叶片的制作方法

文档序号:11850627阅读:218来源:国知局
叶片的制作方法与工艺

本发明涉及一种叶片;具体地,本发明涉及一种燃气轮机的叶片;该叶片是位于燃气轮机的下游部分的长叶片,例如该叶片是燃气轮机的最后一级的叶片。



背景技术:

燃气轮机具有用于将空气压缩的压缩机、用于使燃料与压缩空气共同燃烧从而产生热气体的燃烧室、用于使该热气体膨胀的涡轮。

涡轮通常具有多于一个的级,各级包括静止翼叶和旋转叶片;更靠近燃烧室的上游级具有短叶片,而位于燃气轮机的更下游位置的叶片具有长叶片(这些叶片可以长达1米或甚至更多)。

长叶片具有连接到转子的根部、限定热气体路径的平台、和浸没于通过热气体路径的热气体中的翼型部。

为了能够经受高要求的工况,叶片具备使冷却空气通过的冷却通道。

传统地,冷却通道是由具有在根部处的进口和在叶片尖端处的出口的径向通道所限定。

这些传统的叶片具有一些缺点。

实际上,具有在根部处的进口和在叶片尖端处的出口的冷却通道的径向构造导致泵送效应并且将冷却空气压缩(即,冷却通道限定用于冷却空气的离心式压缩机);该泵送效应的结果是用于压缩而不是用于提供在燃气轮机轴处的有用功的能量消耗。例如,由于泵送效应所消耗能量的量可以高达1 MW或更多。

另外,因为更靠近平台的翼型部分是被相比更靠近叶尖的翼型部分更冷的空气所冷却,所以在叶片内部(具体地在翼型部中)产生了应力。



技术实现要素:

本发明的一个方面包括提供一种导致相比传统叶片减少的用于泵送效应的能耗的叶片。

本发明的另一方面包括提供一种具有相比传统叶片减小的由于经过叶片的温差所产生的应力的叶片。

本发明的这些和其它方面是通过提供根据所附权利要求的叶片而实现。

附图说明

基于通过附图中的非限制性实例所说明的关于叶片的优选但非排他性实施例的描述,本发明的其它特征和优点将更加显而易见,在附图中:

图1至图3示出了在本发明的一个实施例中的叶片的实例;

图4和图5示出了图1和图2的放大部分;

图6至图11示出了散热片的不同构造;

图12至图14示出了该叶片的不同实施例。

具体实施方式

参考附图,这些附图示出了燃气轮机的叶片1。叶片1包括根部2、平台3和翼型部4。叶片1具有冷却通道5,该冷却通道5具有位于根部或平台处的进口6及一个或多个出口7。

出口7有利地位于平台3处。

例如,冷却通道5可以具有U形状。该冷却通道可以具有限定进口6的一个开放端部和被平板25所封闭的其它端部,同时出口8被限定在平台3处。当然,不同的实施例是可行的,例如冷却通道可以只具有限定进口6的一个开放端。

平台3具有一个或多个孔8;这些孔8连接到冷却通道5的出口7并且在平台3的一侧上开口。

具体地,翼型部4限定压力侧4a和吸力侧4b,并且平台3具有面向由翼型部4所限定的压力侧4a的平台压力侧3a、和面向由翼型部所限定的吸力侧4b的吸力侧3b。孔8在平台压力侧3a上开口。

出口7相比翼型部4的后缘14更靠近前缘13。

平台压力侧3a和平台吸力侧3b具有用于密封件(该密封件未图示)的基座15,但通常它们是由插入相邻叶片1的平台压力侧3a和平台吸力侧3b的基座15中的金属棒所限定。

孔8在位于翼型部4与基座15之间的平台3(即,在平台压力侧3a)的区域17中开口。

叶片1优选地还包括在翼型部4的冷却通道5与尖端19之间的一个或多个第二孔18;这些第二孔18是用于使尖端19冷却。

为了加强冷却,冷却通道5可以具有散热片20;散热片20在冷却通道5中突出。散热片的不同构造是可能的,例如图6-图11示出了散热片20的不同的可能构造。

冷却通道5的进口6可以具有部分地阻碍冷却通道5的突出部22。突出部22防止或阻碍在冷却通道5的进口6处形成冷却空气的再循环区,因此减小压力损失。

在不同的实施例中(图12),叶片1可以具有在翼型部纵向长度上部分地延伸的冷却通道5。图12示出了叶片1的纵向轴线L,并且示出了冷却通道5在纵向轴线L的方向上仅部分地延伸经过叶片1的翼型部4。

在另一个实施例中(图13),冷却通道5可以具有一个或多个限流件23。限流件23可以使不同量的冷却空气通过翼型部4的不同部分。

优选地,冷却通道5具有连接到进口6的第一路径5a、和连接到出口7的第二路径5b;第一路径5a与第二路径5b在其端部(即,在叶尖处)连接。限流件23被限定在第二路径5b中。

在又一个实施例中(图13和图14),提供将第一路径5a连接到第二路径5b的中间通道24。

叶片1是长叶片,例如燃气轮机的下游级的叶片;叶片的纵向长度(即,沿轴线L的长度)可以具有例如至少60厘米、优选地至少75厘米、更优选地在90-120厘米之间的大小。

基于所描述和说明的内容,叶片1的运行是显而易见的并且基本上是下面的描述。

在运行期间,叶片1旋转浸没于热气体中。

冷却空气 F1(例如,从压缩机中吸出)被提供至叶片与转子R之间,并且进入冷却通道5(箭头F2);当进入冷却通道5时,突出部22有助于减小压力损失。

因此,冷却空气通过冷却通道5的第一路径5a,从而使翼型部冷却(箭头F3)。一些冷却空气(冷却空气的减小部分)通过第二孔18并且使叶尖19冷却。

因此,冷却空气通过冷却通道5的第二路径5b(箭头F4)而到达出口7。冷却空气被从出口7中被排放到冷却通道5的外部。

当通过第一路径5a时,冷却空气被压缩(泵送效应),并且消耗能量;相反,当通过第二路径5b时,使冷却空气发生膨胀,并且提供能量。因此,因为进口6是在根部2处或在平台3处并且出口7是在平台3处,所以经过冷却通道5的冷却空气通道大体上是中性的,即,整体上不存在由于泵送效应(即,通过冷却通道5的冷却空气的压缩)所导致的显著能耗,因为进口6和出口7关于转子R处在相同的径向位置或者处在接近的径向位置,因而不会产生显著的泵送效应。

在进入孔8并经过冷却通道5的出口7之后,冷却空气通过孔8并且使平台3(具体地,平台的面向翼型部4的压力侧4a的部分;箭头F5)冷却。然后将冷却空气从孔8中排出,因为冷却空气在被容纳于基座15中的密封件与翼型部4中间被排出,所以冷却空气在相邻叶片的平台上方移动并且使平台的面向相邻叶片1的翼型部4b的吸力侧的部分冷却(箭头F6)。

当提供限流件23时,限流件23可以限制通过它的冷却空气的量。图13示出了其中同时提供限流件23和中间通道24的一个实例;在这种情况下,可以根据冷却需求来优化通过冷却通道5的不同部分的冷却空气的量。

当然,所描述的特征可相互独立地提供。

附图标记

1 叶片

2 根部

3 平台

3a 平台压力侧

3b 平台吸力侧

4 翼型部

4a 压力侧

4b 吸力侧

5 冷却通道

5a 第一路径

5b 第二路径

6 进口

7 出口

8 孔

13 前缘

14 后缘

15 基座

17 区域

18 第二孔

19 叶尖

20 散热片

22 突出部

23 限流件

24 中间通道

L 纵向轴线

F1、F2、F3、F4、F5、F6 冷却空气

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1