用于内燃机的排气净化装置和排气净化方法

文档序号:5210461阅读:163来源:国知局
专利名称:用于内燃机的排气净化装置和排气净化方法
技术领域
本发明涉及用于净化来自内燃机的排气的排气净化装置和排气净化方法。
背景技术
一种用于如柴油发动机的内燃机的典型排气净化装置在排气通道中具有用于收集排气中所含微粒(“PM”)的收集器并进行再生控制,在所述再生控制中所收集的微粒被燃烧并去除以使收集器再生。在再生控制中,根据发动机的工作状况来估计收集器收集到的微粒量(收集量)。当满足预定的再生要求(其包括估计收集量不小于预定值)时,与驱动发动机的喷油阀分开设置的加油阀在收集器上游的部分中向排气添加燃油。所添加的燃油在收集器处燃烧并产生热。所产生的热将收集器的温度增大到去除微粒的温度(约600℃)。所以,微粒被燃烧并去除,使得收集器再生。
例如,日本早期公开专利文献No.2002-227688公开了一种与这样的排气净化装置有关的技术。根据该文献,例如氧化催化剂的排气净化催化剂设置在收集器上游。以合适的时间间隔使排气空燃比反复地变浓和变稀,以燃烧并去除微粒。
除日本早期公开专利文献No.2002-227688之外,日本早期公开专利文献No.2002-332822和No.2003-20930也是与本发明有关的现有技术文献。
往往在排气净化催化剂的上游端收集未燃烧的燃油。很难完全燃烧收集到的未燃烧燃油,并且未燃烧燃油作为沉积物残留下来。其原因如下。排气净化催化剂和收集器的温度分布是这样的,即温度在催化剂的上游端较低,并向着下游端升高。因此,从应该防止收集器的温度超过收集器能够收集微粒的温度范围的上限值的角度出发,排气净化催化剂的温度不能升高超出一定的限度。温度可以升高到燃烧所添加燃油的水平,但不能升高到燃烧沉积物的水平。因此,虽然燃烧了所添加的燃油,但是沉积物未燃烧就残留下来。
残留的沉积物降低了排气净化催化剂的反应性,并使得微粒留在收集器中不燃烧。结果,当收集器再生期间通过向排气添加燃油而使排气空燃比加浓时,收集器中残留的未燃烧微粒被快速燃烧。这可能过分地升高收集器的温度。这个问题在排气净化催化剂不设置在收集器上游的情况中也存在。

发明内容
所以,本发明的一个目的是提供一种用于内燃机的排气净化装置和排气净化方法,其能够减少收集器中未燃烧微粒的量,由此防止收集器的温度在随后的再生中过分升高。
为实现以上和其他目的并根据本发明的目标,本发明提供了一种用于内燃机的排气净化装置。该装置包括收集器、供油设备、判断部分和控制部分。收集器位于所述内燃机的排气通道中并收集排气中的微粒。供油设备向所述排气通道供应未燃烧燃油以燃烧并去除所述收集器所收集的微粒,由此使所述收集器再生。判断部分判断所述收集器中的微粒是否已经被燃烧并去除。控制部分在所述判断部分判断所述收集器中的微粒已经被燃烧并去除之后,使得所述供油设备向所述排气通道供应未燃烧燃油。
本发明还提供了一种用于内燃机的排气净化方法。该方法包括通过位于所述内燃机的排气通道中的收集器收集排气中的微粒;判断所述收集器中的微粒是否已经被燃烧并去除;以及在判断所述收集器中的微粒已经被燃烧并去除之后,向所述排气通道供应未燃烧燃油。
从结合附图作为示例举例说明本发明原理的以下说明,本发明的其他方面和优点将变得清楚。


通过结合附图参考以下对本优选实施例的说明,可以最好地理解本发明及其目的和优点,附图中图1是图示根据本发明优选实施例的内燃机排气净化装置的视图;图2(A)是示出第一和第二催化转化器的相对位置的视图;图2(B)至2(D)是示出催化转化器的温度分布的曲线图;图3是示出催化剂再生控制例程的流程图;图4是由示出估计收集量PMsm的变化的时序图;图5是示出另一实施例中用于确定判断值Dp的图的曲线图;以及图6是示出另一实施例中用于确定增大校正值PMadd的图的曲线图。
具体实施例方式
现在将参考图1至4描述本发明的优选实施例。图1图示了作为柴油发动机10的内燃机和应用本发明的排气净化装置的构造。内燃机10包括进气通道12、燃烧室13和排气通道14作为主要部件。空气滤清器15位于进气通道12的最上游部分。空气滤清器15滤清被抽入进气通道12中的空气。在空气滤清器15的下游方向上,用于检测进气通道12中空气流率的空气流量计16、涡轮增压器17中所包括的压缩机17A、中冷器18和进气节气门19设置在进气通道12中。进气通道12在位于进气节气门19下游的进气歧管20处分支,并连接到发动机10的每个燃烧室13。
喷油阀21设置在每个燃烧室13中以喷射燃油来在燃烧室13中燃烧。每个喷油阀21通过供油管路22从燃油箱23接受燃油。在供油管路22中设有燃油泵24和共轨25。燃油泵24从燃油箱23抽入燃油,随后加压并排出燃油。共轨25是蓄积高压燃油的高压燃油管。每个气缸的喷油阀21都连接到共轨25。
另一方面,在排气通道14中设有排气歧管26和涡轮增压器17的涡轮17B。排气歧管26收集来自气缸的排气。
发动机10还包括用于再循环部分排气的排气再循环(EGR)设备50。EGR设备50包括连接进气通道12与排气通道14的EGR通道27。EGR通道27的上游部分连接到排气通道14中位于排气歧管26和涡轮17B之间的部分。在EGR通道27中,EGR冷却催化剂28、EGR冷却器29和EGR阀30从上游侧按此顺序设置。EGR冷却催化剂28净化再循环排气。EGR滤清器29冷却再循环排气。EGR阀30调节再循环排气的流率。EGR通道27的下游部分连接到进气通道12中位于节气门19和进气歧管20之间的部分。
抽入进气通道12中的空气在被空气滤清器15净化之后被引导到涡轮增压器17的压缩机17A。压缩机17A压缩所引导的空气并将被压缩的空气排出到中冷器18。已压缩和加热的空气由中冷器18冷却。然后,空气通过进气节气门19和进气歧管20被分配到气缸的燃烧室13。通过控制进气节气门19的开度来调节进气通道12中的空气流率。由空气流量计16检测空气流率或进气流率。
在每个燃烧室13中,在气缸的压缩冲程期间从相关联的喷油阀21喷射燃油。由通过进气通道12抽入的空气和从喷油阀21喷射的燃油构成的空气燃油混合气在燃烧室13中燃烧。产生高温高压的燃烧气体,其使得活塞51往复运动。所以,作为输出轴的曲轴52被旋转,并产生发动机10的驱动力(输出转矩)。发动机10具有NE传感器42,用于检测作为曲轴52转速的发动机转速NE。NE传感器42包括附装到曲轴52的转子和位于转子附近的电磁拾波器。转子随着曲轴52的旋转而旋转。当转子圆周上形成的每个突起经过拾波器时,拾波器输出一个脉冲信号(NE脉冲)。基于每单位时间从NE传感器输出的NE脉冲数量来计算发动机转速NE。
排气由于气缸的燃烧室13中的燃烧而产生,并通过排气歧管26被引导到涡轮增压器17的涡轮17B。被引导的排气流驱动涡轮17B,涡轮17B驱动设置在进气通道12中的压缩机17A,以使得压缩机17A进行上述空气压缩。
部分排气被引导进入EGR通道27。被引导进入EGR通道27的排气被EGR冷却催化剂28净化并被EGR冷却器29冷却。然后,排气与进气通道12中位于进气节气门19下游的部分中的空气一起再循环。通过控制EGR阀30的开度来调节再循环排气的流率。
发动机10如上所述地构成。现在将描述用于净化来自发动机10的排气的排气净化装置11。排气净化装置11包括加油阀31和三个排气净化催化剂,后者是三个排气催化转化器(第一催化转化器32、第二催化转化器33和第三催化转化器34)。加油阀31作为供油设备,用于向排气通道14供应未燃烧燃油。
最上游的第一催化转化器32对应于排气净化催化剂。第一催化转化器32位于涡轮17B的下游并支持存储还原NOx催化剂。第一催化转化器32通过吸留排气中的氮氧化物(NOx)并供应作为还原剂的未燃烧燃油,由此还原所存储的氮氧化物(NOx)来净化排气。
第二催化转化器33位于第一催化转化器32的下游。第二催化转化器33作为收集器,用于收集排气中的微粒。第二催化转化器33由多孔材料制成,其允许排气中的气体成分穿过,但阻挡排气中的微粒PM。第二催化转化器33支持存储还原NOx催化剂。在本实施例中,第一催化转化器32和第二催化转化器33一体形成。
第三催化转化器34位于第二催化转化器33的下游。第三催化转化器34支持氧化催化剂,其将排气中的烃(HC)和一氧化碳(CO)氧化以净化排气。
加油阀31位于排气歧管26的会聚部分中。加油阀31通过燃油通道35连接到燃油泵24。加油阀31从燃油泵24接受燃油,并将作为还原剂的燃油喷到排气中。所添加的燃油暂时使排气成为还原气氛,从而使存储在第一催化转化器32和第二催化转化器33中的氮氧化物NOx被还原。同时,第二催化转化器33中的微粒PM被燃烧。
排气温度传感器36位于排气通道14中第一催化转化器32和第二催化转化器33之间的部分中。排气温度传感器36检测通过该部分的排气的温度,或将要流入第二催化转化器33中的排气的温度。而且,排气温度传感器37位于排气通道14中第二催化转化器33下游的部分中。排气温度传感器37检测通过该部分的排气的温度,或刚刚通过第二催化转化器33的排气的温度。另外,压差传感器38连接到排气通道14。压差传感器38作为检测部分,用于检测第二催化转化器33上游部分中的排气压力和第二催化转化器33下游部分中的排气压力之间的压力差ΔP。压差传感器38检测到的压力差ΔP用于检测第二催化转化器33中的堵塞。而且,氧气传感器39、40分别位于排气通道14中第一催化转化器32上游的部分以及排气通道14中第二催化转化器33和第三催化转化器34之间的部分中。氧气传感器39、40每个都检测排气中的氧气浓度。
上述发动机10和排气净化装置11由电子控制单元(ECU)41控制。电子控制单元41包括执行与发动机10的控制相关的各种计算过程的CPU、存储控制所需的程序和数据的ROM、存储CPU的计算结果的RAM、以及从外输入和向外输出信号的输入输出端口。
除了上述传感器之外,电子控制单元41的输入端口还连接到用于检测加速踏板踩压程度的加速踏板传感器43、用于检测共轨25中压力的共轨传感器44、以及用于检测进气节气门19的开度的节气门传感器45。
电子控制单元41的输出端口连接到进气节气门19、喷油阀21、燃油泵24、加油阀31和EGR阀30。基于来自这些传感器的检测结果,电子控制单元41控制连接到输出端口的设备,由此控制发动机10的各种操作。这些操作包括喷油阀21进行的喷油正时控制和喷油量控制、以及与排气净化相关的控制。
作为与排气净化相关的控制部分,电子控制单元41控制排气净化催化剂。在此控制中,使用四个催化剂控制模式,即催化剂再生控制模式、硫释放控制模式、NOx还原控制模式和正常控制模式。电子控制单元41选择并执行这些模式中对应于催化转化器32至34状态的一种模式。
在催化剂再生控制模式中,燃烧由第二催化转化器33收集的微粒PM。微粒随后变为二氧化碳和水并排出。催化剂再生控制模式在至少第二催化转化器33收集的微粒PM重量(估计收集量PMsm)达到并超过预定值(启动判断值PMstart)的条件下启动,并在估计收集量PMsm降到零或接近零的值(结束判断值PMend)的条件下结束。
在另一过程中使用下式(1)来计算估计收集量PMsm。
PMsm←Max[PMsm+PMe-PMc,″0″] (1)式(1)右侧的估计收集量PMsm是在前次执行中已经计算出的量PMsm的值。
PMe表示单次执行中从发动机10的所有燃烧室13排放的微粒PM的量,或发动机排放量。例如,基于定义发动机排放量PMe与发动机转速NE和负载(在本实施例中,来自喷油阀21的燃油喷射量)之间关系的预先存储的图来计算发动机排放量PMe。
PMc表示单次执行的时间段期间在第二催化转化器33中氧化的微粒量,或氧化量。例如,基于定义氧化量PMc与第二催化转化器33的催化剂载体温度(在本实施例中,由排气温度传感器37检测到的排气温度)和进气量GA之间关系的图来计算氧化量PMc。
右侧的Max是取得其后的括号中多个值的最大值的运算符。因此,如果“PMsm+PMe-PMc”具有正值,则其用作估计收集量PMsm。如果“PMsm+PMe-PMc”具有负值,则零用作估计收集量PMsm。电子控制单元41计算估计收集量PMsm的过程对应于估计部分所执行的过程,该估计部分根据发动机10的工作状况估计收集器中的微粒量。
当选择催化剂再生控制模式时,在空燃比高于理论配比空燃比的状态下反复从加油阀31添加燃油,使得催化剂温度(催化剂载体温度)升高(600到700℃)。该过程称为正常催化剂再生,从而与下面将讨论的烧尽催化剂再生区别开来。
如果通过基于估计收集量PMsm供应未燃烧燃油而燃烧并去除微粒PM,则值小于实际收集量的估计收集量PMsm可能防止微粒PM完全燃烧,并使得部分微粒PM未燃烧残留下来。出现这种偏差的一个原因是在第一催化转化器32的上游端中未燃烧燃油的收集。因为难以完全燃烧收集到的未燃烧燃油,所以部分未燃烧燃油作为沉积物残留下来。其原因如下。如图2(B)中的实线所示,如图2(A)所示布置的第一催化转化器32和第二催化转化器33的温度分布是温度向着下游侧升高。因此,从应该防止第二催化转化器33的温度超过第二催化转化器33能够收集微粒的温度范围的上限值的角度,第一催化转化器32的上游端的温度不能升高超出一定的限度。温度可以升高到燃烧所添加燃油的水平,但不能升高到燃烧沉积物的水平。因此,虽然燃烧了所添加的燃油,但是沉积物未燃烧就残留下来。
沉积物使得微粒PM在第二催化转化器33中未燃烧残留下来,这导致估计收集量PMsm与实际收集量的偏差。于是重要的是去除沉积物。为了燃烧并去除沉积物,有效的是升高第一催化转化器32上游端的温度。但是,如图2(B)中的双点划线所示,虽然简单地增大未燃烧燃油的供应量升高了第一催化转化器32上游端处的温度,但是第二催化转化器33的温度也升高了。这可能过分地升高第二催化转化器33下游部分中的温度。因此,该方法是不实际的。
与此相反,即使在判断通过正常催化剂再生已经燃烧并去除了第二催化转化器33中的微粒PM之后,在本实施例中也向排气通道14供应(间歇添加)未燃烧燃油。这就完全燃烧并去除了未燃烧残留下来的微粒PM。用于完全燃烧微粒PM的过程称为烧尽(BU)催化剂再生。
在烧尽催化剂再生中,执行供油循环,其包括用于供油的供应周期和停止供油的停止或休止周期。所以,控制加油阀31来向排气通道14间歇供应未燃烧燃油。该燃油的间歇添加允许反复执行将空燃比设定为理论配比空燃比或稍小于理论配比空燃比的空燃比的过程,其中在这些执行之间存在不进行燃油添加的时间段。在本实施例中,空燃比被加浓为稍小于理论配比空燃比的值。
初始供油循环中的供应周期期间供应的未燃烧燃油被燃烧并产生热。该热被用来升高第一催化转化器32上游端的温度,这相应地延迟了第二催化转化器33中的温度升高。所以,如图2(C)所示,暂时出现第一催化转化器32的温度高于第二催化转化器33的温度的状态。一般而言,在残留大量微粒PM的状态下连续供应未燃烧燃油会产生这样的温度分布,其中温度向着下游端更高。但是在本实施例中,因为供油循环被重复,第一催化转化器32和第二催化转化器33的温度分布将如图2(D)所示。就是说,在从上游端到下游端的任何位置处温度大致相同。
烧尽催化剂再生包括两种模式第一烧尽催化剂再生和第二烧尽催化剂再生。在第一烧尽催化剂再生中,估计收集量PMsm被校正,使得所供应的未燃烧燃油量稍多于用于完全燃烧第二催化转化器33中残留未燃烧的微粒PM所需的量。相反,在第二烧尽催化剂再生中,与第二催化转化器33中残留未燃烧的微粒PM的量无关地供应预定量的未燃烧燃油。在一种催化剂再生模式中,进行第一和第二烧尽催化剂再生中之一。基于排气通道14中第二催化转化器33上游的排气压力和第二催化转化器33下游的排气压力之间的压力差ΔP来确定应该执行哪一种再生。当压力差ΔP大于或等于预定值(判断值Dp)时,就认为相对较大量的微粒PM在第二催化转化器33中未燃烧残留下来,使得压力损失很大。相反,当压力差ΔP小于判断值Dp时,就认为相对较小量的微粒PM在第二催化转化器33中未燃烧残留下来,使得压力损失很小。在前一情况下,执行第一烧尽催化剂再生。在后一情况下,执行第二烧尽催化剂再生。
硫释放控制模式指的是这样的模式,其中当催化转化器32、33中的NOx存储还原催化剂被硫氧化物SOx毒化并且NOx存储能力降低时,从第一催化转化器32和第二催化转化器33中释放硫氧化物SOx。
NOx还原控制模式指的是这样的模式,其中第一催化转化器32和第二催化转化器33中的NOx存储还原催化剂所存储的氮氧化物NOx被还原成氮气N2、二氧化碳CO2和水H2O并被释放。在此模式中,以相对较长的时间间隔从加油阀31进行燃油添加,使得催化剂温度变得相对较低(例如250到500℃)。未执行催化剂再生控制模式、硫释放控制模式和NOx还原控制模式中任一个的状态对应于其中加油阀31不向排气添加还原剂的正常控制模式。
现在将讨论如上所述形成的优选实施例中的操作。图3的流程图示出了由电子控制单元41执行的过程之一。具体而言,图3示出了在催化剂再生控制模式中已经启动了正常催化剂再生之后所执行的催化剂再生控制例程。
在催化剂再生控制例程中,电子控制单元41在步骤100处判断是否满足从正常催化剂再生转变到烧尽催化剂再生的要求。该要求是“估计收集量PMsm不大于转变判断值BUpm”。转变判断值BUpm充分地小于启动判断值PMstart,并稍大于结束判断值PMend。转变判断值BUpm被设成例如0.35g。
换言之,步骤100是这样的步骤,用于基于估计收集量PMsm来判断现在是否是结束由正常催化剂再生燃烧并去除微粒的时间或者恰恰在此之前的时间。随着第二催化转化器33中微粒PM的蓄积的进行,收集量增加,并且随着微粒PM的燃烧和去除的进行,收集量降低。当收集量变成零或接近零的值(在步骤100处得到肯定结果)时,就判断第二催化转化器33收集到的微粒PM已经完全或接近完全燃烧了。
如果在步骤100处不满足该判断要求(PMsm>BUpm),则过程进行到步骤110。在步骤110,判断估计收集量PMsm是否已经在当前的催化剂再生控制模式中被校正了(是否有校正历史)。估计收集量PMsm的校正将在下面讨论。如果步骤110的结果是否定的(没有校正历史),则过程进行到步骤120,在该处执行正常催化剂再生。如上所述,在正常催化剂再生中,在空燃比高于理论配比空燃比的状态下反复从加油阀31添加燃油。在步骤120中,催化剂温度升高(例如600到700℃),使得由第二催化转化器33收集到的微粒被燃烧和去除。结果,第二催化转化器33被再生。所以,式(1)中的氧化量PMc超过发动机排放量PMe(PMe<PMc),并且估计收集量PMsm逐渐减小。在步骤120结束之后,催化剂再生控制例程暂时中止。
随着估计收集量PMsm的逐渐降低,步骤100的结果变成肯定的(PMsm≤BUpm)。就是说,满足从正常催化剂再生转变到烧尽催化剂再生的要求,并且过程进行到步骤130。在步骤130,判断应该执行第一和第二烧尽催化剂再生中的哪一个。通过将压力差ΔP和判断值Dp彼此进行比较来进行判断。在本实施例中,压力差ΔP不会不加改变地使用。相反,使用压力差ΔP和进气量GA的比例值ΔP/GA。使用该比例的原因是为了消除进气量GA对压力差ΔP的影响。就是说,随着进气量GA的增加,第二催化转化器33处的压力损失增大,并且压力差ΔP相应增大。因此,通过使用压力差ΔP除以进气量GA的值ΔP/GA,与进气量GA无关地精确进行比较。在本实施例中,判断值Dp具有不变的值。
更合适的是将进气量GA变成排气流率,并且将通过用压力差ΔP除以排气流率得到的值与判断值Dp进行比较。但是,因为进气量GA与排气流率成正比,所以使用值ΔP/GA不会不利地影响精度。
如果步骤130的结果是肯定的,或者满足式ΔP/GA≥Dp,则认为第二催化转化器33中残留下来未燃烧的微粒PM的量相对较大。在此情况下,在步骤140至160中执行第一烧尽催化剂再生。具体而言,在步骤140,判断第一烧尽催化剂再生中估计收集量PMsm的校正次数是否不大于预定的停止判断次数Np(例如两次)。当步骤140的结果是肯定时,过程进行到步骤150,在该处将估计收集量PMsm替换成为预定增大转换值UPpm。就是说,估计收集量PMsm被校正。增大转换值UPpm是大于转变判断值BUpm的不变的值。这样,最初不大于转变判断值BUpm的估计收集量PMsm增加到大于转变判断值BUpm的增大转换值UPpm。然后在步骤160,基于已经被校正的估计收集量PMsm来进行第一烧尽催化剂再生。就是说,执行供油循环,其包括供应周期和供应停止周期。换言之,控制加油阀31来间歇地向排气通道14供应未燃烧燃油。当间歇供应未燃烧燃油时,第一催化转化器32上游端上的沉积物和第二催化转化器33收集到的微粒PM都被燃烧并去除。
在步骤160之后,在步骤170判断估计收集量PMsm是否大于结束判断值PMend。如果步骤170的结果是否定的(PMsm≤PMend),则第一烧尽催化剂再生在步骤180结束。之后,催化剂再生控制例程暂时中止。相反,如果步骤170的结果是肯定的(PMsm>PMend),则催化剂再生控制例程暂时中止。
如果估计收集量PMsm由于步骤150处的校正而大于转变判断值BUpm,并且在步骤160处的第一烧尽催化剂再生之后估计收集量PMsm大于转变判断值BUpm,则在随后的催化剂再生控制例程的执行中步骤100的结果将是否定的。但是,步骤110的结果将是肯定的。在这样一种情况下,过程进行到步骤160,在该处执行第一烧尽催化剂再生。在步骤160之后,执行步骤170并且过程进行到返回。或者,在执行步骤170和180之后,过程进行到返回。
如果估计收集量PMsm已经由于前次执行中的步骤160的第一烧尽催化剂再生而降低到不大于转变判断值BUpm的值,则执行步骤130至180。在这些步骤的过程中,再次将估计收集量PMsm替换成为增大转换值UPpm,并执行第一烧尽催化剂再生。这样,估计收集量PMsm被校正,使得所供应的未燃烧燃油的量稍多于完全燃烧第二催化转化器33中残留下来未燃烧的微粒PM所需的量。
但是,在步骤150处对估计收集量PMsm的校正不会执行大于停止判断数Np的次数。这是因为当步骤140的结果为否定时的过程不进行到步骤150。在这样一种情况下(步骤140处的否定结果),过程不执行步骤150(校正估计收集量PMsm)就进行到步骤160,并执行第一烧尽催化剂再生。从步骤160开始的步骤与上述相同。
相反,当步骤130的结果不是肯定时(ΔP/GA<Dp),就认为第二催化转化器33中相对少量的微粒PM残留下来未燃烧。在这样一种情况下,在步骤190判断是否满足这样的条件,即在当前催化剂再生控制模式中没有执行第一烧尽催化剂再生的历史。如果结果是肯定的(没有执行历史),则在步骤200执行第二烧尽催化剂再生。就是说,通过执行包括供应周期和停止周期在内的供油循环达预定次数(例如三次),则与第二催化转化器33中残留未燃烧的微粒PM的量无关地,预定量的未燃烧燃油从加油阀31间歇供应到排气通道14。随着未燃烧燃油的间歇供应,第一催化转化器32上游端上的沉积物和由第二催化转化器33收集的微粒PM都被燃烧并去除。在第二烧尽催化剂再生中限制供油循环的执行次数,以防止不必要地持续供应未燃烧燃油。
在步骤200之后,第二烧尽催化剂再生在步骤180处结束,并且催化剂再生控制例程暂时中止。当步骤190的结果是否定的时,即当有表示当前催化剂再生控制模式中已经执行了第一烧尽催化剂再生的历史时,过程进行到步骤160。
在催化剂再生控制例程中,由电子控制单元41执行的步骤100对应于由判断部分执行的过程,该判断部分判断收集器中的微粒是否已经被燃烧并去除。由电子控制单元41执行的步骤160至200对应于由控制部分执行的过程,该控制部分在判断部分判断收集器中的微粒已经被燃烧并去除之后使得供油设备向排气通道供应未燃烧燃油。由电子控制单元41执行的步骤130对应于由比较部分执行的过程,该比较部分比较在判断部分判断收集器中的微粒已经燃烧并去除的时间点处由检测部分检测到的排气压力之间的差与预定值。
当根据催化剂再生控制例程执行每个步骤时,在启动正常催化剂再生之后估计收集量PMsm例如如图4所示地变化。如果在时间t1之前估计收集量PMsm大于转变判断值BUpm并且没有对估计收集量PMsm进行校正的历史,则催化剂再生控制例程的过程按步骤100、110、120的顺序执行并随后返回。就是说,执行正常催化剂再生。从加油阀31向排气连续添加未燃烧燃油,使得第二催化转化器33中残留下来未燃烧的微粒PM被燃烧,并且估计收集量PMsm被减小。
所以,估计收集量PMsm在时间t1降低到转变判断值BUpm并且步骤100的结果变成肯定的。然后,在随后的催化剂再生控制例程的执行中执行步骤130及随后的步骤。此时,如果第二催化转化器33中有相对大量的微粒PM残留下来,并且值ΔP/GA不小于判断值Dp,则过程按步骤130、140、150、160、170的顺序执行并随后返回。在这些步骤的过程中,已经被暂时减小到转变判断值BUpm的估计收集量PMsm被增大到大于转变判断值BUpm的增大转换值UPpm。然后,基于已经增大了的估计收集量PMsm,执行第一烧尽催化剂再生。由加油阀31向排气间歇添加未燃烧燃油,使得第一催化转化器32和第二催化转化器33的温度升高,以燃烧第一催化转化器32上游端上的沉积物和第二催化转化器33中残留的微粒PM。因此,估计收集量PMsm被再次减小。
由于步骤150的执行,在时间t1之后执行的催化剂再生控制例程中步骤100的结果将是否定的。在这样一种情况下,因为步骤110的结果是肯定的,所以过程按步骤100、110、160、170的顺序执行并随后返回。因此在时间t1之后,已经被增大到增大转换值UPpm的估计收集量PMsm将被减小。
当估计收集量PMsm在时间t2处降低到转变判断值BUpm并且步骤100的结果再次变成肯定,则在随后的催化剂再生控制例程执行中执行步骤130和随后的步骤。此时,如果第二催化转化器33中残留下非常少量的微粒PM,并且值ΔP/GA小于判断值Dp,则过程按步骤130、190、160、170的顺序执行并随后返回。在此情况下,估计收集量PMsm不被校正,并且估计收集量PMsm如图4中的双点划线所示进一步从转变判断值BUpm减小。当步骤170的结果在时间t3处变成肯定的时,过程按步骤170、180的顺序执行并随后返回,并且第二烧尽催化剂再生结束。
相反,在步骤100的结果为肯定的时间点t2处,如果有较大量的微粒PM残留在第二催化转换器33中,并且值ΔP/GA不小于判断值Dp,以与如上所述在时间t1到时间t2的时间段中相同的顺序执行该过程。结果,估计收集量PMsm如实线所示地在时间t2处增大到增大转换值UPpm。此后,估计收集量PMsm减小。
在步骤100的结果为肯定时的时间点t4处,即使值ΔP/GA不小于判断值Dp,步骤140的结果由于次数为Np的以前的校正而是否定的。因此在此情况下,过程按步骤140、160、170的顺序执行并随后返回,并且估计收集量PMsm不被校正。估计收集量PMsm在时间t4之后继续减小。当步骤170的结果在时间t5处变成肯定时,过程按步骤170、180的顺序执行并随后返回,并且第一烧尽催化剂再生结束。
上述实施例提供以下优点。
(1)供应到排气用于燃烧并去除微粒PM的未燃烧燃油可能聚集在第一催化转化器32的上游端上。因为难以完全燃烧所收集的未燃烧燃油,所以部分未燃烧燃油作为沉积物残留下来。沉积物降低了第一催化转化器32的反应性,并使得微粒PM留在收集器中不燃烧。
在本实施例中,如果在第二催化转化器33再生期间判断第二催化转化器33中的微粒PM已经被燃烧并去除,则之后继续供应未燃烧燃油。所供应的未燃烧燃油允许第二催化转化器33中残留下来未燃烧的微粒PM被完全燃烧和去除。因此,消除了直到第二催化转化器33的随后再生都保持未燃烧的微粒PM所产生的缺点。就是说,在随后的再生中,防止第二催化转化器33的温度由于微粒PM的突然燃烧而过分升高。
(2)随着微粒PM在第二催化转化器33中的蓄积,微粒PM的收集量增大。另一方面,随着通过未燃烧燃油的作用而被燃烧并去除的微粒PM的量的增大,减小了微粒PM的收集量。当收集量降低到零时,就认为第二催化转化器33收集到的微粒PM已经被完全燃烧了。
在本实施例中,基于发动机10的工作状态计算第二催化转化器33中的微粒收集量(估计收集量PMsm),并且将估计收集量PMsm与稍大于零的转变判断值BUpm进行比较。如果估计收集量PMsm不大于转变判断值BUpm,则预测到微粒PM将很快被完全燃烧并去除。
(3)通过基于供油循环向排气通道14中间歇供应未燃烧燃油,由于在初始供应周期中供应的未燃烧燃油的燃烧而产生的热被消耗来升高第一催化转化器32的上游端的温度,使得第二催化转化器33的温度升高相应延迟。因此,如图2(C)所示,紧接在初始供油循环中的供应周期之后,第一催化转化器32的温度暂时高于第二催化转化器33的温度。然后,通过重复供油循环,温度分布处于如图2(D)所示的状态,其中在第一催化转化器32和第二催化转化器33的上游和下游方向上温度全都大致相同。结果,第一催化转化器32中的沉积物和第二催化转化器33中残留未燃烧的微粒PM都被燃烧并去除,同时防止第二催化转化器33由于热而被恶化。与此相反,如果简单地增大所供应的未燃烧燃油的量,则第一催化转化器32上游端处的温度升高,使得沉积物可以被去除。但是,在上游端的下游的部分中的温度过分升高,并由此第二催化转化器33可能由于热而恶化。
(4)当判断第二催化转化器33中的微粒PM已经被燃烧并去除时(步骤100处的结果肯定),比较值ΔP/GA和判断值Dp。根据比较结果,切换用于向排气通道14供应未燃烧燃油的方式。因此,与其中以单一方式向排气通道14供应未燃烧燃油的情况相比,以与第二催化转化器33中残留未燃烧的微粒PM的量相应的方式去除微粒PM。
(5)结合以上项(4),当满足ΔP/GA≥Dp时(步骤130处的结果肯定),认为在判断第二催化转化器33中的微粒已被燃烧并去除之后,一定量的微粒PM残留在第二催化转化器33中。在此情况下,进行第一烧尽催化剂再生(步骤160),使得供应这样的未燃烧燃油,其量稍大于完全燃烧第二催化转化器33中残留的微粒所需的量。换言之,未燃烧燃油的供应持续达这样的时间段,其稍长于完全燃烧第二催化转化器33中残留的微粒的供油循环的持续时间。所供应的未燃烧燃油允许第二催化转化器33中残留的微粒PM被可靠地燃烧并去除。
(6)另一方面,当满足不等式ΔP/GA<Dp时(步骤130处的结果否定),认为在判断第二催化转化器33中的微粒已被燃烧并去除之后,很少量的微粒PM残留在第二催化转化器33中。在此情况下,进行第二烧尽催化剂再生(步骤200),使得与残留微粒PM的量无关地供应预定量的未燃烧燃油。所供应的未燃烧燃油允许第二催化转化器33中残留的微粒PM被燃烧并去除。
(7)在第二烧尽催化剂再生(步骤200)中,将执行供油循环的次数限制为预定数(例如三次)。因此,限制了供应的未燃烧燃油量,使得未燃烧燃油供应的不必要持续不会降低燃油经济性。
本发明可以用以下形式实现。
本发明可以应用于除柴油发动机之外的其他发动机。例如,本发明可以应用于稀燃汽油发动机,如果该发动机具有与本文所述系统相似的催化剂系统。
在图3的步骤130处可以使用可变值来代替用于判断值Dp的不变值。在此情况下,可以使用如图5所示的定义进气量GA和判断值Dp之间关系的图。在此图中,判断值Dp在进气量GA很大的区域中很小,并且随着进气量GA的减小而增大。这是因为空气流量计16的检测精度可能随着进气量GA的减小而恶化。因此,通过使用从该图获得的判断值Dp,防止了错误检测。
作为图3中的步骤150的过程,估计收集量PMsm可以以不同于上述的方式被校正。例如,将估计收集量PMsm替换成根据残留未燃烧的微粒PM的量而变化的量。
值ΔP/GA是基于压力所估计的微粒PM的收集量的替换。值ΔP/GA越大,则微粒PM的收集量变得越大。因此,如果用于校正估计收集量PMsm的值是增大校正值PMadd,则增大校正值PMadd可能如图6所示随着值ΔP/GA的增大而增大。在步骤150处,增大校正值PMadd被增加到前次循环的估计收集量PMsm,并且结果被设定为(当前的)估计收集量PMsm。这样获得的估计收集量PMsm更接近于实际收集量。
代替在图3的步骤130处比较值ΔP/GA与判断值Dp,压力差ΔP可以与随着排气流率(或进气量GA)的增大而增大的值进行比较。例如,压力差ΔP可以与判断值Dp和进气量GA的乘积进行比较。
本发明可以应用于这样的排气净化装置,其中在第二催化转化器33上游的部分中未设置第一催化转化器32。在此情况下,未燃烧燃油在第二催化转化器33的上游端上聚集,并作为沉积物残留下来。沉积物使得微粒PM在第二催化转化器33中残留未燃烧。但是,如上述实施例中那样,在判断第二催化转化器33中的微粒已经被燃烧并去除之后进行烧尽催化剂再生,使得第二催化转化器33中残留未燃烧的微粒PM被完全燃烧并去除。
在排气净化装置中,当第二催化转化器33中微粒PM的蓄积增加时,所蓄积的微粒PM阻碍排气的流动,或增大排气的流动阻力。所以,排气通道14中第二催化转化器33上游的排气压力与第二催化转化器33下游的排气压力之间的压力差ΔP增大。压力差ΔP随着通过未燃烧燃油燃烧并去除微粒PM的进行而减小,并且第二催化转化器33中蓄积的微粒PM的量减小。在此方面,代替使用估计收集量PMsm,可以使用压力差ΔP来判断第二催化转化器33中的微粒PM已经被燃烧并去除。在此情况下,压力差ΔP与预定值进行比较,并且当压力差ΔP小于该预定值时判断微粒PM的燃烧和去除已经完成。
另外,可以基于估计收集量PMsm和压力差ΔP两者来判断第二催化转化器33中微粒PM的燃烧和去除的完成。
在第二烧尽催化剂再生(步骤200)中,可以根据压力差ΔP改变执行供油循环的次数。
本示例和实施例应认为是说明性而非限制性的,并且本发明并不限于这里给出的细节,而可以在所附权利要求的范围和等价方案内修改。
权利要求
1.一种用于内燃机的排气净化装置,其特征在于包括收集器,其位于所述内燃机的排气通道中并收集排气中的微粒;供油设备,其向所述排气通道供应未燃烧燃油以燃烧并去除所述收集器所收集的微粒,由此使所述收集器再生;判断部分,其判断所述收集器中的微粒是否已经被燃烧并去除;和控制部分,其在所述判断部分判断所述收集器中的微粒已经被燃烧并去除之后,使得所述供油设备向所述排气通道供应未燃烧燃油。
2.如权利要求1所述的装置,其特征在于包括估计部分,所述估计部分基于所述内燃机的工作状况来估计所述收集器中的微粒量,其中所述判断部分基于所述估计部分估计的所述收集器中的所述微粒量来判断所述收集器中的微粒已经被燃烧并去除。
3.如权利要求1或2所述的装置,其特征在于包括位于所述排气通道中在所述收集器上游的部分中的排气净化催化剂,其中所述供油设备向所述排气通道中位于所述排气净化催化剂上游的部分供应未燃烧燃油。
4.如权利要求1至3中任一项所述的装置,其特征在于所述控制部分使得所述供油设备根据供油循环来向所述排气通道间歇供应未燃烧燃油,所述供油循环包括其中执行未燃烧燃油供应的周期和其中不执行未燃烧燃油供应的周期。
5.如权利要求1至4中任一项所述的装置,其特征在于包括检测部分,所述检测部分检测所述排气通道中位于所述收集器上游的部分中的排气压力与所述排气通道中位于所述收集器下游的部分中的排气压力之间的压力差,其中所述判断部分基于所述检测部分检测到的所述排气压力差来判断所述收集器中的微粒已经被燃烧并去除。
6.如权利要求5所述的装置,其特征在于包括比较部分,所述比较部分比较在所述判断部分判断所述收集器中的微粒已经被燃烧并去除时的时间点处由所述检测部分检测到的排气压力差与预定值,其中所述控制部分根据所述比较部分的比较结果切换所述供油设备向所述排气通道供应未燃烧燃油的方式。
7.如权利要求1至4中任一项所述的装置,其特征在于包括检测部分,其检测所述排气通道中位于所述收集器上游的部分中的排气压力与所述排气通道中位于所述收集器下游的部分中的排气压力之间的压力差;和比较部分,其比较在所述判断部分判断所述收集器中的微粒已经被燃烧并去除时的时间点处由所述检测部分检测到的排气压力差与预定值,其中所述控制部分根据所述比较部分的比较结果切换所述供油设备向所述排气通道供应未燃烧燃油的方式。
8.如权利要求6或7所述的装置,其特征在于,当所述比较部分判断所述排气压力差等于或大于预定值时,所述控制部分使得所述供油设备向所述排气通道供应未燃烧燃油,所供应的未燃烧燃油的量大于完全燃烧所述收集器中残留未燃烧的微粒所需的量,并且其中,当所述比较部分判断所述排气压力差小于所述预定值时,所述控制部分使得所述供油设备与所述收集器中残留未燃烧的微粒量无关地向所述排气通道供应预定量的未燃烧燃油。
9.如权利要求6或7所述的装置,其特征在于,当所述比较部分判断所述排气压力差等于或大于预定值时,所述控制部分使得所述供油设备在比完全燃烧所述收集器中残留未燃烧的微粒所需的时间段更长的时间段期间向所述排气通道供应未燃烧燃油,并且其中,当所述比较部分判断所述排气压力差小于所述预定值时,所述控制部分使得所述供油设备在与所述收集器中残留未燃烧的微粒量无关的预定时间段期间向所述排气通道供应未燃烧燃油。
10.一种用于内燃机的排气净化方法,其特征在于包括通过位于所述内燃机的排气通道中的收集器收集排气中的微粒;判断所述收集器中的微粒是否已经被燃烧并去除;以及在判断所述收集器中的微粒已经被燃烧并去除之后,向所述排气通道供应未燃烧燃油。
全文摘要
在一种排气净化装置中,加油阀(31)向柴油发动机(10)的排气通道(14)供应未燃烧燃油,以燃烧并去除催化转化器(33)中收集到的微粒。即使在电子控制单元(41)判断催化转化器(33)中的微粒已被燃烧并去除之后,还从加油阀(31)执行对未燃烧燃油的供应。这减少了催化转化器(33)中残留未燃烧的微粒量。
文档编号F01N13/02GK1771382SQ20058000020
公开日2006年5月10日 申请日期2005年3月10日 优先权日2004年3月11日
发明者大坪康彦, 宫崎雅生, 横井辰久, 松冈广树, 松野繁洋, 稻叶孝好 申请人:丰田自动车株式会社, 株式会社电装
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1