一种微型机器人及其体外导向系统的制作方法

文档序号:5818164阅读:224来源:国知局
专利名称:一种微型机器人及其体外导向系统的制作方法
技术领域
本发明涉及仿生微型机器人技术领域,特别涉及微型机器人及其体外导向系统。
背景技术
随着机器人技术和微电子机械系统的发展,微型机器人成为国内外研究的热点,特别是进入人体的无线内窥镜、血管机器人以及面向工业设备细小管路探测用的微型机器人,其发展和应用尤其受到重视。由于工作环境的特殊,这类微型机器人不可能是普通机器人的简单微小化,特别是在驱动方式上会与普通机器人有很大的不同。目前,微型机器人的驱动方式大致可以分为两类一类是利用机器人本体执行机构进行驱动;另一类是借助外场进行驱动,主要是利用一些功能材料对外加物理场的响应特性制成微执行器,通过外场激励实现无线驱动。
对于本体执行机构驱动方式来说,大多采用仿生驱动方式,如D.Reynaerts等模仿尺蠖制成了消化道检查机器人模型、S.Hirose设计出仿蛇机器人、浙江大学周银生等提出了仿蜗牛和仿蝌蚪机器人、中国科学院合肥智能机械研究所梅涛等提出了仿壁虎爬行机器人以及上海交通大学颜国正等研制了微型六足仿生机器人等。由于工作环境对机器人的体积有严格的要求,因此,目前这些仿生微型机器人的可控自由度较少,一般来说没有专门的姿态控制,而是靠管路或接触面的自然约束来实现,因此对接触面会有一定的损伤,这对于医疗机器人来说是不利的,在一些曲率较大的地方甚至可能造成堵塞。外场驱动方式的研究也比较活跃,如T.Yasuda等研制了由超声场驱动的微型蚂蚁、T.Fukuda等用巨磁致伸缩材料制成了由交变磁场驱动的管路微型机器人、K.Ishyama等用缠绕有螺旋金属线的永磁材料制成了由旋转磁场驱动的微型机器人、中国科学院合肥智能机械研究所梅涛等研究了外磁场驱动的胶囊内窥镜机器人以及中国科学院电工研究所王秋良等研制了均匀梯度磁场驱动永磁磁块的磁导航外科手术模型系统等。这些机器人本体不需要电动机,也不需要内部提供能量,因此尺寸可以做得很小,有的已经做到直径小于1.5mm,但是缺少姿态控制,以及灵活性欠佳。在很多应用场合下,将两种驱动方式结合起来可能是一种更好的方案,自然界中趋磁细菌的运动形式就是采用类似的方式。
趋磁细菌是一类具有趋磁性行为的细菌,体内含有排列成链状的单磁畴颗粒(即磁小体),端部生有由鞭毛马达驱动的螺旋状鞭毛。在自然环境中,地磁场作用于磁小体链产生磁转矩,迫使趋磁细菌沿地磁场取向。细菌体内的趋化传感器是负责感应环境变化的受体复合体蛋白--甲基趋化蛋白,可以启动鞭毛马达使鞭毛逆时针旋转,驱动菌体沿地磁场方向直线泳动,由此探寻适合其生长的微好氧环境。这样,趋磁细菌利用地磁场将三维空间的探寻任务简化为一维空间的探寻任务,已有研究表明,这种方式大大提高其探寻速度以及探寻效率。
美国专利5337732、5662587、5906591“仿蛇或尺蠖内窥镜机器人”,中国专利01126965.0“六足仿生微型机器人”,均采用基于本体执行机构的驱动方式。上述美国专利“仿蛇或尺蠖内窥镜机器人”,本体执行机构为机器人体内多段相互连接的关节,包括牵引关节和激励关节,通过对每个关节的动作进行有序控制,使机器人做类似于蛇或尺蠖的移动。上述中国专利“六足仿生微型机器人”主要包括机架、微电动机、蜗轮蜗杆装置、皮带传动装置、四杆机构,以及前足、中足和后足,其连接方式为机架内部设有微电动机、蜗轮蜗杆装置、皮带传动装置,机架外部设有四杆机构与前足、中足和后足各两条,微电动机与蜗轮蜗杆装置连接,通过皮带又与皮带传动装置连接,皮带传动装置的轴分别与四杆机构连接,并将动力分别传给四杆机构,四杆机构分别与前足、中足和后足连接,并带动六足步行。本发明中,机器人体内含有微型电池、射频接收器、微电动机、尾部旋转机构与尾部,由计算机通过射频发射器控制微电动机的动作,带动尾部旋转机构工作,使机器人向前或向后移动。
另一类专利涉及外场驱动微型机器人技术,例如中国专利200510040887.8“体内探测外磁场驱动装置及方法”与中国专利200410009485.7、200410009528.1。上述专利所涉及的外磁场驱动技术均是利用组合线圈系统构造空间中较为均匀的梯度磁场(由常导或超导线圈产生),通过调整加载电流的大小以及部分线圈相对于人体的运动共同控制梯度的大小与方向,该梯度磁场作用于磁性微型机器人的内置磁性体以获得期望的空间矢量力,进而实现期望的运动。本发明中,外部导向线圈产生均匀导向磁场,迫使磁性微型机器人的内置磁体沿导向磁场方向偏转,从整个移动过程来看,微型机器人趋于沿管路延伸的切线方向移动,驱动微型机器人移动的能量由微型机器人内部的微电动机等装置提供。
当前,医疗机器人技术日益得到重视,由于体内环境的特点,传统机器人很难发挥作用,因此各种仿生微型机器人应运而生,但目前仿生微型机器人在体积的微型化和运动的灵活性等方面还存在不足。

发明内容
本发明的目的是克服现有微型机器人驱动技术中存在的姿态控制与移动灵活性欠佳等缺点,借鉴趋磁细菌的运动方式,提出一种主动螺旋推进结合外磁场姿态控制的仿生微型机器人及其体外导向系统。在一定程度上,本发明解决了机器人体积微型化与运动灵活性之间的矛盾,可在体内诊疗和非磁性细小管路的探测中发挥重要作用。
1、本发明微型机器人功能及结构说明如下本发明微型机器人在外部导向磁场及体内微电动机的驱动下,沿导向磁场方向偏转,并沿管路延伸的切线方向向给定目标前进,并能够在计算机控制下通过射频发射接收器调节微电动机,使机器人做正向、反向移动。
微型机器人包括以下组成部分机身、永磁磁块、微电动机、射频接收器、微型电池、尾部旋转机构以及尾部。
微型机器人的机壳制作成胶囊状,两端圆滑,中间无突起和沟槽,表面采用光滑的、具有一定韧性和柔性的医用材料包覆,以减少与管路内壁的摩擦。机身内部镂空,前端内周面上开有一用于固定永磁磁块的螺旋槽,底部开有一个轴向通孔,机身用左右对称的两块材料加工制成,安装时两者合二为一粘贴成一体。微电动机外形为长方体,布置在机身内。机器人尾部旋转机构用于驱动形状类似于趋磁细菌鞭毛的尾部,尾部由柔韧性较好医用材料制成,尾部与从机身通孔内伸出的旋转杆形成固定连接,采用高弹性密封膜将旋转杆与机身密封。射频接收器安装在机身的内周面上,微电动机与射频接收器均由装在机身内的微型电池供电。
所述永磁磁块相当于趋磁细菌体内的磁小体链,具有磁矩,在外部导向磁场的作用下会产生磁转矩,趋向于导向磁场的方向。
当正向接通微电动机的电极时,微电动机驱动尾部旋转机构正向转动,进而带动柔性尾部周期性正向转动。反之,在操作者通过计算机的控制下,反向接通微电动机的电极时,旋转杆将带动尾部反向转动,环境液体对机器人产生向后的轴向推力,使机器人后退。
本发明中,由计算机产生射频发射信号,由机器人体内的射频接收器接收,控制微电动机的转动方向和转速,再结合其他体外控制装置,实现对微型机器人移动的控制。
2、本发明微型机器人体外导向系统包括磁定位子系统、成像子系统、磁导向子系统以及计算机控制子系统,其中计算机控制子系统提供人机交互界面,通过控制磁定位、成像与磁导向子系统实现对微型机器人移动的控制。计算机控制子系统作为中央控制台,通过数据总线和控制总线分别连接磁定位子系统、成像子系统与磁导向子系统,完成对其它子系统工作状态的控制并进行数据交换。各子系统功能及工作原理说明如下2.1磁定位子系统在不考虑外扰磁场的情况下,本子系统的功能是测量出永磁磁块磁场空间分布的变化,并转化为电流信号提供给计算机,计算机通过求逆算法,计算出永磁磁块、即微型机器人的位置,可以实现连续位置测量。同时结合成像子系统分阶段提供的机器人与管路间的相对位置,使操作人员通过计算机实时获得机器人的相对位置。
本子系统主要由8个巨磁电阻(GMR)传感器构成,所述传感器分布于一虚拟的罩于被测管路外面的长方体的8个顶点上。根据磁阻效应,巨磁电阻的电阻率能够随着外磁场的变化而变化,则在给定电压下电阻中流过的电流会发生变化。根据该电流变化,计算机能够利用磁定位求逆算法求出永磁磁块的坐标。
永磁磁块在其周围空间中激发的磁场具有特定的分布规律,因此可通过检测该磁场的变化确定永磁磁块的位置。当永磁磁块的尺寸远远小于检测点和永磁磁块间的距离时,永磁磁块可等效为磁偶极子,其空间磁场分布模型可以用下式表示Bρ(rρ)=μ04π[3(mρ·rρ)rρr5-mρr3]---(1)]]>式中 为检测点的磁感应强度矢量,μ0为真空中的磁导率, 为磁偶极子的磁矩矢量, 为磁偶极子到检测点的矢径。
2.2成像子系统本子系统采用成熟的X射线计算机断层成像技术对探测区域进行三维成像,考虑到管路可能做微小的随机运动,以及获得机器人位置信息的速度与成像速度相差较大,因此,本发明中成像子系统对管路与机器人进行周期性成像,每一幅图像被用于在相应的周期内辅助对机器人移动的导向。根据计算机断层成像原理,X射线源发出的X射线穿过受检体投射至检测器,X射线检测器收到与局部X射线衰减系数有关的投影数据并送入计算机,再由计算机通过图像重建算法重构关于受检体的图像,即管路与机器人的图像,可以得到管路的三维延伸方向与管路尺寸信息。
本子系统包括X射线源、X射线检测器圆周阵列、成像电源、移动床、接口电路以及显示器,其中,X射线检测器圆周阵列位于与移动床轴向垂直的平面内,X射线源在该平面内可做圆周扫描,成像电源用于给X射线源与X射线检测器圆周阵列供电,接口电路用于接收原始图像数据并进行滤波、格式转化等预处理,然后将其输入计算机控制子系统进行图像重建与合成,最后由显示器显示出来。
工作时,将受检体置于移动床上,该床可沿自身轴线方向平移,并能在扫描平面内进行微移动以使待成像部位位于成像区域内。X射线源发出的X射线经准直后成为一条很窄的射线束,X射线源在扫描平面内,以成像部位的几何中心为圆心做断层圆周扫描。本子系统采用光电二极管作为X射线检测器,将若干个光电二极管以圆周阵列的形式布置于扫描平面上,与扫描圆周同圆心,成像过程中该阵列位置不变。
本子系统是在二维平面成像的基础上,通过对多个连续断层分别成像并合成,实现对管路与机器人进行三维成像,即需要先利用反投影重建算法得到二维图像。对某一个断层进行成像时,首先在移动床的驱动下将待成像断层移至成像区域,然后X射线源以恒定角速度作360°圆周扫描。扫描完一周以后,X射线源回到起始位置,等到下一个待扫描断层进入扫描平面后,再对下一个断层进行扫描。对指定部位扫描完毕后,计算机利用图像处理程序对原始图像数据进行处理并重建出每一幅断层图像,最后合成为一幅管路与机器人的三维图像。
2.3磁导向子系统在移动床的配合下,本子系统可在中心区域产生指向所需方向的均匀导向磁场,对永磁磁块实施偏转性导向控制,进而实现对微型机器人的姿态控制。导向磁场的方向由磁导向算法得到,并由接口电路将导向磁场信号传送至磁导向子系统电源。根据磁定位子系统测得的机器人的位置,以及成像子系统提供的管路与机器人间相对位置,操作者可以实时给出微型机器人的移动方向,由导向磁场作用于永磁磁块实现。利用磁导向算法,本子系统能够根据机器人的姿态生成沿所需方向的导向磁场。导向磁场由在三组亥姆霍兹线圈中通以可调直流电流得到,即由空间中方向两两正交的三个磁场叠加而成。这种方法操作简单,能有效地控制机器人的姿态,使其在管路中移动时较易克服空间狭小、转弯等一些障碍。
磁导向算法的流程包括首先,建立统一坐标系,根据成像子系统生成的管路延伸图像建立一条机器人参考移动轨迹,可选取管路的中心延伸轴为参考轨迹;在图像的有效时间内,将机器人的移动轨迹用若干间断点连接而成的折线代替,所述间断点即为由磁定位子系统测得的机器人位置;确定导向磁场的方向时,当机器人的尺度相远远小于管路的长度时,可将机器人看成一质点,假设t=t0时刻机器人位于p0(x0,y0,z0),在磁定位子系统位置分辨率允许的范围内,经过时间Δt,Δt→0,微型机器人移动至p1(x1,y1,z1)点,再在参考移动轨迹上找到一点,该点为p1在参考移动轨迹上的正交投影,计算出在参考移动轨迹上该投影点处切线方向的方向导数,以及由p0点指向p1的方向导数,由程序计算出两个方向导数之差,该差值即为t=t0+Δt时刻所需的方向修正值;最后将该方向修正值转化为导向磁场的控制参数,即线圈中电流的修正值,计算机将此修正值由接口电路传送至磁导向子系统电源装置,最终产生所需的导向磁场。
本子系统是根据磁场力原理设计的,即处于外磁场中的磁体会受到力的作用而发生偏转。在均匀磁场中,永磁磁块受到力偶矩 的作用, 可表示为Tρ=Pρ×Bρ,]]>式中 为磁矩,等于磁块的磁化强度矢量 在磁块体积上的积分,在数值上有P=∫Mdv, 为外部磁场的磁感应强度矢量。当磁块磁场的方向与外磁场正交时,力偶矩 最大。
本子系统由三组互相正交的亥姆霍兹线圈与电源装置组成,可以在中心区域产生均匀磁场,每组线圈又由两对互相平行的圆形线圈构成,两对线圈之间的间距等于线圈半径。通过调节线圈电流,导向磁场的磁感应强度 在数值和方向上均连续可调。电源装置接收计算机求得的导向磁场控制参数,调整每组线圈产生的磁感应强度 i=x,y,z,分别代表空间直角坐标系中的三个分量。对三个磁场分量做矢量叠加后,得到导向磁感应强度Bω(rρ,t)=Bωx(rρ,t)+Bωy(rρ,t)+Bωz(rρ,t).]]>根据毕奥—萨伐尔定律,亥姆霍兹线圈产生的磁场为 (2)式中,I为线圈中电流强度, 为线圈上微线元 所产生的磁场, 为微线元 相对于感兴趣位置的矢径。
2.4计算机控制子系统本子系统是机器人体外导向系统的信号处理与控制中心,由一台计算机与接口电路组成。该子系统通过与磁定位子系统、成像子系统、磁导向子系统以及射频收发器配合工作,控制机器人的移动速度和方向。在主动螺旋驱动结合外磁场姿态控制的混合驱动下,可以实现多种控制策略,并从中找出最优的控制策略,使机器人按照期望的轨迹移动。
本子系统通过接口电路连接磁定位子系统、成像子系统以及磁导向子系统,负责数据处理与通信。接口电路主要包括一片模数转换器AD9874、一片数字信号处理器TMS320f2812、一片可编程逻辑器件EPM7128AETC100-10以及一片数模转换器DAC7625。模数转换器负责对模拟输入数据进行放大、模数转换以及滤波,输出数字信号至数字信号处理器,数模转换器负责将计算机产生的数据信号和控制信号转换为模拟信号,并输出给其他子系统。数字信号处理器负责对原始图像数据进行快速傅立叶变换,可编程逻辑器件对接口电路中的模数转换器等器件实施逻辑控制,包括寄存器参数设置、中断管理等。
本发明工作过程简述如下首先,操作者控制移动床将受检管路移至成像区域,并将机器人放至管路始端。然后,成像子系统对第一段管路进行成像并显示,建立磁定位与磁导向所需的统一坐标系,确定机器人初始坐标。操作者通过计算机使射频发射器发出微电动机启动信号,由机器人体内的射频接收器接收,使机器人进入待机状态。在机器人移动过程中,操作者通过体外导向系统连续调整机器人的移动方向与速度,控制机器人按照管路的延伸方向移动。当机器人需要向后移动时,则借助射频信号控制,使机器人体内的微电动机反转,带动机器人向后移动。最后,当机器人完成所给探寻任务,需控制机器人反向退出管路,与前向移动时类似,操作者通过控制体外部导向系统使其反向移动,退出管路。
本发明采用主动螺旋推进结合导向磁场姿态控制的混合驱动方式,在一定程度上解决了机器人体积微型化与移动灵活性之间的矛盾,以期在人体内部诊疗中发挥重要作用。另外,本发明还可应用于工业设备非磁性细小管路的探测。本发明通过将机器人技术、磁定位与导向技术、断层成像技术、数据处理技术以及自动控制等技术结合起来,实现无创伤诊疗或探测。
另外,在该混合驱动方式中,本发明采用巨磁电阻(GMR)传感器检测微型机器人内永磁磁块磁场的方法,比现有的其它磁定位方法更简单、更精确。


图1为微型机器人内部结构示意图;图中1微型机器人,2管路,3管路内介质,1a机身,1b永磁磁块,1c机壳,1d射频接收器,1e微型电池,1f微电动机,1g蜗杆,1h尾部旋转机构,1i尾部。
图2为本发明体外导向系统组成结构方框图;图中4磁导向子系统,5磁定位子系统,6成像子系统,7计算机控制子系统。
图3为磁导向子系统示意图;图中4a x方向亥姆霍兹线圈,4b y方向亥姆霍兹线圈,4c z方向亥姆霍兹线圈,4d磁导向电源装置,8受检者,9移动床。
图4为磁定位子系统示意图;图中,5a巨磁电阻,5b磁定位电源装置,5c导线。
图5为成像子系统示意图;图中,6a探测器圆周阵列,6b圆周扫描轨道,6c X射线发射器,6d成像电源装置。
图6为磁定位求逆算法流程图;图7为磁导向算法流程图。
具体实施例方式
下面结合附图及具体实施方式
进一步说明本发明。
微型机器人1的内部结构示意如图1所示,其前端光滑,外壁无突起或沟槽,外壳采用光滑的、具有一定韧性和柔性的医用材料包覆,与管路2内壁摩擦较小。永磁磁块1b外周面有螺旋槽,与机身1a内部前端的螺旋槽密闭配合。尾部旋转机构1h与尾部1i通过从机身内伸出的旋转杆形成固定连接。尾部旋转机构1h由蜗杆1g、蜗轮、凸轮、旋转杆、底板、铰链、永磁铁与电磁线圈组成,蜗杆1g安装在微电动机1f主轴上,蜗轮和凸轮共轴布置,蜗轮的转轴安装在底板上,该底板粘贴在机身上,旋转杆安装在铰链上,铰链固定在微电动机的壳体上,旋转杆的一端与尾部固定连接,其另一端搁置在凸轮上,永久磁铁固定在旋转杆上,电磁线圈位于永久磁铁的外侧。尾部1i采用光滑的、柔韧性较好的生物医学材料制成。射频接收器1d安装在机身1a后端内周面上。微电动机1f与射频接收器1d由装在机身1a内的微型电池1e供电,该电池1e安装在机身1a后端内周面上,位置与射频接收器1d对称。
微型机器人1的轴向移动速率由射频发射器与射频接收器1d控制,射频发射器属于计算机控制子系统7的一部分,集成在接口电路上。射频接收器1d控制微电动机1f的工作状态,包括其转速与电源接通极性,微电动机1f通过蜗杆1g与尾部旋转机构1h相连接,带动微型机器人1在管路内介质3中前向或后向移动。
永磁磁块1b采用高性能稀土永磁材料制成,如铷铁硼永磁材料等。磁定位子系统5通过感知永磁磁块1b所激发的磁场,对微型机器人1在管路2中的位置进行实时测量。磁导向子系统4能够在永磁磁块1b所在区域激发出沿所需方向的导向磁场,永磁磁块1b受导向磁场的作用被迫沿导向磁场取向,以使微型机器人1沿期望路径移动。
如图2所示,本发明体外导向系统由磁导向子系统4、磁定位子系统5、成像子系统6以及计算机控制子系统7组成。
计算机控制子系统7由一台计算机与接口电路组成,用于计算、协调及控制微型机器人1、磁导向子系统4、磁定位子系统5以及成像子系统6的工作,其作为各种数据与信号的接收、处理及发送中心,同时为操作者提供人机交互界面。除计算机控制子系统7外,磁导向子系统4、磁定位子系统5以及成像子系统6与微型机器人1之间也存在逻辑关系。
图2所示的逻辑关系包括成像子系统6对待成像区域进行若干断层图像扫描,所得原始图像数据被送入计算机控制子系统7进行图像重建并显示;磁定位子系统5对微型机器人1内部永磁磁块1b通过磁场进行定位,所得含有位置信息的信号被送入计算机控制子系统7由磁定位求逆算法进行位置重建;计算机控制子系统7产生导向磁场控制信号并传递至磁导向子系统4,对微型机器人1进行导向控制;计算机控制子系统7发送射频控制信号至微型机器人1。
如图3所示的磁导向子系统4中,包括三组亥姆霍兹线圈4a、4b和4c,设计线圈几何参数时,考虑到将受检者8由移动床9送入磁导向子系统4时不使其产生压迫感,三组亥姆霍兹圆形线圈4a、4b和4c直径相等,每组线圈两两正交,并由两个镜像对称的线圈组成,间距0.6米。磁导向电源装置4d在计算机控制子系统7的控制下,用于向线圈4a、4b和4c供应可调直流电流。
如图4所示的磁定位子系统5中,采用8个巨磁电阻5a,分布于一虚拟的罩于被测管路2外面的长方体的8个顶点上,以测量微型机器人1内永磁磁块1b磁场的空间分布。根据测得的结果,通过求逆算法获得微型机器人1的位置。磁定位子系统电源装置5b负责向巨磁电阻5a提供恒定直流电压,导线5c用于将巨磁电阻5a与电源装置5b连成一个串并联回路,即将巨磁电阻5a分成两组,每组中采用串联方式,组间采用并联方式。
如图5所示的成像子系统6,X射线发射器6c对管路2的一系列断层进行若干次圆周扫描。每一次扫描中,X射线发射器6c在圆周扫描轨道6b上的每一次步进,对应于探测器圆周阵列6a中的一个探测器,并得到一个原始图像数据。探测器圆周阵列6a包含若干个探测器,当X射线发射器6c做完一次圆周扫描,相应断层的扫描数据被送入计算机控制子系统7进行图像重建,获得一幅断层图像,对一段管路的成像是通过对若干幅断层图像进行合成而得到的。成像电源装置6d负责给X射线发射器6c与探测器圆周阵列6a供电。
移动床9为非磁性床,根据断层成像子系统5以及磁导向子系统2的需要,并考虑到微型机器人1在管路2中的移动特点,其运动形式为以轴向平移为主、兼可在垂直于受检者8轴线方向的平面内微位移,即具备三个自由度,以将感兴趣区域送至有效导向磁场区域或成像区域。
如图6所示的磁定位求逆算法流程图,首先确定统一坐标系,给出各巨磁电阻5a在坐标系中的空间坐标;根据成像子系统6提供的管路2几何形状,选取管路2的几何中心轴作为机器人1参考移动轨迹;对于给定的永磁磁块1b,通过(1)式计算当其位于参考移动轨迹上每一点时各巨磁电阻5a所在位置的磁感应强度值,并预测各巨磁电阻5a的测量值,建立一张位置—磁场对应数据表;然后,在机器人1体外控制系统的配合下使机器人1在管路2中尽可能沿参考移动轨迹移动,并在移动过程中连续记录每个巨磁电阻5a的测量值;最后,由各测量值,结合位置—磁场对应数据表进行曲线拟合,获得对应于每一时刻机器人1的近似位置。
如图7所示的磁导向算法流程图,首先,根据成像子系统6生成的管路2延伸图像建立一条机器人1参考移动轨迹,选取管路2的几何中心轴为参考轨迹。在当前图像的有效时间内,将磁定位子系统5测得的一系列不连续机器人位置坐标连接起来获得一条折线路径。判断导向磁场方向的原理如下当机器人1的尺寸远远小于管路的长度时,可将机器人1看成质点,假设t=t0时刻机器人1位于p0(x0,y0,z0),在不超过磁定位子系统位置分辨率的情况下,经过时间段Δt,Δt→0,机器人1移动至p1(x1,y1,z1)点;在参考移动轨迹上找一点p1′,该点为p1点在参考移动轨迹上的正交投影,然后计算出参考移动轨迹在p1′点切线方向的方向导数,以及由p0点指向p1点的方向导数;计算出上述两方向导数之差,此差值即为所求的导向磁场方向修正值。最后将方向修正值转化为对应于p1点的导向磁场控制参数,并由接口电路传送至磁导向子系统4的电源装置4d,最终使机器人1尽可能沿参考移动轨迹移动。
本发明的具体工作流程为1.首先开启计算机控制子系统7,并打开与微型机器人1、磁导向子系统4、磁定位子系统5以及成像子系统6连接的接口电路。
2.开启成像子系统6,在移动床9的配合下,调整待成像区域与X射线扫描平面间的相对位置,将相应断层,即管路2的始端调整至成像视野。
3.开启磁定位子系统5,给巨磁电阻5a串并联电路加固定电压。将微型机器人1放置于管路2始端,计算机控制子系统7发出射频微电动机控制信号至微型机器人1内部的射频接收器1d,并在射频接收器1d控制下,使微电动机1f进入待机状态。接下来,磁定位子系统5测量微型机器人1的初始位置,并将数据送入计算机控制子系统7进行处理。
利用磁定位算法,由计算机控制子系统7计算出永磁磁块1b的初始位置,即微型机器人1的初始位置。需要注意的是,成像子系统6对管路2与微型机器人1成像的工作是周期性进行的,而微型机器人1与管路2间的相对位置,是通过将磁定位子系统5对微型机器人1实时测得的位置与每一帧图像相结合得到的。
4.结合第三步中得到的管路2与微型机器人1相对位置,操作者根据微型机器人1所要实现的探测目的,决定其期望移动方向。并根据该期望方向,利用磁导向算法,由计算机控制子系统7计算出关于该期望方向的一组磁感应强度, 叠加后得到的总磁感应强度 的方向即为期望的微型机器人1移动方向。
5.开启磁导向子系统4。通过接口电路,计算机控制子系统5将第四步中得到的导向磁场控制参数传送至磁导向子系统4的电源装置4d,该电源装置4d将导向磁场控制参数变换为三组亥姆霍兹线圈4a、4b和4c中电流强度的变化量。根据安培环路定理, 在线圈中通以直流电流会在其周围空间中激发出恒定的磁场。本发明中,利用电源装置4d控制4a、4b、4c三组线圈中直流电流的大小与方向,在磁导向子系统4的中心区域得到所需均匀导向磁场 6.在外部导向磁场 作用下,微型机器人1中的永磁磁块1b将产生磁转矩,迫使永磁磁块1b沿导向磁场方向取向。同时,计算机控制子系统7通过射频收发器启动微电动机1f,由蜗杆1g带动尾部旋转机构1h与尾部1i,使微型机器人1沿指定方向前进。
7.微型机器人1移动过程中移动方向与速度的连续控制。由于管路2的内部尺寸与延伸方向的不确定性,必须随时调整微型机器人1的移动方向与速度,就需要操作者通过微型机器人1体外导向系统时时获得管路2与微型机器人1的相对位置信息,并通过体外导向控制系统使微型机器人1最终移动至指定位置。
8.当微型机器人1完成所给探寻任务,或者因为遇到障碍等原因需要向后移动时,与前向移动时类似,计算机控制子系统7通过射频发射器发射射频驱动信号至微型机器人1,使微电动机1f驱动尾部1i反向转动,即可实现使微型机器人1向后移动。而且,与前进时一样,后退过程也需要在体外导向控制系统的控制下进行。
权利要求
1.一种微型机器人,机身[1a]内部镂空,布置有射频接收器[1d]、微型电池[1e]与微电动机[1f],其特征在于机身[1a]内部前端周面上开有一个用于布置永磁磁块[1b]的螺旋槽,永磁磁块[1b]外周面有螺旋槽,与机身[1a]内部前端环形螺旋槽密闭配合;机身[1a]底部开有一个轴向通孔;尾部旋转机构[1h]与尾部[1i]通过从机身[1a]通孔内伸出的旋转杆固定连接,旋转杆与机身[1a]采用高弹性密封膜密封;微型机器人[1]前端光滑,外壁表面无突起或沟槽;射频接收器[1d]安装在机身[1a]后端内周面上,微电动机[1f]与射频接收器[1d]由微型电池[1e]供电,该电池[1e]安装在机身[1a]后端内周面上,位置与射频接收器[1d]对称;尾部旋转机构[1h]通过蜗杆[1g]与微电动机[1f]主轴连接,带动微型机器人1向前或向后移动。
2.按照权利要求1所述的微型机器人,其特征在于微型机器人[1]尾部旋转机构[1h]由蜗杆[1g]、蜗轮、凸轮、旋转杆、底板、铰链、永磁铁与电磁线圈组成,蜗杆[1g]安装在微电动机[1f]主轴上,蜗轮和凸轮共轴布置,蜗轮的转轴安装在底板上,该底板粘贴在机身上,旋转杆安装在铰链上,铰链固定在微电动机[1f]的壳体上,旋转杆的一端与尾部[1i]固定连接,其另一端与凸轮连接,永磁铁固定在旋转杆上,电磁线圈位于永磁铁的外侧。
3.按照权利要求1所述的微型机器人,其特征在于微型机器人[1]机壳[1c]及尾部[1i]采用光滑的、具有柔韧性的医用材料制成,尾部[1i]形状类似于趋磁细菌的鞭毛,永磁磁块[1b]采用高性能稀土永磁材料制成。
4.一种如权利要求1所述微型机器人的体外导向系统,其特征在于包括磁导向子系统[4]、磁定位子系统[5]、成像子系统[6]以及计算机控制子系统[7];计算机控制子系统[7]分别与微型机器人[1]、磁导向子系统[4]、磁定位子系统[5]以及成像子系统[6]连接;成像子系统[6]对待探测区域进行连续断层平面扫描,所得原始图像数据被送入计算机控制子系统[7]进行图像重建并显示,磁定位子系统[5]对微型机器人[1]内部的永磁磁块[1b]进行磁定位,所得原始位置信息被送入计算机控制子系统[7]进行位置重建,计算机控制子系统[7]产生导向控制信息并传递至磁导向子系统[4],磁导向子系统[4]对微型机器人[1]进行导向控制,计算机控制子系统[7]发送射频控制信号至微型机器人[1]。
5.按照权利要求4所述的微型机器人体外导向系统,其特征在于磁导向子系统[4]中,三组亥姆霍兹线圈[4a、4b和4c]均为轴对称结构,直径相等,两两正交;每组线圈分别由两对互相平行的圆形线圈组成。
6.按照权利要求4所述的微型机器人体外导向系统,其特征在于磁定位子系统[5]中,采用8个巨磁电阻传感器[5a],分两层布置于管路[2]的外部,即在受检者轴线方向上分前后互相平行的两层布置,以时时检测微型机器人[1]内永磁磁块磁场的分布变化,并将检测结果与已知的磁场分布数据进行比拟,通过磁定位求逆算法获得微型机器人[1]的位置信息。7、按照权利要求4或6所述的微型机器人体外导向系统,其特征在于计算机控制子系统[7]由磁定位求逆算法进行位置重建流程如下首先确定统一坐标系,给出各巨磁电阻[5a]在坐标系中的空间坐标;根据成像子系统[6]提供的管路[2]几何形状,选取管路[2]的几何中心轴作为机器人[1]参考移动轨迹;对于给定的永磁磁块[1b],计算当其位于参考移动轨迹上每一点时各巨磁电阻[5a]所在位置的磁感应强度值,并预测各巨磁电阻[5a]的测量值,建立一张位置—磁场对应数据表;然后,在机器人[1]体外控制系统的配合下使机器人[1]在管路[2]中尽可能沿参考移动轨迹移动,并在移动过程中连续记录每个巨磁电阻[5a]的测量值;最后,由各测量值,结合位置—磁场对应数据表进行曲线拟合,获得对应于每一时刻机器人[1]的近似位置。
8.按照权利要求4所述的微型机器人体外导向系统,其特征在于计算机控制子系统[7]通过磁导向算法控制机器人的移动方向的流程如下首先,根据成像子系统[6]生成的管路[2]延伸图像建立一条机器人[1]参考移动轨迹,选取管路[2]的几何中心轴为参考轨迹;在当前图像的有效时间内,将磁定位子系统[5]测得的一系列不连续机器人位置坐标连接起来获得一条折线路径;当机器人1的尺寸远远小于管路的长度时,可将机器人1看成质点,假设t=t0时刻机器人1位于p0(x0,y0,z0),在不超过磁定位子系统位置分辨率的情况下,经过时间段Δt,Δt→0,机器人1移动至p1(x1,y1,z1)点;在参考移动轨迹上找一点p′1,该点为p1点在参考移动轨迹上的正交投影,计算出参考移动轨迹在p′1点切线方向的方向导数,以及由p0点指向p1点的方向导数;再计算出上述两方向导数之差,此差值即为所求的导向磁场方向修正值;最后将方向修正值转化为对应于p1点的导向磁场控制参数,并由接口电路传送至磁导向子系统[4]的电源装置[4d],使机器人[1]尽可能沿参考移动轨迹移动。
全文摘要
一种微型机器人及其体外导向系统,机身[1a]内部布置有永磁磁块[1b]、微电动机[1f]、射频接收器[1d]、微型电池[1e],尾部旋转机构[1h]与尾部[1i]通过从机身[1a]后端通孔内伸出的旋转杆形成固定连接,旋转杆与机身[1a]采用高弹性密封膜密封。微型机器人的体外导向控制系统,由成像子系统[6]对待探测区域进行连续扫描,所得原始图像数据被送入计算机控制子系统[7]进行图像重建,磁定位子系统[5]对微型机器人[1]内部的永磁磁块[1b]进行磁定位,所得原始位置信息被送入计算机控制子系统[5]进行位置重建,计算机控制子系统[5]产生导向控制信息并传递至磁导向子系统[4],磁导向子系统[4]对微型机器人[1]进行导向控制。
文档编号F17D5/00GK1973753SQ20061016549
公开日2007年6月6日 申请日期2006年12月21日 优先权日2006年12月21日
发明者宋涛, 李晓南, 王铮, 王明 申请人:中国科学院电工研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1