了减小压缩比而增大燃烧室容积时,为了补偿填充效率的降低而增大缸内进气量地对进气阀16的关闭时间进行调整;相反,在为了提高压缩比而减小燃烧室容积时,为了补偿填充效率的提高而减少缸内进气量地对进气阀16的关闭时间进行调整。这样,通过基于实际的燃烧室容积对进气阀16的关闭时间进行控制,可以使实际的缸内进气量接近目标缸内进气量。
因此,根据本实施例,与实施例2相同地,可以抑制因燃烧室容积改变而引起的空燃比的紊乱,从而可以抑制排气性能的恶化和燃料费的恶化。并且,根据本实施例,还具有可以通过实现目标缸内进气量而抑制转矩发生变动的效果。
在上述实施例3中,通过利用ECU30执行图8及图9的程序,可以实现本发明的“控制装置”。
实施例4以下,参照图10及图11,对本发明的第4实施例进行说明。
在本实施例中,ECU30不执行上述实施例3的图8所示的程序,而执行图10所示的程序;不执行图9所示的程序而执行图11所示的程序。
在实施例3中,虽然通过控制可变气门机构35使缸内进气量极力接近目标缸内进气量来抑制空燃比的紊乱,但是也可以使气缸5内的燃烧气体的残留量,即EGR量,接近与内燃机1的运转状态相对应的目标EGR量。作为调整EGR的方式之一,例如有对进气阀16的开启时间进行可变控制。通过改变进气阀16的开启时间而使进气阀16和排气阀17的重叠期间变化,从而可以调整所说的内部EGR量。
在本实施例中,ECU30利用可变气门机构35对进气阀16的开启时间进行可变控制,从而使EGR量接近目标EGR量,并且还与实施例3相同地,通过对进气阀16的关闭时间也进行可变控制,使实际的缸内进气量更加接近目标缸内进气量。如果是采用电磁螺线管35a的可变气门机构35,则可以将进气阀16的关闭时间、开启时间分别调整为任意时间。
图10及图11所示的程序,是用于计算进气阀16的开闭时间的程序。利用图10所示的程序计算出目标缸内进气量和目标EGR量。对每个循环、每个气缸执行该程序。在图10的程序中,ECU30首先在开始的步骤500中读取内燃机1的运转状态。这里所说的运转状态指的是油门开度、内燃机转速等确定目标转矩所需的信息。在接下来的步骤502中,ECU30基于在步骤500中所读取的运转状态,从未图示的映像图计算出目标缸内进气量和目标EGR量。
利用图11所示的程序计算出用于实现目标缸内进气量和目标EGR量的进气阀16的目标配气定时。也对每个循环、每个气缸执行该程序。这里所说的目标配气定时指的是进气阀16的开启时间和关闭时间两者。
通过向进气阀16与排气阀17的重叠期间变长的方向调整进气阀16的开启时间,可以使内部EGR量增大;通过向重叠期间变短的方向调整进气阀16的开启时间,可以使内部EGR量减小。
另一方面,通过使进气阀16的关闭时间接近下止点,可以使缸内进气量增大;在将进气阀16的关闭时间设定在相对于下止点处于提前角一侧的情况下通过进一步使角度提前、在设定在滞后角一侧的情况下通过进一步使角度滞后,可以使缸内进气量减少。
ECU30在步骤600中读取计算目标配气定时所需的信息。在此,读取利用图6的程序所计算出的燃烧室容积和利用图10的程序所计算出的目标缸内进气量及目标EGR量。
在步骤602中,ECU30基于在步骤600中所读取的信息计算出进气阀16的目标配气定时、即用于实现目标EGR量的进气阀16的开启时间和用于实现目标缸内进气量的进气阀16的关闭时间。
作为目标配气定时的计算方法,例如有下述方法利用考虑到燃烧室容积的影响的物理模型,计算出用于实现目标缸内进气量及目标EGR量的目标配气定时。此外,还有以下方法根据目标缸内进气量计算出目标配气定时的基本值,并且以燃烧室容积所导出的填充效率的变化为参数,根据映像图计算出开启时间的校正值,进而以填充效率的变化和目标EGR量为参数,根据映像图计算出关闭时间的校正值。无论是哪种方法,都是设定开启时间以达到与内燃机1的运转状态相对应的内部EGR量,并且设定开启时间以达到与内燃机1的运转状态相对应的缸内进气量。
通过执行图11的程序,可以根据实际的燃烧室容积的变化对进气阀16的开闭时间进行调整。虽然进气阀16的开启时间的具体设定,与EGR量相对于内燃机1的运转状态如何设定的设计事项有关,不能一概而论,但是,例如也可以设定进气阀16的开启时间,以防止因燃烧室容积的变化而引起的填充效率的变化。即,可以在为了减小压缩比而增大燃烧室容积时,对进气阀16的开启时间进行调整,以便抑制填充效率的降低,从而减小内部EGR量减小;在为了提高压缩比而减小燃烧室容积时,可以进行调整,以便抑制填充效率的提高,从而增大内部EGR量。
根据上述本实施例,通过基于实际的燃烧室容积对进气阀16的开闭时间进行控制,可以使缸内进气量及EGR量接近各自的目标值。其结果是,可以抑制伴随燃烧室容积的改变所引起的空燃比的紊乱,可以抑制排气性能的恶化和燃料费的恶化。
在上述实施例4中,可变气门机构35相当于本发明的“EGR机构”。此外,通过利用ECU30执行图10及图11的程序可以实现本发明的“控制装置”。
实施例5以下,参照图12对本发明的第5实施例进行说明。
在本实施例中,ECU30不执行上述实施例4中的图11所示的程序,而执行图12所示的程序。
在上述实施例4中,虽然通过对进气阀16的开启时间进行可变控制而调整内部EGR量,但是也可以对EGR机构37进行控制,调整燃烧气体从排气管15向进气管14的回流量,即外部EGR量。在本实施例中,ECU30通过对EGR机构37的EGR阀39进行可变控制而改变外部EGR量,从而使外部EGR量和内部EGR量之和的总体的EGR量接近目标EGR量。图12的程序是用于计算EGR机构37的EGR阀39的开度的程序。
利用图12所示的程序计算出用于实现目标EGR量的EGR阀39的开度。通过增大EGR阀39的开度,可以增大外部EGR量,相反,通过减小EGR阀39的开度,可以减小外部EGR量。
首先,在步骤700中,ECU30读取用于计算EGR阀39的开度所需的信息。在此,读取利用图6的程序所计算出的燃烧室容积和利用图10的程序所计算出的目标EGR量。另外,在本实施例中未使用利用图10的程序所计算出的目标缸内进气量。
在步骤702中,ECU30基于在步骤700中所读取的信息计算出EGR阀39的开度。例如可以利用下述方法计算出EGR阀39的开度。
首先,由燃烧室容积的变化计算出填充效率的变化,进而由填充效率的变化推断进气管压力的变化。气缸5内的燃烧气体的残留量越多,即填充效率越降低,越高;气缸5内的燃烧气体的残留量越少,即填充效率越上升,进气管压力越低。
外部EGR量是由EGR阀39的开度和EGR阀39的上游和下游的压差,即燃烧气体的压力与进气管压力的压差决定的,因此,ECU30可以根据所推断出的进气管压力的变化计算出压差,并根据压差和目标EGR量计算出EGR阀39的开度。另外,可以利用设置在EGR管38上的未图示的压力传感器检测出燃烧气体的压力。
通过执行图12所示的程序,可以根据实际的燃烧室容积的变化相应地对EGR阀39的开度进行调整。虽然EGR阀39的开度的具体设定,与EGR量相对于内燃机1的运转状态如何设定的设计事项有关,不能一概而论,但是例如也可以对EGR阀39的开度进行设定,防止随着燃烧室容积的变化而引起填充效率发生变化。此时,在为了减小压缩比而增大燃烧室容积时,将EGR阀39的开度调整到关闭侧,以便减小外部EGR量,从而抑制填充效率的降低;在为了提高压缩比而减小燃烧室容积时,调整到开启侧,以便增大外部EGR量,从而抑制填充效率的提高。
另外,这只是一例,在要减小压缩比时,有时也可以暂时调整到开启侧。根据本实施例,通过基于实际的燃烧室容积对EGR39的开度进行控制,可以使实际的EGR量接近目标EGR量。其结果是,可以进一步抑制伴随燃烧室容积的改变所引起的空燃比的紊乱,进一步抑制排气性能的恶化和燃料费的恶化。
在上述实施例5中,EGR机构37相当于本发明的“EGR机构”。此外,通过利用ECU30执行图10及图12的程序可以实现本发明的“控制装置”。
以上,对本发明的实施例进行了说明,但本发明不限于上述实施例,在不脱离本发明的主旨的范围内可以进行各种变形而加以实施。例如,在上述实施例中所采用的可变压缩比机构的结构只是一例,只要是至少通过改变燃烧室容积而改变压缩比的机构,也可以采用其他结构。
此外,在实施例2所执行的图6及图7中的一系列程序,除了图5所示结构的内燃机以外,也可以适用于其他内燃机。为了执行这一系列程序,只要至少具有可变压缩比机构和燃料喷射阀即可,也可以省去可变气门机构和EGR机构。对于在实施例3中所执行的图6、图8及图9的一系列程序,和在实施例4中所执行的图6、图10及图11的一系列程序,除了图5所示结构的内燃机以外,也可以适用于其他内燃机。为了执行这一系列程序,只要至少具有可变压缩比机构和可变气门机构即可,也可以省去EGR机构。此外,在实施例5中所执行的图6、图10及图12的一系列程序,除了图5所示结构的内燃机以外,也可以适用于其他内燃机。为了执行这一系列程序,只要至少具有可变压缩比机构和EGR机构即可,也可以省去可变气门机构。
此外,在实施例2~5中所采用的可变气门机构的结构只是一例,除了电磁驱动阀之外,也可以采用改变凸轮轴的相位的机构、切换提升量不同的凸轮的形式的机构,或者同时连续地切换提升量和作用角的形式的机构等,而不限于该形式。此外,既可以在进气阀和排气阀上都设置可变气门机构,也可以仅在排气阀上设置可变气门机构。例如,在实施例3、4中,为了调整缸内进气量而对进气阀的关闭时间进行控制,但也可以取而代之地对进气阀的提升量进行控制,或者同时对它们进行控制。此外,在实施例4中,为了调整内部EGR量而对进气阀的开启时间进行控制,但也可以取而代之地对排气阀的关闭时间进行控制,或者同时对它们进行控制。
此外,也可以将实施例5中所执行的图12的程序,与实施例4中所执行的一系列程序组合。在实施例4中,通过进气阀的开启时间对内部EGR量进行调整,也可以认为,之后,直到关闭进气阀、调整缸内进气量为止的期间内,内部EGR量变化。此时,通过控制外部EGR量而对内部EGR量进行校正,例如,如果要增加内部EGR量,则取而代之地减小外部EGR量,从而可以使总体的EGR量更接近目标EGR量。
此外,虽然图5所示的内燃机的结构假定为汽油发动机的结构,但本发明也可以适用于柴油发动机。但是,由于柴油发动机与汽油发动机相比,原本压缩比就高,因此在利用可变压缩机构进行的压缩比控制中,当判断出以部分负载时的目标压缩比为基准目标压缩比、内燃机的负载为高负载时,使目标压缩比低于基准目标压缩比。另外,上述只是设定目标压缩比方面的一例,也可以采用其他的设定。
只要是通过改变燃烧室容积而使压缩比可变的内燃机,无论改变压缩比的机构的结构如何,都可以利用本发明。
权利要求
1.一种可变压缩比内燃机,其具有设置在排气通路上的排气净化催化剂和通过改变燃烧室容积而改变压缩比的可变压缩比机构,其特征在于在压缩比改变的过渡时,对决定空燃比的主要因素进行控制,使得气缸内的混合气的空燃比与压缩比改变前后基本相同。
2.如权利要求1所述的可变压缩比内燃机,其中,在压缩比改变的过渡时,对燃料喷射量进行校正,使得气缸内的混合气的空燃比与压缩比改变前后基本相同。
3.如权利要求2所述的可变压缩比内燃机,其中,在压缩比向高压缩比改变的过渡时,对燃料喷射量进行校正,使其与压缩比恒定时相比减少。
4.如权利要求3所述的可变压缩比内燃机,其中,对燃料喷射量进行校正的气缸,是在压缩比向高压缩比改变的过渡时处于进气行程的气缸。
5.如权利要求2或3所述的可变压缩比内燃机,其中,在压缩比向低压缩比改变的过渡时,对燃料喷射量进行校正,使其与压缩比恒定时相比增加。
6.如权利要求5所述的可变压缩比内燃机,其中,对燃料喷射量进行校正的气缸,是在压缩比向高压缩比改变的过渡时处于进气行程的气缸。
7.如权利要求1所述的可变压缩比内燃机,其中,在压缩比改变的过渡时,对实际的燃烧室容积进行检测,基于所检测出的实际的燃烧室容积对决定空燃比的主要因素进行控制。
8.如权利要求7所述的可变压缩比内燃机,其中,在压缩比改变的过渡时,基于实际的燃烧室容积对燃料喷射量进行控制。
9.如权利要求7所述的可变压缩比内燃机,其中,还具有用于改变进气阀和/或排气阀的开阀特性的可变气门机构,在压缩比改变的过渡时,基于实际的燃烧室容积对可变气门机构进行控制。
10.如权利要求7所述的可变压缩比内燃机,其中,还具有用于改变内燃机的EGR量的EGR机构;在压缩比改变的过渡时,基于实际的燃烧室容积对EGR机构进行控制。
11.如权利要求7~10中任一项所述的可变压缩比内燃机,其中,基于实际的燃烧室容积而对决定空燃比的主要因素进行控制的气缸,是压缩比改变的过渡时处于排气行程的气缸。
12.一种可变压缩比内燃机的控制装置,其具有通过改变燃烧室容积而改变压缩比的可变压缩比机构;检测通过所述可变压缩比机构实现的实际燃烧室容积的燃烧室容积检测装置;以及基于所述燃烧室容积检测装置所检测出的所述实际燃烧室容积而对决定空燃比的主要因素进行控制的控制装置。
13.如权利要求12所述的可变压缩比内燃机的控制装置,其中,所述控制装置基于所述实际燃烧室容积对燃料喷射量进行控制。
14.如权利要求13所述的可变压缩比内燃机的控制装置,其中,所述控制装置对燃料喷射量进行控制,使得混合气的空燃比达到目标空燃比。
15.如权利要求12所述的可变压缩比内燃机的控制装置,其中,所述控制装置基于所述实际燃烧室容积对气缸的吸入空气量进行控制。
16.如权利要求15所述的可变压缩比内燃机的控制装置,其中,所述控制装置对气缸的吸入空气量进行控制,使得混合气的空燃比达到目标空燃比。
17.如权利要求16所述的可变压缩比内燃机的控制装置,其中,还具有用于改变进气阀和/或排气阀的开阀特性的可变气门机构;所述控制装置求出与所述内燃机的运转状态相对应的目标气缸吸入空气量,并基于所述目标气缸吸入空气量和所述实际燃烧室容积对所述可变气门机构的动作进行控制。
18.如权利要求16所述的可变压缩比内燃机的控制装置,其中,还具有用于改变EGR量的EGR机构,所述控制装置求出与所述内燃机的运转状态相对应的目标EGR量,并基于所述目标EGR量和所述实际燃烧室容积对所述EGR机构的动作进行控制。
19.如权利要求12~18中任一项所述的可变压缩比内燃机的控制装置,其中,所述控制装置,在通过所述可变压缩比机构改变压缩比时,基于所述燃烧室容积检测装置所检测出的所述实际燃烧室容积对决定空燃比的主要因素进行控制。
全文摘要
本发明提供一种通过改变燃烧室容积而改变压缩比的可变压缩比内燃机,可以抑制随着燃烧室容积的改变而引起的空燃比的紊乱。在压缩比改变的过渡时,检测出利用可变压缩比机构所实现的实际燃烧室容积,根据所检测出的实际燃烧室容积控制决定空燃比的主要因素(例如燃料喷射量、气缸吸入空气量、EGR量),从而使空燃比与压缩比改变前后基本相等。
文档编号F02D41/04GK1774567SQ20058000030
公开日2006年5月17日 申请日期2005年1月21日 优先权日2004年1月21日
发明者秋久大辅, 神山荣一, 樵茂男 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1