一种耐酸的电解膜的制作方法

文档序号:12110258阅读:367来源:国知局

本发明涉及一种耐酸的电解膜,属于电解膜制备技术领域。



背景技术:

N2O5的制备一直是人们关注的热点,除电解法外,其余方法均存在明显的缺陷,且无法大规模生产。为了达到低成本、低耗能,连续化、大规模生产N2O5的目标,研究者对电解方法进行了大量研究。在电解过程中,离子膜起到隔开阴阳极、阻止水的自由流动以及让阴阳离子选择性通过的作用。因此,电解膜的性能不仅影响电解电流效率、比能等性能指标,还直接关系到电解历程和电解工艺的成败。由于电解液为100%的发烟硝酸,现有电解膜无法承受该体系的强酸性及强氧化性,故电解膜的选取成为电化学法制备五氧化二氮的关键。

目前,电化学法制备N2O5用电解膜的研究主要有如下几类:

(1)Harrar等人(J.Electrochem.Soc,1997,144,2032)采用玻璃作为电解膜进行电解制备N2O5,电流效率65%,但这种薄片状的玻璃亲水性过强,而玻璃表面改性难度大,导致电解过程中阴极产生的水易穿过电解膜至阳极,N2O5产率大幅度降低。

(2)专利US6200456,US5181996,US5120408采用阳离子膜作为电解膜材料进行N2O5制备,该电解膜比能1.1kWh/kg N2O5。由于阳离子交换膜无法抑制产生的NO2+往阴极迁移,故电解效果不佳,同时阳离子交换膜稳定性差,使用寿命短。

(3)专利US6200456采用Raipore阴离子膜作为电解膜材料进行N2O5制备。该电解膜比能1.0~1.7kWh/kgN2O5,电流效率50%~70%,由于具有较强的亲水性,阴离子交换膜不能有效地解决水分渗透对电解效果影响,以及阳极N2O4向阴极迁移的问题;此外,阴离子稳定性差,更换频率高。

(4)专利US6200456,US5181996,US5120408报道了将四氟乙烯(PTFE)乳液与TiO2、SiO2等无机物掺杂后制备成改性多孔PTFE膜。通过提高电解膜的亲水性,降低膜电阻,有利于电解时阴阳离子的通过,提高了电流效率。然而,固体无机物与PTFE乳液无法混合均匀,单位体积内亲水性无机物的富集或缺失不仅导致多孔PTFE膜均一性差,而且易造成电流过载或短路,电解稳定性差;

(5)专利CN102296322A、CN102268690A报道了一种改性PTFE电解膜的制备。首先将多孔PTFE膜分别通过Nafion溶液和TiO2、SiO2凝胶浸泡,制备成膜电阻低、具有一定亲水性的改性膜;再与膨体聚四氟乙烯(ePTFE)膜通过物理压合的形式压制成最终产品。该电解膜比能1.3~2.0kWh/kgN2O5,电流效率80%~90%。该复合膜采用“疏水膜+亲水涂层+疏水膜”复合而成。虽然通过亲水夹层的方式可提高电解过程中离子的通过率,但由于PTFE的强疏水性,PTFE膜的厚度必须很小(100μm以下),否则离子通过率低。但较小的膜厚度导致复合膜强度低,极易破损,难以制成较大的产品,且使用寿命短。

由上可知,目前电化学法制备N2O5所采用的电解膜中,玻璃膜亲水性过强,不能阻止水的渗透,实际电解效率极低;阳离子膜、阴离子膜的稳定性差,易氧化降解,且对特定离子的选择性透过率无法控制;聚四氟乙烯(复合)膜,憎水性强,采用亲水无机物镶嵌改性时,由于负载物分布不均,造成电解稳定性差;采用亲水膜涂覆改性时,基膜厚度受限(基膜过厚会导致疏水性过大),膜强度低,极易破损。因此,现有电解膜无法满足在强酸中的应用要求,制备技术有待改进。



技术实现要素:

本发明的目的是提供一种耐酸的电解膜,所述的电解膜具有化学稳定性好、机械强度大、膜电阻低、电流效率高的优点;其制备工艺简单、生产成本低、易于工业化。

本发明的原理是:采用化学稳定性好、机械强度大的亲水陶瓷膜作为支撑骨架,将疏水性有机单体溶液涂覆在陶瓷膜表面一侧,形成疏水涂层,经干燥交联后得到成品电解膜。在制膜的过程中,通过控制陶瓷膜的厚度来改善膜体的强度;通过调整陶瓷膜和疏水有机膜的孔径来控制电解时离子的选择性;通过调整疏水有机膜的材质及厚度来控制电解时水分及阴阳离子的通过率。

实现本发明目的技术解决方案是:一种耐酸的电解膜,所述电解膜由作为支撑骨架的亲水陶瓷膜和设置在所述陶瓷膜一侧面的疏水涂层构成。

在本发明的实施例中,疏水涂层是由有机含氟单体溶液经涂覆在陶瓷膜表面后经交联反应干燥得到。

在本发明的更优选的实施例中,有机含氟单体为全氟丁基乙基丙烯酸酯、全氟辛基乙基丙烯酸酯、全氟丁基乙基甲基丙烯酸酯、全氟辛基乙基甲基丙烯酸酯中任意一种。

上述结构的电解膜在电解浓硝酸制备N2O5上的应用。

在本发明的实施例中,电解膜的总厚度为0.5~5mm。

在本发明的实施例中,陶瓷膜孔径为0.5~2.0μm,孔隙率为70%~90%,厚度为0.5~5mm。

在本发明的实施例中,疏水涂层的孔径为0.1~1.0μm,孔隙率为80%~95%,厚度为2~20μm。

与现有技术相比,本发明具有如下优点:第一,复合膜由内层亲水陶瓷膜和外层疏水有机膜组成,内层作为基体提供膜体强度和涂覆骨架,外层控制电解时的水分及阴阳离子的通过率和选择性。第二,内层亲水陶瓷膜为刚性结构,亲水性好,故通过改变陶瓷膜厚度可调整膜体强度,而不影响离子通过率。第三,外层疏水有机膜通过乳液涂覆的方式与内层陶瓷膜进行复合,比压制成型工艺更简单,均匀性更好。第四,复合膜的内外层均具有化学稳定性好、机械强度大、电流效率高、寿命长的优点;第五,复合膜制备工艺简单、生产成本低、易于工业化。

具体实施方式

以下结合具体实施方式对本发明作进一步的详细说明。

根据本发明提供一种耐酸的电解膜,并用于电解浓硝酸制备N2O5的工艺过程中。

电解膜的制备方法如下:以煅烧铝矾土和高塑性粘土为主要原料的陶瓷泥料与植物造孔材料充分混合后,经真空挤制为陶瓷支撑体坯体;将异丙醇铝、酞酸丁酯、正硅酸乙酯、氧氯化锆、无水乙醇、硝酸按一定比例混合得到浸渍溶液涂覆于陶瓷支撑体上,干燥、高温烧结后自然冷却备用。将疏水性含氟单体溶液分散于有机溶剂形成制膜液,将制膜液涂覆于陶瓷膜表面形成疏水涂层,经交联干燥后得到一种耐酸的电解膜。

耐酸的电解膜的性能参数如下:陶瓷膜的孔径为0.5~2.0μm,孔隙率为70%~90%,厚度为0.5~5mm,疏水涂层的孔径为0.1~1.0μm,孔隙率为80%~95%,厚度为2~20μm。

对电解膜电解性能测试,电解槽的有效工作面积7cm2,IrO2/Ti为阳极,RuO2-IrO2/Ti为阴极,电解膜的尺寸为2.5cm×2.5cm。向阴阳极储罐中各加入20mL 98%的硝酸,往阳极储罐中加入N2O4,配置N2O4浓度为30%N2O4/HNO3阳极初始液,而后用隔膜泵将阴阳极储罐中的溶液分别打入电解槽的阴阳极室中,并使得电解液在电解槽和储罐之间循环流动,采用恒电压操作,工作3小时后为6V,后一小时为4V,操作温度为10℃,电解4小时后对阴阳极电解液进行滴定分析测试其溶液中的各组分的浓度。

实施例1:陶瓷膜孔径的影响

固定陶瓷膜的孔隙率为80%,厚度为2mm,改性疏水涂层为全氟丁基乙基丙烯酸酯,涂层孔径为0.5μm,孔隙率为90%,厚度为10μm,陶瓷膜孔径对电流效率、比能和N2O5产率的影响如表1。

表1陶瓷膜孔径的影响

实施例2:陶瓷膜孔隙率的影响

固定陶瓷膜的孔径为1μm,厚度为2mm,改性疏水涂层为全氟丁基乙基丙烯酸酯,涂层孔径为0.5μm,孔隙率为90%,厚度为10μm,陶瓷膜孔隙率对电流效率、比能和N2O5产率的影响如表2。

表2陶瓷膜孔隙率的影响

实施例3:陶瓷膜厚度的影响

固定陶瓷膜的孔径为1μm,孔隙率为80%,改性疏水涂层为全氟丁基乙基丙烯酸酯,涂层孔径为0.5μm,孔隙率为90%,厚度为10μm,陶瓷膜厚度对电流效率、比能和N2O5产率的影响如表3。

表3陶瓷膜厚度的影响

实施例4:疏水涂层材质的影响

固定陶瓷膜孔径为1μm,孔隙率为80%,厚度为2mm,改性疏水涂层孔径为0.5μm,孔隙率为90%,厚度为10μm,疏水涂层材质对电流效率、比能和N2O5产率的影响如表4。

表4疏水涂层材质的影响

实施例5:疏水涂层孔径的影响

固定陶瓷膜孔径为1μm,孔隙率为80%,厚度为2mm,改性疏水涂层为全氟丁基乙基丙烯酸酯,孔隙率为90%,厚度为10μm,疏水涂层孔径对电流效率、比能和N2O5产率的影响如表5。

表5疏水涂层孔径的影响

实施例6:疏水涂层孔隙率的影响

固定陶瓷膜孔径为1μm,孔隙率为80%,厚度为2mm,改性疏水涂层为全氟丁基乙基丙烯酸酯,孔径为0.5μm,厚度为10μm,疏水涂层孔隙率对电流效率、比能和N2O5产率的影响如表6。

表6疏水涂层孔隙率的影响

实施例7:疏水涂层厚度的影响

固定陶瓷膜孔径为1μm,孔隙率为80%,厚度为2mm,改性疏水涂层为全氟丁基乙基丙烯酸酯,孔径为0.5μm,孔隙率为90%,疏水涂层厚度对电流效率、比能和N2O5产率的影响如表7。

表7疏水涂层厚度的影响

本发明与现有电解膜性能比较如下。

对比例1:与市面上普通陶瓷膜制备的电解膜相比

将市售陶瓷膜直接进行疏水涂覆改性,制得电解膜,并与按本发明自制的电解膜进行电解效果比较,结果如表8所示。

其中:自制陶瓷膜的孔径为1μm,孔隙率为80%,厚度为2mm,改性疏水涂层为全氟丁基乙基丙烯酸酯,涂层孔径为0.5μm,孔隙率为90%,厚度为10μm,陶瓷膜孔径对电流效率、比能和N2O5产率的影响如表8。

表8陶瓷膜种类的影响

对比例2:与采用其它含氟单体制备的电解膜相比

将三氟乙烯、四氟乙烯、六氟丙烯、全氟丁基乙烯、全氟癸基乙烯单体作为疏水涂层涂覆在陶瓷膜上,制得电解膜,并与本专利所述的几种含氟单体制备的电解膜进行比较结果如表9所示。

其中:陶瓷膜的孔径为1μm,孔隙率为80%,厚度为2mm,改性疏水涂层为孔径为0.5μm,孔隙率为90%,厚度为10μm,疏水层材质对电流效率、比能和N2O5产率的影响如表9。

表9陶瓷膜的影响

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1