用于装有变速箱的混合型车辆的控制设备的制作方法

文档序号:5546662阅读:79来源:国知局
专利名称:用于装有变速箱的混合型车辆的控制设备的制作方法
技术领域
本发明专利申请是申请号00128545.9,申请日2000年11月17日,发明名称“用于装有变速箱的混合型车辆的控制设备”的分案申请。
本发明涉及一种用于装有变速箱的混合型车辆的控制设备,该车辆带有一个发动机、一个电动机、及一个变速箱。更具体地说,本发明涉及一种改进燃料效率、排放特性、动态特性等的控制设备。
混合型车辆带有一个发动机和一个电动机作为驱动动力源。电动机最好不仅用来产生车辆驱动转矩,而且用作发电机。因此,该电动机经常被称为电动机-发电机。混合型车辆通过高效地操作发动机和电动机能够提高燃料经济性等。
一种其中一个发动机和两个电动机连接到行星齿轮单元上的机械分布式混合型车辆现在已经商业化。这种类型的混合型车辆不带有变速箱。相反,也已经提出了一种其中连接一个发动机、一个电动机、及一个变速箱的混合型车辆,如例如在日本公开专利申请No.8-168104中公开的那样。也已经提出了装有无级变速箱而不是分级变速箱(一种选择多个传动速度之一的变速箱)的系统。
在上述机械分布式混合型设备中,通过控制发动机和电动机的操作状态追求在燃料经济性等方面的优化。然而,该类型的混合型设备不带有用来从传动速度选择的变速箱。
就不是混合型车辆的车辆而论,把自动变速箱的速度变化特性设置成与车辆速度和加速操作量相对应。根据速度变化特性,确定变速箱的传动速度。一般称作MMT(多模式手动变速箱,即其中除去离合踏板并且由执行器自动进行离合器连接/脱开操作的变速箱系统)也以类似形式使用自动变速箱的速度变化特性以确定传动速度。
通过把一个产生添加到发动机的驱动功率上的转矩的电动机添加到一个其中按上述连接发动机和变速箱的系统上,能建造上述的装有变速箱的混合型车辆。然而,如果把仅打算与常规发动机使用的自动变速箱的速度变化特性立即施加到装有变速箱的混合型车辆上,尽管把电动机添加到混合型车辆上,则也不可能选择允许最高效率操作的传动速度,并且难以进行关于效率、排放、车辆动态特性等的适当控制。
因而,本发明的一个目的在于,提供能够在效率、排放特性、车辆动态特性等方面适当控制带有变速箱的混合型车辆的一种控制设备和一种控制方法。
为了实现上述和/或其他目的,按照本发明第一方面的用于混合型车辆的一种控制设备,是用于一种带有一个发动机和一个电动机作为驱动动力源、且在发动机与一个驱动轮之间带有一个能够通过从多种传动速度的选择改变驱动功率传送的变速箱的混合型车辆。在该控制设备中,按发动机输出增大、电动机输出增大、及在传动比增大方向上的传动速度变化的顺序,设置相对于车辆驱动功率需要调节驱动功率的控制的优先权顺序。
例如,本发明该方面的控制设备(1)在这样一个范围内选择最小传动比的传动速度,从而高于或等于预定下限转速的发动机转速是可得到的;(2)对于选择的传动速度通过发动机输出达到需要的驱动功率;(3)当需要的驱动功率单由发动机输出不能达到时,通过发动机输出和电动机输出达到需要的驱动功率;及(4)当需要的驱动功率由发动机输出和电动机输出不能达到时,在传动比增大方向上改变传动速度。
按照本发明的这个方面,通过按此顺序调节发动机输出、电动机输出、及传动速度获得需要的驱动功率。传动速度变化分配有较低的优先权,而发动机输出变化分配有较高的优先权。因此,当输出驱动功率请求时,进行控制以便把传动速度设置到较低速度并且增大发动机输出。结果,发动机在低速和高负载状态下高效地工作,从而燃料经济性提高。而且,通过设置上述优先权顺序,减少换档次数。因此,避免频繁的减速,并且驾驶性改善,及排放特性改进。
本发明这方面的控制设备可以按照影响电动机控制的因素改变齿轮速率。影响电动机控制的因素是例如SOC(电池的充电状态)、电池温度、变换器温度等。本发明的这方面能够保证电动机的稳定输出供给能力,并且能够防止车辆动态特性的变坏。
本发明的另一方面提供一种用于混合型车辆的控制设备,该混合型车辆带有一个发动机和一个电动机作为驱动动力源,且在发动机与驱动轮之间带有一个能够通过从多种传动速度的选择改变驱动功率传送的变速箱。这样设置变速箱的传动速度和发动机的工作状态,从而发动机在预定高效率工作状态下工作,并且在需要的车辆驱动功率与发动机输出之间的差由电动机的驱动操作和电动机的再生操作之一补偿。变速箱的最小传动比的传动速度可以设置在一个范围内,从而发动机在预定高效率操作状态下工作,并且从而在需要的车辆驱动功率与发动机输出之间的差由电动机的驱动操作和电动机的再生操作之一补偿。
按照本发明的这个方面,选择适当传动速度实现发动机的高效率工作,由此改进燃料经济性。发动机可以在最大效率点处工作。而且,通过选择最小传动比的传动速度,如上述那样能在燃料经济性、排放、及可驾驶性方面实现改进。
预定高效率工作状态可以是一种其中发动机效率和变速箱传动效率的乘积最大化的状态。因此,设置传动比和发动机工作状态以便允许发动机以及传动系统的最大效率工作,从而能提高燃料经济性。
而且,可以设置变速箱的传动速度和发动机的工作状态,从而发动机在预定良好的排放区域中工作。因此,能在排放方面实现改进。
本发明的又一方面提供一种用于混合型车辆的控制设备,该混合型车辆带有一个发动机和一个电动机作为驱动动力源,且在发动机与驱动轮之间带有一个能够通过从多种传动速度的选择改变驱动功率传送的变速箱。当车辆需要的驱动功率为负时,这样设置变速箱的传动速度,从而使由电动机实现的再生制动的效率最大。
在装有变速箱的混合型车辆中,电动机再生制动的效率按照变速箱的传动速度变化。例如,当发动机随电动机旋转时(即当发动机由电动机旋转时),最小传动比的选择减小发动机侧的旋转阻力,并因此增大电动机侧的再生制动效率。考虑到该事实,本发明这方面的设备选择传动速度,从而使再生制动的效率最大。因此,在燃料经济性和排放方面能实现改进。
选择的传动速度可以按照在电动机的再生操作期间发动机的工作是否停止而改变。这个方面供其中发动机工作能由离合器等停止的构造之用。当发动机正在旋转时,在发动机侧的旋转阻力减小,并且如上述那样在电动机侧的再生制动效率随传动比减小而增大。当发动机不旋转时,在发动机侧的旋转阻力不需要考虑,从而选择使电动机侧效率增大的传动速度。因而,通过按照发动机是否旋转选择不同的传动速度,在燃料经济性和排放方面能实现进一步改进。
本发明的诸方面不限于用于上述混合型车辆的控制设备。本发明的另外一个方面例如在于,一种混合型车辆或一种混合型系统、及一种用于混合型车辆和混合型系统的方法。
参照附图由最佳实施例的如下描述将明白本发明的上述和/或另外的目的、特征及优点,在附图中类似的标号用来代表类似的元件,并且其中

图1是方块图,表明按照本发明一个实施例的混合型车辆的整个构造;图2是流程图,表明由图1中所示混合型ECU执行的控制过程;图3是流程图,表明由图1中所示混合型ECU执行的控制过程的第二实施例;图4指示按照本发明另一个实施例的混合型车辆的控制过程;图5指示图4中表明的控制过程的修改;图6是混合型车辆的视图,用来当用于车辆的需要的驱动功率为负时执行的控制过程;及图7是混合型车辆的视图,用来当关于车辆的需要的驱动功率为负时执行的控制过程的又一个例子。
下文参照附图将描述实施本发明的最佳实施例。
图1是装有一个变速箱的直接联接混合型车辆的构造的方块图。混合型车辆1带有一个发动机3和一个电动机-发电机5作为驱动动力源。发动机3和电动机-发电机5互连。电动机-发电机5连接到一个自动变速箱7上。自动变速箱7连接到驱动轮(未表示)上。电动机-发电机5在起电动机的作用时,从一个电池9接收电功率以产生驱动功率。当起发电机的作用时,电动机-发电机5由来自发动机的输出旋转以产生电功率,并且把产生的功率发送到电池9。
在本发明的范围内,电动机-发电机5不限于图1中所示的布置。例如,电动机-发电机5可以提供在自动变速箱7的驱动轮侧。而且,电动机-发电机5可以连接到发动机输出轴等上,或者经离合器连接到变速箱的输入/输出轴等上。
更进一步,一般所称的MMT(多模式手动变速箱)可以代替自动变速箱7布置。不象常规手动变速箱,MMT不采用离合器踏板,而是带有一个用来对驾驶人员自动进行离合器操作的执行器。根据模式设置,MMT通过控制设备的使用自动确定传动速度,如借助于自动变速箱的情况那样。因而,本发明不仅适用于自动变速箱,而且也以类似方式适用于任何其他变速箱,只要变速箱能够从多个传动速度选择一个传动速度。
发动机3、电动机-发电机5及自动变速箱7由混合型ECU 11控制。混合型ECU 11可以由单个计算机或多个计算机形成。例如,一个发动机控制部分13、一个电动机-发电机控制部分15、及一个自动变速箱控制部分17可以由三个分离的ECU形成。
混合型ECU 11接收来自一个车辆加速传感器21由驾驶人员进行的加速操作的量、来自一个车辆速度传感器23的车辆速度的输入、来自一个发动机转速传感器27的发动机转速的输入、及来自一个电池传感器25的指示电池状态的检测信号的输入。使用这样的输入信息,混合型ECU 11根据车辆的行驶状态、由驾驶人员进行的操作、及电池的充电状态,适当地操作发动机3、电动机-发电机5及自动变速箱7。
让我们在这里假定图1中所示的系统不装有电动机-发电机。在这种情况下,控制可以按在不是混合型车辆的装有常规自动变速箱的车辆中那样进行。就是说,预先存储按照车辆速度和加速操作量设置的速度变化图。按照速度变化图,确定传动速度,并且控制变速箱。
在该实施例中,添加一个电动机-发电机作为转矩助力装置。因此,如果通过常规速度变化图控制自动变速箱,则不能进行混合型车辆的高效率操作。例如,让我们假定驾驶人员突然压下加速踏板,从而需要车辆驱动功率的大幅度增大。在这种情况下,可以想象在图1中所示的构造中增大电动机输出或进行齿轮的减速。在本发明中,对应于需要的车辆驱动功率通过调节和控制发动机3、电动机-发电机5及自动变速箱7进行驱动功率控制。在该实施例中,下面描述的驱动功率控制由混合型ECU 11进行。
参照图2,混合型ECU 11在S10读出车辆速度和加速操作量,并且然后在S12和S14选择至少允许发动机转速的预定值的最小传动比的传动速度(用于高速)。该预定值(发动机转速下限)设置到在一个范围内的低值,其中发动机转矩波动不会不利地影响车辆行为、振动等。例如,把预定值设置到约1200rpm。更具体地说,在S12确定发动机转速是否至少是预定值。如果在S12是否,则在S14把传动速度向低速(在传动比增大的方向上)变换到下个传动速度。过程然后返回S12。如果在S12为是,则过程前进到S16。在S12和S14设置的传动速度称作“暂时设置传动速度”。
在S16,确定单由发动机输出是否达到需要的驱动功率。根据加速操作量和车辆速度确定需要的驱动功率。在该流程图中,在S10读出的车辆速度和在S12和S14设置的暂时设置传动速度用来确定当采用暂时设置传动速度时出现的发动机转速。然后,确定与发动机转速对应的最大发动机转矩Temax。通过转换成作用在驱动轴上的转矩得到值Temax。
在该实施例中,把最大发动机转矩Temax设置到一个使发动机能量效率最大的值。就是说,如果在保持一定发动机转速的同时增大发动机转矩,则能量效率逐渐增大到最大值。如果发动机转矩进一步增大,则能量效率减小。值Temax设置到该最大值点。
在S16,把需要的驱动功率与值Temax相比较。如果值Temax大于或等于需要的驱动功率,则单由发动机输出能达到需要的驱动功率。就是说,如果在S16的确定是否定的,则过程前进到其中确定传动速度的S22。采用在S12和S14选择的传动速度而不用改变它。然后,混合型ECU 11使发动机3产生需要的驱动功率。
如果单由发动机输出不能达到需要的驱动功率,则在S16的确定是肯定的。以后在S18,确定由发动机输出和电动机输出是否能达到需要的驱动功率。在该步骤,确定在暂时设置传动速度时出现的发动机转速,并且确定最大电动机转矩Tmmax。值Tmmax也是一个通过转换成作用在驱动轴上的转矩得到的值。
在S18,把需要的驱动功率与Temax+Tmmax相比较。如果值Temax+Tmmax大于或等于需要的驱动功率,则由发动机输出和电动机输出能达到需要的驱动功率。就是说,如果在S18的确定是否定的,则过程前进到其中确定传动速度的S22。采用在S12和S14选择的传动速度而不用改变它。然后,混合型ECU 11使发动机3和电动机-发电机5产生需要的驱动功率。在该步骤,混合型ECU 11使发动机3产生最大转矩Temax,并且使电动机-发电机5产生由发动机3的最大转矩不能覆盖的驱动功率,就是说,等于来自需要的驱动功率的短缺的驱动功率。
如果即使由发动机输出和电动机输出也不能达到需要的驱动功率,则在S18的确定是肯定的。过程以后前进到S20,其中把传动速度向低速齿轮侧(向传动比增大侧)变化到下个传动速度。就是说,在S20,把在S12和S14设置的暂时设置传动速度改变一级传动速度。以后,过程前进到步骤S16以重复类似的处理。
如能从以上描述理解的那样,按发动机输出、电动机输出、传动速度的顺序确定在驱动功率调节控制中的优先权顺序。通过按照优先权顺序的调节达到需要的驱动功率。更具体地说,暂时设置最小可能传动比的传动速度。如果需要的驱动功率能由发动机输出借助于暂时设置传动速度提供,则使用发动机输出。如果需要的驱动功率较高,则进行通过电动机的转矩助力。如果需要有的驱动功率还要高,则变速箱变换到低速齿轮。
通过这种控制,把传动速度设置到较低速度,并且把发动机转矩设置到较高值。因此,发动机能以高效率在低速和高负载状态下工作,由此改进燃料经济性。
而且,直到电动机转矩达到最大值,通过由电动机的转矩助力达到需要的驱动功率而不用传动速度的减速。因此,避免频繁的减速,从而能改进可驾驶性。更进一步,如果减速的次数较少,则能减小由减速造成的发动机转速的急剧变化对排放(在AF可控制性中的问题)的影响,从而在排放方面能实现改进。
其次,将描述在该实施例中由混合型ECU 11执行的最佳控制过程。在该过程中,混合型ECU 11根据影响电动机控制的因素、和特别是对由电动机-发电机5提供的转矩助力的量有影响的因素,改变变速箱速度。
对转矩助力的量有影响的因素包括例如SOC(电池的充电状态)、电池温度、变换器温度等。要注意,根据这些参数的值,从电动机侧能供给的转矩增大或减小。考虑到转矩的这种变化,在该实施例中设置变速箱的传动速度。
图3表明按照该实施例的一个控制过程,其中SOC用作影响转矩助力的量的因素。在图3中表明的过程包括图2中表明的控制过程,并且还有S18后的S19。在S19,确定电池的SOC。SOC例如用在该控制过程进行时存储的电量与满存储状态存储的电量的比值表示。通过使用电池电压和电流、及最好还通过使用所需要的电池温度,确定SOC。也可能把由分离电池ECU等确定的SOC输入到混合型ECU。
在S19,把该控制过程进行时的SOC与一个预置值相比较。如果SOC最大是预置值(即如果SOC等于或小于预置值),则过程前进到S20,其中把传动速度向低速侧变化到下个速度。如果在S19确定SOC大于预置值,则过程前进到其中确定传动速度的S22。
因而,该实施例根据对电动机-发电机5的转矩助力的量或转矩助力能力有影响的因素设置传动速度。因此,变得在可能保证稳定助力转矩供给能力和防止由不足转矩引起的车辆动态特性降低。而且,变得有可能防止电池等的退化。
其次将描述本发明的另一个实施例。在该实施例中,混合型车辆和其控制设备的构造可以基本上与第一实施例中的那些相同。在第二实施例中,改进由混合型ECU 11执行的控制过程,从而能进一步改进效率和燃料经济性。
在该实施例中,混合型ECU 11在这样一个范围内选择最小传动比的传动速度(较高速传动速度),从而需要的驱动功率能由发动机输出和电动机输出达到,同时保持当前车辆速度。然后,就选择的传动速度而论,发动机在预定高效率工作状态下工作。在发动机输出与需要的驱动功率之间的差根据电动机的电功率消耗运动(驱动)由驱动功率助力补偿,或者在功率(来自发动机的)过剩的情况下,由电动机的再生操作再生为电功率。
图4是指示在该实施例中的控制过程的具体例子的图,其中水平轴指示轴转动速度Np,而竖直轴指示轴转矩Tp。在该图中,指示由低速齿轮可达到的需要的驱动功率区域AL和由高速齿轮可达到的需要的驱动功率区域AH。
在区域AL中,中线L指示当发动机对于设置的低速齿轮在最大效率下工作时产生的发动机转矩(转换成轴转矩;同样适用于如下描述)。一根区域上限线LU定位成高于线L一个电动机驱动转矩的最大值。一根区域下限线LB定位成低于线L一个电动机再生转矩的最大值。在该实施例中,把区域AL定义为这样一个范围,从而需要的驱动功率能借助于低速齿轮达到。在高速齿轮可达到需要的驱动功率区域AH中,中线H指示当发动机对于设置的高速齿轮在最大效率下工作时产生的发动机转矩。一根区域上限线HU定位成高于线H一个电动机驱动转矩的最大值。一根区域下限线HB定位成低于线H一个电动机再生转矩的最大值。这里应该注意,高速齿轮的区域AH和低速齿轮的区域AL具有与其不同传动比相对应的不同形状和位置。
在图4中指示的例子中,混合型ECU 11按如下控制变速箱、发动机、及电动机。就是说,混合型ECU 11在这样的范围内选择最小传动比的传动速度,从而在当前车辆速度下通过发动机输出(最大效率工作)和电动机输出能达到需要的驱动功率。
例如,让我们假定需要的驱动功率和轴转动速度(车辆速度)的结合在图4中的点Pa处。在这种情况下,点Pa仅包含在高速齿轮可达到的需要的驱动功率范围AH中。因此,选择高速齿轮。
而且,让我们假定需要的驱动功率和轴转动速度的结合在图4中的点Pc处。在这种情况下,点Pc既属于区域AL又属于区域AH,从而能选择任一个齿轮。混合型ECU 11选择较小传动比的传动速度,即高速齿轮。
上述传动速度选择过程能通过使用表达式(1)表示Temax(i,v)-Tm再生max(i,v)≤需要的驱动功率≤Temax(i,v)+Tm驱动max(i,v)(1)Temax(i,v)是在传动速度i和车辆速度v下在发动机的最大效率工作状态期间产生的转矩(转换成轴转矩;同样适用于下文)。Tm再生max(i,v)和Tm驱动max(i,v)是在传动速度i和车辆速度v下再生转矩的最大值和驱动转矩的最大值(然而,如果电动机提供在变速箱的车轮侧,则电动机转矩不受传动比的影响)。在该实施例中,选择满足表达式(1)的最小传动比的传动速度i。
齿轮选择过程的流程基本上与图2中表明的流程相同。就是说,根据车辆速度,暂时设置提供高于或等于预定下限转速的发动机转速的最小传动比的传动速度。如果在暂时设置的传动速度下满足表达式(1),则立即采用该传动速度。如果不满足该表达式,则把传动速度向低速度侧变化到下个传动速度。该过程连续,直到满足表达式(1)。结果,选择允许需要的驱动功率的最高速传动速度。
尽管在图4中指示的例子中,传动速度的数量是两个,但类似齿轮选择过程适用于具有多于两个传动速度的变速箱。
其次将描述在选择传动速度下的发动机控制和电动机控制。在该实施例中,发动机在高效率工作状态下工作,并且如上述那样在发动机输出与需要的驱动功率之间的差由电动机的驱动操作或电动机的再生操作补偿。
对于特定描述,让我们假定需要的驱动功率和轴转动速度的结合在图4的例子中的点Pa处。在这种情况下,发动机在线H上的点Pb处工作。如上述那样,线H指示对于高速齿轮在发动机的最大效率工作状态期间的转矩输出。由于发动机输出大于需要的驱动功率,所以其之间的差由电动机的再生操作吸收。通过再生得到的电功率存储到电池中。
而且,让我们假定需要的驱动功率和轴转动速度的结合在图4中的点Pc处。在这种情况下,发动机在线H上的点Pd处工作。由于发动机输出小于需要的驱动功率,所以需要的驱动功率的短缺由电动机的驱动操作补偿。在这种情况下,从电池抽取电功率。
由以上描述显然,该实施例选择发动机工作区域和传动速度,以便借助于电动机-发电机的再生操作和电动机-发电机的驱动操作使发动机效率最大。因此,该实施例能够在高效率和改进的燃料经济性下操作发动机。
将描述以上实施例的改进。在以上实施例中,选择发动机操作区域和传动速度,从而发动机在最大效率下工作。在这种改进中,选择发动机操作区域和传动速度,从而使发动机效率与传送设备的传送率的乘积最大。
在图4中指示的例子中,线H规定在发动机的最大效率操作状态期间的输出转矩。代替线H,在这种改进中使用其中使“发动机效率×传送设备的传送率”最大的线。按照传动速度和轴转动速度确定传送设备的传送率。
该实施例能够实现不仅发动机的而且传送系统的最大效率操作,并因此允许燃料经济性的进一步改进。
将描述实施例的另一种改进。在该改进中,这样选择发动机操作区域和传动速度,从而优化排放特性。就是说,考虑到排放依据发动机工作区域而变,选择工作区域,从而使排放特性变得良好。
在图5中指示的特定例子中,假定混合型车辆的发动机是柴油机。如图5中所指示的那样,有一个其中在从发动机排气系统抽取一部分废气且把这部分废气返回吸气系统时排放特性较差的区域。因此,在选择发动机工作区域和传动速度时避免该区域。
例如,让我们假定轴转动速度和需要的驱动功率的结合在图5中的点Pe处。如果发动机在最大效率点(线H上的Pf)处工作,则工作点进入排放变坏区域。为了避免这种情况,把在图中指示的点Pg选择为工作区域。在这种情况下,发动机输出不足用于需要的驱动功率,从而短缺的量由电动机输出(驱动)补偿。
如从以上描述明白的那样,该实施例设置变速箱的传动速度和发动机的工作区域从而避免排放变坏区域,就是说,从而发动机在良好的排放区域中工作。因此,能改进排放特性。
尽管以上已经描述了在其中需要的驱动功率主要是正的情况下进行的控制,而下面将描述在其中需要的驱动功率是负的情况下的最佳控制。
当需要的驱动功率为负时,再生制动基本上由电动机-发电机进行,并且得到的电功率存储到电池中。本发明供装有变速箱的混合型车辆之用。当需要的驱动功率为负时,本发明设置在变速箱侧的传动速度,从而使电动机侧的再生制动的效率最大。
例如,将考虑具有图6中所表明的构造的混合型车辆。一个变速箱连接到发动机上。一个电动机-发电机连接在变速箱与车轮之间。电动机-发电机直接连接到变速箱的输出轴上。
在这种情况下,在再生制动期间发动机随电动机旋转(即由电动机旋转)。发动机的摩擦力(旋转阻力)成为减小再生制动效率的因素。因此,混合型车辆的这种控制设备对于再生制动选择最小传动比的传动速度(最高速传动速度),并且使变速箱进行至该选择传动速度的换档。
通过这种控制,减小传动比,从而使在电动机-发电机上由发动机经变速箱引起的摩擦损失最小,并因此再生制动的效率增大。
因而,当需要的驱动功率为负时,该实施例选择在变速箱中使再生效率最大的传动速度,从而能改进燃料经济性和排放特性。
其次,将描述在需要的驱动功率为负时进行的传送控制的第二个例子。这里假定混合型车辆设计成能够停止发动机转动。该实施例选择使再生效率最大的传动速度。设置的最佳传动速度依据是否停止发动机工作而变化。
该实施例适用于例如图7中所表明的用于混合型车辆的控制设备。一个电动机-发电机布置在一个发动机与一个变速箱之间。一个离合器插入在电动机的转动轴与发动机的转动轴之间。
当需要的驱动功率为负时,该控制设备确定发动机是否正在旋转或停止。如果连接离合器,则发动机工作在燃料切断状态下。相反,如果脱开离合器,则停止发动机。
当发动机正在工作时,控制设备选择最小传动比的传动速度。因此,传送的发动机旋转阻力的量减小,并且再生制动的效率增大。相反,当发动机停止时,选择使电动机-发电机的效率最大的传动速度。如果发动机停止,则没有由发动机旋转阻力引起的影响。因此,上述传动速度选择使再生制动的效率最大。如上述那样控制设备控制至选择的传动速度的换档。而且,控制设备使电动机-发电机进行再生制动。
因而,该实施例依据是否操作或停止发动机设置不同的传动速度,从而在两种模式中都能增大再生制动的效率。因此,能改进燃料经济性和排放特性。
由以上实施例显见,本发明使得有可能选择一种适当的传动速度,在该传动速度下在装有变速箱的混合型车辆中发动机和电动机能高效率地工作。因此,在效率、排放、车辆动态特性等方面能实现改进。
在表明的实施例中,控制装置(混合型ECU 11)按编程通用计算机实施。熟悉本专业的技术人员将认识到,使用单独专用目的的集成电路(例如ASIC)能实施该控制装置,这种集成电路带有用于整体、系统级控制、及分离部分的主要或中央处理器部分,诸分离部分专用于实现各种不同的特定计算、功能及在中央处理器部分控制下的其他过程。控制装置也能是多个分离的专用或可编程集成的或其他的电子电路或装置(例如诸如分立元件电路之类的硬线连接的电子或逻辑电路;或诸如PLD、PLA、PAL等之类的可编程逻辑装置)。使用适当编程的通用计算机,例如微处理器、微控制器或其他处理器装置(CPU或MPU),或者单独地或者联系一个或多个外围(例如集成电路)数据和信号处理装置能实施该控制装置。总之,其上一个有限自动机能够实施这里描述的过程的任何装置或装置的组件能用作控制装置。为了最大的数据/信号处理能力和速度能使用一种分布式处理结构。
尽管已经参照其最佳实施例描述了本发明,但要理解,本发明不限于最佳实施例或构造。相反,本发明打算覆盖各种改进和等效布置。另外,尽管最佳实施例的各种元件以是示范性的各种组合和配置表示,但包括较多、较少或只有单个元件的其他组合和配置也在本发明的精神和范围内。
权利要求
1.一种控制设备,带有一个发动机(3)和一个电动机(5)作为驱动动力源,并且带有一个布置在发动机(3)与一个车辆驱动轮之间带有一个通过从多种传动速度的选择改变驱动功率传送的变速箱(7),该控制设备的特征在于包括检测装置(21、23),用来检测车辆所需要的驱动功率;和控制装置(11),用来设置变速箱的传动速度,从而当需要的驱动功率为负时使由电动机进行的再生制动的效率最大。
2.根据权利要求1所述的控制设备,其特征在于,当需要的驱动功率为负时,控制装置(11)设置在变速箱中最小传动比的传动速度。
3.根据权利要求2所述的控制设备,其特征在于,选择的传动速度按照在电动机再生操作期间发动机的操作是否处于停止而改变。
4.根据权利要求3所述的控制设备,其中在发动机操作期间控制装置选择最小传动比的传动速度。
5.根据权利要求3所述的控制设备,其中控制装置选择传动速度,从而在发动机工作停止期间使电动机的驱动效率最大。
全文摘要
按发动机输出增大、电动机输出增大、及在传动比增大方向上的传动速度变化的顺序,设置相对于需要的车辆驱动功率调节驱动功率的控制时的顺序。即选择最小传动比的传动速度,从而高于或等于预定下限转速的发动机转速是可得到的。对于选择的传动速度单由发动机输出达到需要的驱动功率。当单由发动机输出不能达到时,通过发动机输出和电动机输出、或者在传动比增大方向上改变传动速度。
文档编号F16H63/50GK1636787SQ200410081929
公开日2005年7月13日 申请日期2000年11月17日 优先权日1999年11月19日
发明者高冈俊文, 铃木直人, 铃木孝, 冈田大文 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1