气体燃料系统的制作方法

文档序号:5153953阅读:107来源:国知局
气体燃料系统的制作方法
【专利摘要】本发明公开一种用于发动机的气体燃料系统。该气体燃料系统包括配置为供应低温燃料的燃料罐。低温泵配置为对从燃料罐接收的低温燃料加压。热交换器配置为接收已加压的低温燃料以及发动机冷却剂。此外,发动机冷却剂流经热交换器以使已加压的低温流体汽化。该气体系统还包括控制器,该控制器配置为接收指示发动机冷却剂温度的信号。此外,基于发动机冷却剂的温度,控制器发送信号以在发动机上施加一个或多个附加负载。
【专利说明】气体燃料系统
【技术领域】
[0001]本发明总体涉及气体燃料系统,且更具体地,涉及气体燃料系统中的发动机冷却剂。
【背景技术】
[0002]重型机械,如机车或者大型矿用卡车可依赖使用多于一种燃料的发动机而运行。该发动机可以是直喷式气体(DIG)发动机或者双燃料发动机系统,在其中,在源自柴油引燃的气缸中的燃烧已经进行时,气体燃料如压缩天然气在高压下注入到气缸中。在DIG发动机中,气体燃料在低压下诸如大气压下、以及低温温度下以液态存储于液体储罐中。当离开液体储罐时,在将这样的气体燃料提供给发动机气缸之前,需要将液化的气体燃料加热到最终汽化并达到气态。
[0003]使液化的气体燃料汽化所需要的热量可通过使用来自发动机的暖热冷却剂提供至流经热交换器或加热器的液化的气体燃料。然而,当发动机在寒冷环境下工作时,在足以使发动机以期望的功率输出运行的速率下,发动机冷却剂可能没有足够的热量来汽化液化的气体燃料。此外,在发动机冷启动条件下,发动机冷却剂需要加热,这样来自冷却剂的热量可通过液化气体燃料的汽化以获得发动机最大功率。发动机冷却剂可利用辅助机构诸如但不限于加热器来加热,或者使用发动机废热来加热。然而,使用辅助机构会是增量加热过程。此外,包含了辅助装置会增加发动机系统的复杂性和成本。
[0004]英国专利GB2088475公开了内燃机的液化气供给设备。该设备包括将液化气体从储压器供应到汽化/调节装置的机构,其连接到发动机的冷却回路,以通过所述装置提供冷却剂流。此外,汽化/调节装置包括电子加热元件诸如设置在冷却剂流动路径中的、快速加热的火花塞,并在发动机冷启动期间和之后不久根据温度和/或时间工作。然而,现有技术中仍存在需要改进的地方。

【发明内容】

[0005]在本发明的一个实施例中,公开了一种用于发动机的气体燃料系统。该气体燃料系统包括配置为供应低温燃料的燃料罐。低温泵被配置为对从燃料罐接收到的低温燃料加压。热交换器被配置为接收已加压的低温燃料以及发动机冷却剂。此外,发动机冷却剂流经热交换器以使已加压的低温燃料汽化。该气体系统进一步包括配置为接收指示发动机冷却剂温度的信号的控制器。此外,该控制器基于发动机冷却剂的温度发送信号,以在发动机上施加一种或多种附加负载。
[0006]在本发明的另一个实施例中,公开了一种加热发动机冷却剂的方法。该方法包括在低温泵中对低温流体加压。此外,该方法包括向热交换器供应已加压的低温流体,并将发动机冷却剂供应给热交换器以使低温流体汽化。该方法还包括检测冷却剂的温度,并根据冷却剂的温度对发动机施加一种或多种附加负载。
[0007]从下面的描述和附图中,本发明的其它特征和实施例将是显而易见的。【专利附图】

【附图说明】
[0008]图1为根据本发明的一个实施例的机器的侧视图;
[0009]图2为根据本发明的一个实施例的发动机系统的框图;及
[0010]图3示出了根据本发明的发动机冷却剂的加热策略。
具体实施例
[0011]图1示出了机器100诸如机车的侧视图,本发明的多个实施例都在该机车中实施。机器100包括了框架102。框架102可支承发动机104、第一燃料罐106和第二燃料罐108。此外,框架102可设置在一个或多个轴线110上,并具有多个轮子112。在所示实施例中,框架102可进一步支承多个部分,诸如动力传动系、液压泵、马达、阀、液压管路、热交换器以及控制系统。发动机104可以是任意类型,诸如但不限于内燃机、燃气涡轮发动机、或其组合。根据本发明的一个方面,发动机104可以为直喷汽油发动机104,其使用多于一种燃料。发动机104可用在这样的场合,诸如但不限于大型矿用卡车、电动车等。
[0012]第一燃料罐106和第二燃料罐108可由,诸如标准尺寸集装(ISO)罐的钢主体制成。第一燃料罐106和第二燃料罐108还可以包括多个开口和接入点,以便可移除地连接多种软管、控制阀等。此外,第一燃料罐106和第二燃料罐108可配置为保持燃料,像诸如液化天然气(“LNG”)、压缩天然气(“CNG”)、汽油、柴油及其等同物。第一燃料罐106和第二燃料罐108各配置为通过多条管线将燃料供应到发动机104。第一燃料罐106和第二燃料罐108可包括一个或多个过滤器及泵。过滤器可移除存在于燃料中的任何杂质如污物或者尘土颗粒,而所述泵可将燃料吸入、加压和输送到发动机104的喷射器。
[0013]图2不出了发动机系统114的框图,该发动机系统包括图1中的发动机104,根据本发明该系统包括气体燃料系统和液体燃料系统。发动机104可包括一个或多个气缸116。此外,一个或多个发动机气缸116可与燃料喷射器118相关联。燃料喷射器118可以是被配置为独立喷射预定量的两种不同燃料的双燃料喷射器。尽管单个的燃料喷射器118被配置为独立喷射两种不同燃料,但可以考虑使用两个喷射器,每个对应两种燃料中的一种燃料。燃料喷射器118可通过高压气体燃料供给管线122连接到气体燃料轨。此外,燃料喷射器118可通过液体燃料供给管线126连接到高压液体燃料轨124。
[0014]在所示实施例中,气体燃料例如可以是低温燃料,或者可以是天然气或者石油气,其在约25-50MPa的压力下被保持在气体燃料轨120中。此外,液体燃料可以是例如柴油燃料,其在约25-50MPa的压力下保持在液体燃料轨124中。另外,液体燃料可以是任何烃基燃料,像诸如,DME (二甲基醚)、生物燃料、MDO(船用柴油机油)、或者HFO(重质燃料油)。在本发明的实施例中,气体燃料可以是液化天然气(LNG),且液体燃料可以是柴油。此外,基于发动机系统114的工作条件,LNG和柴油可以在不限于上述压力范围的任意压力范围内保存。尽管提到气体燃料轨120和液体燃料轨124中存在的燃料使用了词“气”或者“液”,但这些名称并非用于限制燃料在各个轨中的状态,而仅仅是为了阐述的目的而如此命名。例如,被转化为压缩天然气的LNG在气体燃料轨120中以控制压力提供。气体燃料轨120中这种加压气体的物理特性取决于其所保持的压力,并且可以是液态、气态或超临界相。
[0015]如图2所示,柴油存储在第一燃料罐106中。柴油可通过过滤器130,并根据发动机系统114的工作条件以不同的速率抽吸入液压泵128并在其中加压。液压泵128配置为可选择性地将柴油的压力增加到可以响应于控制器132提供给液压泵128的压力指令信号而改变的压力。来自液压泵128的加压燃料提供到液体燃料轨124。
[0016]此外,LNG可以液态存储在第二燃料罐108中。LNG可保持在相对较低的压力,例如环境压力或者较高压力下。在所示实施例中,第二燃料罐108可以是绝热的,从而在约-160°C (约-256° F)的温度、约100-1750kPa的压力下存储LNG。也可以使用其它存储条件。第二燃料罐108还可以包括释压阀134。另外,LNG可以通过低温泵136基于发动机系统114的工作条件压缩到所需压力。此外,低温泵136可以通过油泵137驱动。储存器131被配置为向油泵137供应油。调压阀133被配置为可选择性地使得来自油泵137的加压油驱动低温泵136。控制器132可基于发动机系统114的工作条件控制油泵137。此外,油泵137被配置为基于来自控制器132的信号选择性地驱动低温泵136。控制器132可进一步控制调压阀137,选择性地使得来自油泵137的加压油驱动低温泵136。低温泵136可升高LNG的压力,同时将LNG保持在液态。低温泵136被配置为可选择性地增加LNG的压力到可以响应于控制器132提供给低温泵136的压力指令信号而改变的压力。
[0017]此外,压缩的LNG可在热交换器138中加热。热交换器138可以是适用于LNG的任意已知类型的热交换器或者加热器。在本发明的实施例中,热交换器138为水套水加热器,该水套水加热器从发动机冷却剂吸取热量。或者,热交换器138可以是主动加热器,例如燃料加热器或者电加热器。冷却剂可以借助入口管线147由发动机104供应。冷却剂也可以通过出口管线151送到发动机104或者冷却剂泵(未示出)。发动机冷却剂和低温燃料可以在热交换器138中并行流动或者逆向流动。热交换器138向压缩的LNG提供热量,以降低其密度和粘度,同时增加其焓和温度。压缩的LNG可以在低温、液态下进入到热交换器138中,并在超临界气体状态下离开热交换器138,超临界气态在此处被用来描述燃料为气态、但其密度在其气态和液态之间的状态。在一个示例中,压缩LNG可在温度约-160°C、密度约430kg / m3、焓约70kJ / kg及粘度约169 μ Pas的情况下,作为液体进入到热交换器138中,并在温度约50°C、密度约200kg / m3、焓约760kJ / kg及粘度约28 μ Pas的情况下离开热交换器138。应该理解的是,这种代表状态参数的值可以根据所使用燃料的具体成分而不同。
[0018]按照本发明的一个方面,由发动机104供给的发动机冷却剂需要足够暖热来加热进入到热交换器138中的低温LNG。在发动机104冷启动期间,发动机冷却剂需要快速加热。发动机冷却剂可以通过使用附加负载149加热,诸如但不限于,泵、电阻加热器、排气制动、动力制动、发动机怠速加热、扭矩转换器。此外,控制器132在发动机104冷启动期间检测到低温的发动机冷却剂,并因此通过打开由控制器132控制的附加负载149来启用加热策略。
[0019]在一个实施例中,在发动机104冷启动时,控制器132可以检测到入口冷却剂的温度139。温度传感器141,143可设置在热交换器138上,分别检测入口冷却剂温度139和出口冷却剂温度145。控制器132确定发动机冷却剂温度是否低于预定温度。在发动机冷却剂温度较低的情况下,控制器132可以将附加负载149施加到发动机104。附加负载149可包括发动机104在高怠速加热模式下工作。高怠速发动机加热模式可用来增加发动机104的摩擦和负载。发动机104摩擦和负载的增加可增加发动机冷却剂的温度,所述冷却剂继而会供应到热交换器138。
[0020]在另一个实施例中,发动机104冷启动期间,控制器132可通过给油泵137发出指令到释压模式而将附加负载149施加到发动机104。油泵137可设置到最大系统压力,同时使油泵137在释压模式下工作。这个现象可为发动机104提供足够的负载。发动机104上负载的增加可加热发动机冷却剂。在另一个实施例中,发动机系统114可包括与机器100的多种操作相配合的多种其它液压泵,并在类似的模式下工作。
[0021]在本发明的一个实施例中,控制器132可进一步将附加负载149施加到在机器100或者电动车上施加附加负载149,发动机驱动型发电机装有动力制动栅格变阻器。动力制动期间产生的热量可以提供为加热发动机冷却剂。在一个实施例中,气体燃料轨120和液体燃料轨124的压力可以增加到最大压力值。气体燃料轨120和液体燃料轨140中压力的增加可由于流体的压缩而稍微加热流体,还增加到液压泵128和低温泵136的发动机功率。可对循环LNG的低温泵136发送指令到完全释压,因而增加了发动机104的负载。此外,如果发动机104安装有排气制动装置,则一个或多个发动机气缸116可设置在“排气制动模式”下,从而增加发动机104的负载。
[0022]在一个例子中,如果发动机104的传动装置安装有扭矩转换器,扭矩转换器可以负载约50%的动力,并可在来自发动机104的直接机械驱动下运转。负载接近50%动力的扭矩转换器可增加发动机104的负载,因而加热发动机冷却剂。在一个实施例中,发动机驱动的动力转向泵或者交流发电机的发动机可跨越电阻加热器切换。电阻加热器可位于到热交换器138的发动机冷却剂入口处。这可以为直接加热发动机冷却剂提供额外的发动机功率。
[0023]如图2所示,离开热交换器138的LNG可在气体过滤器140处进行过滤。一部分过滤后的LNG存储在蓄压器142中,而剩余气体供应到压力控制模块144。调压气体提供给气体燃料供给管线122。此外,压力控制模块144响应来自控制器132的信号和/或配置为调节提供给燃料喷射器118的LNG的压力。压力控制模块144可以是机械装置,诸如圆顶加载调节器或者可替代为机电控制装置,该机电控制装置响应于来自控制器132的指令信号而工作。
[0024]发动机系统114可包括多种其它传感器,它们将与操作状态以及发动机系统114的整体状态有关的信息提供给控制器132。发动机系统114可包括在系统中多个位置指示燃料状态的多种传感器。这样的传感器可包括气体状态传感器146、液体状态传感器148、过滤器状态传感器150、加热器状态传感器152以及附加状态传感器153。这些传感器可向控制器132发送相应的信号。
[0025]因此,气体状态传感器146设置为测量并提供指示气体燃料供给管线122中流体状态的气轨状态信号154。气轨状态信号154可指示气体的压力和/或温度。此外,液体状态传感器148设置为测量指示液体燃料供给管线126中流体状态的液轨状态信号156。过滤器状态传感器150设置为测量并提供指示气体过滤器144 (下游)和压力控制模块144 (上游)之间气体状态的过滤器状态信号。过滤器状态信号158可指示气体压力。此外,加热器状态传感器152设置为测量并提供指示热交换器138和气体过滤器140之间气体状态的加热器状态信号160。加热器状态信号160可指示在那个位置上的气体温度。附加状态传感器153设置为测量并提供液压泵128出口处的液体状态信号162。液压泵128出口处的液体状态信号162可指示气体压力,并用作诊断液压泵工作的参考。液体状态信号162也可以指示气体温度,用来与热交换器138下游的加热器状态信号160进行比较,并用于诊断热交换器138的工作状态。用来指示液体/气体燃料的流动状态的气轨状态信号154、液轨状态信号156、过滤器状态信号158、加热器状态信号160、液体状态信号162和/或其它状态信号可以在发动机系统114工作期间连续提供给控制器132。
[0026]控制器132可包括存储器、二级存储装置、计时器以及配合完成与本发明一致的任务的一个或多个处理器。多种市售的微处理器可配置为执行控制器132的功能。应该理解的是,控制器132可便利地具体化为能够控制机器100的多种其它功能的一般机器控制器。多种已知电路可与控制器132配合,这些电路包括信号调节电路、通信电路和其它适宜电路。也应该理解的是,控制器132可包括专用集成电路(ASIC),现场可编程门阵列(FPGA),计算机系统以及配置为使得控制器132根据本发明实现功能的逻辑电路。此外,控制器132可以为电子控制模块的一部分。
[0027]在另一个实施例中,控制器132包括操作为监视由系统传感器提供的各种信号、并检测发动机系统114各种故障或异常操作模式的功能性和算法。这使得控制器132生成信号,这样可采用减缓动作以促进发动机104在冷启动之后加热和/或在寒冷条件像诸如环境温度为或者低于_20°C的条件下发动机的稳态运行。换句话说,控制器132可包括用于发动机系统114的温度控制系统,其可以检测并处理与燃料系统中暂时性或者永久性热能相关的问题,特别是那些在发动机冷启动或者在较低环境温度条件下发动机工作期间会发生的问题。除了发动机冷启动和在寒冷的环境温度条件下工作的情况,与热能问题相关的异常工作条件的其它示例可包括多种燃料系统部件的进水和冻住问题;以及诸如系统在较高环境温度的情况下工作之时出现了多余热能的情况。异常操作条件包括任意过滤器的堵塞、热交换器138的冻住和/或堵塞,压力控制模块144的故障、和/或特别是涉及将压缩气体提供到气体燃料供给管线122并从其中排出的其它情况。
[0028]控制器132可进一步提供控制并设定液压泵128和低温泵136的排量的信号。更特别地,液压泵控制信号164和低温泵控制信号166在控制器132中确定,且可以提供给相应的泵来控制排量,以及,因此控制工作期间每个泵128和136所提供的燃料量。此外,控制器132可借助信号命令168设定LNG经过压力控制模块144的期望的轨压力。在一个实施例中,控制器132可发送信号169和170到燃料喷射器118,从而选择性地分别注入预定量的柴油燃料和LNG。
[0029]工业应用
[0030]本发明可应用于具有与液体燃料系统一起工作的气体燃料系统的发动机,其中液体燃料用作点燃气体燃料的引燃燃料。尽管在本发明中机器100被示出为机车,但该机器可以为,但不限于,大型矿用卡车或者电动车。在极端条件下,诸如发动机冷启动或者发动机在寒冷环境下工作,会暂时没有可加热气体燃料的热能,因为发动机冷却剂温度较低,且会冻结成足以使热交换器中的发动机冷却剂被冻住。控制器可利用用于发动机冷却剂的加热策略。这个功能通过控制器中运行的软件算法以及发动机组件和系统的多种硬件能力来完成。
[0031]图3以流程图形式示出了用于图2中发动机系统114的发动机冷却剂的加热策略300。在操作步骤302中,加热策略随着发动机冷启动而启动。在操作步骤304中,控制器132确定发动机冷却剂温度低到不足以使热交换器138中的气体燃料汽化。在操作步骤306中,控制器132确定哪种形式的附加负载149施加到发动机104。在操作步骤308中,选择至少一种附加负载149 (如图2所示)。例如,可选择高发动机怠速加热模式为加热发动机冷却剂提供热量。控制器132也可以选择通过驱动机器100的多个液压泵到最大压力或者通过增加发动机系统114的气体燃料轨压力120和液体燃料轨压力124来对发动机114施加附加负载。控制器132也可以通过在一个或多个发动机气缸116上提供排气制动装置而在发动机114上施加附加负载149 ;和/或通过将发动机驱动与载有高达50%的功率的扭矩转换器相连接。发动机104上的这些附加负载149可快速加热发动机冷却剂,如操作步骤310所示,而不需要辅助的加热机构。使用附加负载149来加热发动机冷却剂可降低发动机系统114的复杂性。此外,附加负载149可减少可快速加热发动机冷却剂的整体系统的成本。
[0032]在另一个实施例中,控制器132可接收来自多个不同传感器的信号,这些信号指示发动机系统114的工作状态,这些传感器诸如为温度传感器141,143、气体状态传感器146、液体状态传感器148、过滤器状态传感器150、加热器状态传感器152和其它状态传感器153。这些传感器可向控制器132发送相应信号。基于来自所述多个不同传感器的信号,控制器132可评估那些系统的工作情况,并解决可能引起的任何热能问题。更特别地,同时参考图2,控制器132可接收入口冷却剂温度139和出口冷却剂温度145。此外,检测到低温冷却剂温度后,控制器132可对发动机104施加附加负载149。
[0033]应当认识到前面的描述提供了公开的系统和方法的例子。然而,应当理解本发明其它实施方式可以在细节上不同于前面的例子。本发明或例子的全部参考都旨在参考在该点上被讨论的特定的例子,而不是更概括性地限制本发明的范围。关于特定特征的区别或差异性的语言都旨在说明对这些特征的不优选性,但不完全排除该特征也在本发明的总体范围内,除非另有说明。
[0034]本发明对数值的范围的列举仅旨在用作对落在所述范围内的每个单独的值(除非另有说明)逐个参考的简略表示方法。每个单独的值被结合在本说明书中如同其被单个地述及。本文描述的全部方法能通过任意适合的顺序实现,除非另有描述或与上下文显然相矛盾。
【权利要求】
1.用于发动机的气体燃料系统,包括: 燃料罐,其配置为供应低温燃料; 低温泵,其配置为对从所述燃料罐接收到的低温燃料加压; 热交换器,其配置为接收来自所述低温泵的已加压的低温燃料,以及发动机冷却剂,使得所述发动机冷却剂流经所述热交换器以汽化所述已加压的低温流体;及控制器,其配置成: 接收指示所述发动机冷却剂的温度的信号,和 发送信号以基于所述发动机冷却剂的温度在所述发动机上施加一个或多个附加负载。
2.如权利要求1所述的气体燃料系统,其中,所述低温燃料是液态天然气。
3.如权利要求1所述的气体燃料系统,其中,所述低温泵由油泵驱动。
4.如权利要求1所述的气体燃料系统,其中,所述发动机冷却剂和所述低温燃料在所述热交换器中并行或者逆向流动。
5.如权利要求1所述的气体燃料系统,其中,汽化的低温燃料被供应给压力控制模块。
6.如权利要求5所述的气体燃料系统,其中,所述压力控制模块响应于来自所述控制器的控制信号选择性地调整所述汽化的低温燃料的压力。
7.如权利要求1所述的气体燃料系统,其中,在所述热交换器上设置有温度传感器来检测所述发动机冷却剂的温度。
8.如权利要求1所述的气体燃料系统,其中,所述附加负载选自包括一个或多个泵、电阻加热器、排气制动、发动机怠速加热、燃料压力及扭矩转换器的组。
9.一种机器,包括: 发动机,其包括一个或多个发动机气缸; 液体燃料系统,其配置为将已加压的液体燃料供应到所述发动机气缸之中; 气体燃料系统,其包括: 燃料罐,其配置为提供低温燃料; 低温泵,其配置为对从所述燃料罐接收的低温燃料加压; 热交换器,其配置为从该低温泵接收已加压的低温燃料,及发动机冷却剂,使得所述发动机冷却剂流经所述热交换器以将所述已加压的低温流体汽化;及控制器,其配置为: 接收指示所述发动机冷却剂的温度的信号;和 基于所述发动机冷却剂的温度发送信号以对该发动机施加一个或多个附加负载。
10.如权利要求9所述的机器,其中,液体燃料由所述液压泵加压。
11.如权利要求9所述的机器,其中,所述低温燃料是液态天然气。
12.如权利要求9所述的机器,其中,所述低温燃料泵由油泵驱动。
13.如权利要求9所述的机器,其中,所述发动机冷却剂和所述低温燃料在热交换器中并行流动或者逆向流动。
14.如权利要求9所述的机器,其中,汽化的低温燃料被供应给压力控制模块。
15.如权利要求14所述的机器,其中,所述压力控制模块响应于来自所述控制器的控制信号选择性地调整所述汽化的低温燃料的压力。
16.如权利要求9所述的机器,其中,所述附加负载选自包括油泵、电阻加热器、排气制动、发动机怠速加热、燃料压力及扭矩转换器的组。
17.如权利要求9所述的机器,其中,所述控制器选择性地发送信号给燃料喷射器,从而引导所述液体燃料和所述低温燃料至少之一进入到所述发动机气缸中。
18.—种用于在发动机冷启动期间加热发动机冷却剂的方法,该方法包括: 在低温泵中对低温流体加压; 向热交换器供应已加压的低温流体; 向热交换器供应发动机冷却剂以使所述低温流体汽化; 通过控制器检测所述发动机冷却剂的温度;及 基于所述发动机冷却剂的温度,通过所述控制器将一种或多种附加负载施加到该发动机。
19.如权利要求18所述的方法,还包括响应于来自所述控制器的控制信号通过压力控制模块来调节汽化的低温燃料的压力。
20.如权利要求 18所述的方法,施加所述附加负载,所述附加负载选自包括一个或多个泵、电阻加热器、排气制动、气缸排气制动、发动机怠速加热、及扭矩转换器的组。
【文档编号】F02N19/10GK103982333SQ201410088516
【公开日】2014年8月13日 申请日期:2014年2月7日 优先权日:2013年2月7日
【发明者】A·R·斯托克奈尔 申请人:卡特彼勒公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1