在利用燃料后直接气缸喷射的发动机中实现低排放的受控温度燃烧的方法

文档序号:6093340阅读:178来源:国知局
专利名称:在利用燃料后直接气缸喷射的发动机中实现低排放的受控温度燃烧的方法
技术领域
本发明涉及在利用燃料后直接气缸喷射的发动机例如柴油发动机中控制燃烧过程以减少其中产生的有害的排放物的方法。为了容易说明,本申请可能时常只简单地提及柴油发动机,不过,本发明的范围同样适用于利用燃料后直接气缸喷射的其它的发动机。
背景技术
利用燃料后直接气缸喷射的内燃机例如常规的柴油发动机发出大大超过可接受的环境水平的有害的污染物,例如氮的氧化物(NOx)和微粒物质(PM)。然而,因为它们具有高的燃烧效率,对于许多车辆应用柴油发动机优于汽油机。
尽管一致地致力于减少柴油发动机中NOx和PM的排放,但是在研制能够在整个瞬变期间同时保持NOx和PM的发动机外的排放量在环境可接受的程度内的强健的柴油燃烧系统(即,提供一种市场可接受的响应性和功率)方面,现有技术一直未能获得成功。而众所周知的是,柴油发动机的操作条件的瞬时变化,尤其是关于燃料馈给的调节、废气再循环(EGR)和车辆加速时的涡轮增压水平,可引起大量的NOx和PM排放。在瞬变期间的这种排放可致使车辆不满足排放标准,即使在稳态条件下这种车辆可能满足排放标准。
因此本发明的目的在于提供一种改进的方法,其使得包括在操作条件的瞬变期间,利用燃料后直接气缸喷射的发动机能够实现低的排放量、受控的温度燃烧。
在现有技术中已知NOx的形成速率随温度指数地增加。确实,如在共同拥有的申请号为10/241229的未决的美国专利申请中所述,如果局部的发动机燃烧温度可被维持在大约2000度K以下,则产生的NOx最少。不过,对于利用燃料后直接气缸喷射的发动机,在这种操作条件的整个瞬变期间,保持燃烧温度在这个水平以下,而又要在实际的发动机速度和负载下获得好的燃烧的目标对于汽车工业一直是被回避的。
在迄今为止的专利申请中,披露了关于主要通过操纵和控制增压压力和入口进气的氧气浓度以限制燃烧中局部温度的增加,从而控制燃烧温度,以减少NOx的形成所作的改进。然而,出现了一种挑战。对于任何给定的发动机操作条件,为了进行清洁的燃烧,入口进气的氧气浓度水平必须被保持在一个受限的范围内,使得既足以实现充分燃烧(借以避免PM排放的增加),又不足以致使不希望地增加NOx的形成。入口进气的氧气浓度的合适的控制在高的发动机速度和负载转换期间尤其是一个挑战。
在柴油发动机的入口进气中的氧气浓度的有效控制在现有技术中通常是不实际的。这是因为,虽然在现有技术中已知可以增加废气再循环(EGR)流量来降低燃烧温度并减少NOx的形成,但是EGR在减少NOx形成中的作用被广泛地误解为主要在于热容量效果,而不是通过局部可利用的氧气来减少氧气浓度以限制局部的NOx形成速率。例如见Hideyuki Tsunemoto等的“The Role of Oxygen in Intake andExhaust on NO Emission,Smoke and BMEP of a Diesel Engine withEGR System,SAE Technical Paper 800030”,不过,还可以参见Nishida的美国专利4727849,该专利是基于氧气浓度控制的EGR系统的一个例子。因此,在现有技术中极少披露用于控制柴油发动机中的入口进气的氧气浓度的方法。
现有技术披露的控制柴油发动机中入口进气的氧气浓度的方法的一个例子可以在Kimura的专利申请公开No.2002/0011240中找到。例如,Kimura专利申请公开的图12表明使用EGR流量校正来减少氧气浓度到16%或更低的值,以用于低温预混和燃烧。不过,Kimura的公开没有披露在瞬变期间围绕目标范围双向调整氧气浓度水平的方法(即,根据离开目标氧气浓度的正、负改变,交替地进行调整以升高或降低氧气浓度,从而维持氧气浓度接近目标水平)。Kimura的专利申请公开也未披露为了获得瞬变期间改善的排放性能,燃料馈给的流量中的改变等待或跟随EGR和增压调节的顺序。
其它的用于入口进气氧气控制的现有技术的EGR控制机构集中在确定和控制入口进气中的氧气的量(例如质量),而不是氧气的浓度。例如,Romzek的美国专利6508237披露了EGR流量的控制,并使用入口氧气的量计算来指导EGR流量与/或增压水平的调节,以把燃烧中的空气/燃料比校正为所需的水平。然而,Romzek的专利不以任何特定的氧气浓度水平为目标。Romzek的专利也未披露为了等待或跟随EGR和增压调节,燃料馈给的流量的改变被约束的顺序。然而,Romzek的专利披露了在确定所需的进气成分和进行EGR与增压调节以满足目标空气成分之前,根据由驾驶员加速度位置传感器确定的发动机转矩命令来确定燃料的传递。
Moncelle的美国专利5523529同样地披露了使用EGR(或者,当其使能够时,使用膜片隔离的富氮的低氧的进气组合物)作为一种用于减少形成NOx的可利用的氧气的总量(不是浓度)的方法,其声称减慢了燃烧过程,因而降低了峰值燃烧温度和NOx的形成。Moncelle的‘529专利还披露了通过涡轮增压器对进气增压,借以增加可用于燃烧的氧气的量。不过,该专利没有披露用于控制氧气浓度为所需水平的方法。也未披露执行EGR调节、增压调节以及燃料馈给调节的顺序。
Beck的美国专利6273076还披露了一种为了优化燃料/空气比和燃烧温度以降低NOx的形成,对EGR的流量、增压水平以及其它发动机操作条件进行连续地调节的方法。不过,Beck的076专利既没有控制氧气的浓度水平,也没有讨论EGR调节和增压调节之间的任何联系,以便顺序地或相互协作地共同增加或减少,也没有讨论或考虑对EGR流量和进气的质量以及空气/燃料质量比进行调节的关系。而是,Beck的专利的目标仅仅是,对于特定的转矩需求所需的给定的燃料量,调节空气的水平以获得目标空气/燃料比。Beck的专利还提出了(例如其中的图11),在调节空气供应之前,首先调节燃料供应(到特定的工作点所需的量),而不是反之亦然。
因此,需要一种新的智能系统,用于和进气密度控制一道按照顺序用这样的方式对气缸内氧气浓度水平进行精密控制和调节,即,使得在瞬变期间有害的排放物最小化,以便成功地实现低排放的受控温度燃烧的发动机。

发明内容
本发明提供一种有效的方法,用于以这种方式和增压调节一道精密地控制和调节气缸内的氧气浓度水平,即,使得在利用燃料后直接气缸喷射的发动机中于瞬变期间有害的排放物最小化。在本发明的一个方面中,在瞬变期间,以闭环的以及与增压压力的改变一起的链接的方式,通过EGR控制阀调节EGR流量,使得在所有时间有益地把入口进气氧气浓度和增压水平维持在一个临界范围内,以实现受控的温度、低的排放量。
此外,作为本发明的另一个方面,为了使在操作状态下在快速瞬变期间(例如车辆的加速期间)有害的排放最小化,对气缸的燃料馈给的相应的增加被强制以等待或跟随增压调节。用这种方式,在加速期间,增压压力和进气密度的增加使得能够响应驾驶员对更大的转矩需求量而增加燃料馈给。与此相比,现有技术的柴油发动机,具有在增压调节之前(即超前)进行的燃料馈给调节。然而,本发明人已经发现,如果燃料馈给增加超前增压的增加,则更难于避免超过所需的燃料/氧气比的暂时的燃料水平,以及由为了实现好的、完全的燃烧所需的氧气不足而导致的增加的PM水平。而通过对特定的燃烧周期,使燃料馈给调节等待或跟随增压改变而不是响应正被吸入气缸中的增压的进气的瞬时压力来确定并喷射一定的燃料量,这个问题可以很容易地避免。


图1是本发明的燃烧系统的优选实施例的示意图;图2是本发明的优选的方法的流程图;以及图3是本发明的另一种方法的流程图。
具体实施例方式
增压控制对于受控温度燃烧的重要性如有关的专利申请(美国专利申请No.10/214229)中所述,对于要燃烧的给定量的燃料,假定是绝热燃烧,最终燃烧温度T3呈T3=T2+Hc/Cv的形式(其中T2是最终的压缩温度,Hc是由燃料的燃烧释放的热量,Cv是进气燃料混合物的总热容量,即混合物的质量乘以比热)。使NOx形成最小化的目的是降低并控制T3(例如到2000度K)。因为对于燃烧的给定量的燃料,Hc是固定的,唯一的用于控制T3的变量是Cv,如果Cv大,则T3变小。
在上述的条件下,一种用于降低和控制峰值燃烧温度的已知的策略是调节进气燃料混合物的热容量。不过,按照上面的公式,对于要被控制为一个稳定水平的T3,Hc/Cv必须被维持和控制为一个稳定水平。对于给定的燃烧系统,Hc一般和燃烧的燃料量成正比。因此,为了维持和控制Hc/Cv为常数(或者在一个可接受的范围内是稳定的),Cv必须随燃烧的燃料量的增加而成比例地增加。因为Cv具有Cv=cvM的形式(其中cv是进气燃料混合物的比热,M是进气燃料混合物的质量),通过控制M可以使Cv增加或减少。而通过控制进气系统中进气的增压压力借以控制进气的密度,可以使M增加或减少。
因此,利用上述的关系链的性质(并如在此的专利申请中详细说明的),为实现要被控制的燃烧温度所必需的条件是控制进气系统中的进气的增压压力。这个发现提供了在内燃机中通过控制增压压力显著减少NOx形成的可能性。
为获得低排放的受控温度燃烧而控制入口进气氧气浓度的重要性尽管如上所述,只调节增压压力以在利用后直接气缸燃料喷射的发动机中不能成功地在受控温度燃烧下获得足够低的排放。而是如在下面讨论的,为了在这种发动机中实现低排放的受控温度燃烧,入口进气氧气浓度也必须被控制和维持在一个目标范围内,以便分散和抑制燃烧中的局部热量释放和温度升高,这些否则将引起显著的局部NOx形成。
对于在利用燃料后直接气缸燃料喷射的发动机中的低排放的受控温度燃烧,维持入口进气的氧气浓度在一个可接受的范围内是至关重要的。的确,对于任何给定的发动机操作条件,存在一个入口充气氧气浓度的相应的范围,其足以使得能够实现快速的和基本上完全的燃烧,但是又不是太多而导致显著增加NOx形成。例如,如果对于一定数量的燃料氧气浓度过低,则将发生不完全的燃烧和烟雾/PM的不希望的增加。在另一方面,如果对于一定量的燃料氧气浓度过高,则将产生显著的局部NOx形成。这是因为局部可利用的氧气限制了直接决定NOx形成速率的局部温度升高。因而,为了限制局部温度,必须控制局部氧气浓度。
入口进气氧气浓度的合适的“范围”取决于燃烧系统的优化程度和当时发动机的给定操作条件。例如,合适的范围可以从低至大约10%的入口进气氧气浓度水平改变为高至大约18%。不过,在一个优选实施例中,为了基本上消除NOx的形成,入口进气氧气浓度在多数发动机速度和负载条件下被保持在一个低的较窄的范围内,优选地保持入口进气氧气浓度水平在12%到13%或14%的范围内。在低的发动机负载下,可以使用比这较高的入口进气氧气浓度而对排放无不利影响。在所使用的燃烧系统中,不论入口进气氧气浓度的最终所需的范围是多少,在所有正常的操作条件下,维持入口进气氧气浓度在这个所需的范围内对于在这些操作条件下保持低的NOx和PM/烟雾排放水平是必要的。
共同控制入口进气氧气浓度和密度在本发明中,EGR流量和增压压力改变一道被合适地调节到各自的值,这些值实现目标氧气浓度水平和有助于在受控温度下获得好的低排放燃烧的进气增压压力水平,以确保低的NOx和低的PM/烟雾燃烧。然后,响应于正被吸入气缸以供燃烧(考虑进气的温度)的增压的进气的瞬时压力水平喷射燃料。下面参照

用于实施本发明的优选的配置。
参看图1,其中示出了内燃发动机22,最好是利用燃料后直接气缸喷射的发动机,其使用具有相对低的自动点火温度的燃料例如常规的柴油燃料。燃料通过直接气缸燃料喷射器23,23’,23”等供给发动机22。环境空气在端口11进入,其流量可由可选的阀门12控制。废气在端口13与吸入的环境空气混和,借以形成入口进气混合物。废气在端口16从废气管通过废气冷却器17被输送到端口13,冷却器17具有可选的冷凝物返回至废气管线18(由可选的废气流量控制阀14调节)。一次废气再循环(EGR)控制阀12’刚好位于废气管内端口16的下游。借助于限制通过EGR调节控制阀12’的流量,控制通过端口16和13的EGR流量。
EGR调节控制阀的操作优选地通过先进的闭环反馈控制方法进行,从而使得能够进行阀门12’的精密控制,借以和增压的调节协调地控制EGR的流量。通过利用在再循环废气中的氧气浓度比环境空气中低这个事实,使得能够进行在端口13之后的进气混合物的氧气浓度控制,因而通过调节在环境空气和EGR之间的比例,可以在一个范围内有效地控制任何进气混合物的总的氧气浓度水平。例如,限制废气排出阀12’可增加回到发动机的EGR流量。通过这种或者任何其它的EGR控制阀机构,因为EGR中的氧气浓度低于环境空气,EGR返回流量的增加将引起入口进气氧气浓度的减少。最终的入口进气氧气浓度可由可选的直接氧气传感器25’确定,或者利用本领域技术人员熟知的方法由其它的检测参数计算。
在端口13的下游优选地使用低压EGR环,EGR/环境空气(进气)混合物流过,并由压缩机19压缩。或者,如果需要,可以使用高压的EGR环,如本领域所理解的那样。压缩机19可以是单级压缩机例如Variable Geometry Turbocharger(VGT),或者是串联或并联的两个或更多个压缩机,并且主要由废气膨胀器马达27驱动,以对入口歧管21提供受控的增压压力水平。
进气混合物的被压缩的程度(即所需的增压)优选地响应于驾驶员的功率要求被控制。例如,在驾驶员的功率要求改变的情况下,由加速器踏板传感器33把踏板位置的改变传送给控制器26。这种踏板位置的改变对应于由控制器26确定的发动机负载的所需改变。确定的所需发动机负载还对应于在控制器26的存储器内存储的表中包含的所需的增压水平。因此,控制器26可以传送合适的信号以控制增压,例如通过向膨胀器马达27传送信号(例如在使用VGR的情况下为了调节叶片的位置)。也可以使用可选的电气或液压马达28并由控制器26控制,以提供快速的增压水平改变,以便帮助提供快速的转矩响应。在这种实施例中,因此控制器26在瞬变期间以及在只使用膨胀器马达27不能提供足够的增压压力的任何操作条件期间,向马达28发送合适的信号来控制增压水平。
由压缩机19获得的最终即时增压水平可以由增压进气压力传感器31确定,然后响应于操作条件的瞬时改变并与燃料和EGR调节协调地调节对增压水平的调整,这将在后面进行讨论。
在压缩机19的下游,压缩的进气通过冷却器20流入进气歧管21。冷却器20可选地包括旁路管线和旁路控制阀61,利用控制器26调节控制阀61以控制进气温度。进气温度由可选的温度传感器30确定,以输入控制器26。如果需要,冷却器20把进气冷却到优选的进气温度水平。
如果需要,可以和直接燃料喷射器23联合使用可选的端口燃料喷射器53,以便把微粒形成减到最少并快速地调节燃料喷射水平。如上所述,可使用可选的氧气传感器25’直接确定进气中的氧气浓度。或者,入口进气的氧气浓度可以部分地根据废气氧气传感器25的读数被计算,或者利用本领域技术人员熟知的方法由其它的检测参数(没有必要示出)被计算或确定。也可使用可选的进气质量流量传感器29提供更快的和更精确的发动机控制。对于其中使用的每个传感器,设置传感器的位置可根据所需的响应时间和其它因素而改变,这在本领域中是容易理解的。
进气以常规的方式通过常规的阀门(未示出)进入燃烧室,废气通过常规的阀门(未示出)离开燃烧室,并通过废气歧管24离开发动机22。废气微粒捕获氧化剂54除去任何微粒排放,催化剂51氧化剩余的燃料和一氧化碳。通过速度传感器32把发动机速度提供给控制器26。
关于本发明的操作方法,优选的是建立若干映射图并将其存储在控制器26中,用于对于发动机被指定运行时的每个速度和负载规定最佳的增压水平、最佳的(或一个所需的范围)入口进气氧气浓度和所需的燃料流量,以维持局部的燃烧温度在有意义的NOx形成水平以下。协调增压和燃料调节以满足发动机操作条件的瞬间改变,例如驾驶员要求增加功率(例如加速)。
具体地说,对于开环操作,控制器26从踏板传感器33读出转矩指令,从速度传感器32读出实际的发动机速度。对于增加的转矩指令,控制器26命令EGR把阀12’控制到存储的映射图中适合于实现所需的入口进气和废气氧气浓度的位置。控制器26命令压缩机马达27(以及如果需要,压缩机马达28)增加增压压力水平到存储的映射图中的与在测量的发动机速度下的指令转矩相关的新的目标。控制器26从传感器31读出实际的增压水平,并从传感器30读出实际的入口进气温度,并根据存储的映射图控制合适的燃料流量。
或者,对于更精确的发动机控制,可以利用闭环的控制环。可以从传感器25读出废气氧气浓度和/或从传感器25’读出入口进气氧气浓度,通过控制器26比较实际的或计算的(即,确定的)进气氧气浓度与实际工作点所需的水平(来自存储的映射图),并命令EGR控制阀12’执行调节以达到目标氧气浓度。来自传感器31的实际的增压水平可由控制器26与来自存储的映射图的所需的水平进行比较,并合适地调节马达27和28以实现目标增压水平。用类似方式,如果需要,来自传感器30的实际入口进气温度也可由控制器26与来自存储的映射图的所需的温度进行比较,并合适地调节冷却器20旁路控制阀61以实现这一所需的进气温度。也可以根据实际的读数调节燃料流量(燃料流量传感器未示出),以实现目标燃料流量。
不论通过开环或闭环控制系统,在本发明中在进行所述调节时,各步骤的优选顺序是首先调节EGR控制阀(如果需要,确保最终的进气氧气浓度在所需的范围内),然后进行涡轮增压调节,然后与即时确定的增压压力(考虑入口进气温度)相符合地进行燃料馈给调节。不过,如上所述,在这一顺序中,最重要的是,燃料馈给流量的任何的增加等待或跟随增压压力的并发的增加(即被其约束),而不是如现有技术的柴油发动机中那样比增压超前。这是为了避免使暂时的燃料水平超过所需的燃料/氧气比而导致PM水平的增加,如上所述。虽然该系统能够以燃料超前于增压的方式可接受地工作,其中利用燃料增加量最小且超前时间较长,以避免在增压和EGR流量增加的同时在燃料/氧气水平中任何显著的暂时燃料过剩,然而通过使燃料馈给改变等待或跟随增压改变,这个问题可以最容易地得到解决。
图2是表示本发明的优选方法的流程图。因此,参见图2,在步骤1中,首先确定是否发生了转矩需求改变,这由控制器26从踏板传感器33读出转矩指令(并从速度传感器32读出实际的发动机速度)来执行。如果发生了转矩需求改变,则控制器26命令在EGR控制阀12’中进行合适的调节,以分别增加(步骤2)或减少(步骤2’)EGR质量流量,以便朝着目标水平调节入口进气氧气浓度。在步骤3或3’,按照从传感器25’读出的值,或者利用现有技术熟知的其它传感器和计算装置,入口(或进气)氧气浓度被确定。然后,控制器26比较即时确定的入口氧气浓度和从控制器26中存储的映射图提供的实际工作点所需的水平。步骤2和2’与步骤3和3’形成一个环,用于朝着目标水平调节和比较入口氧气浓度,直到入口氧气浓度达到目标氧气浓度水平。
在确认入口氧气浓度已经达到目标氧气浓度之后,进行增压调节。例如,如果在步骤1中确定转矩需求增加,则在步骤4中控制器26命令调节压缩机马达27和(如果需要)压缩机马达28,以朝着从存储的映射图提供给控制器26的、并和在测量的发送机速度下的指令转矩相关的目标来增加增压压力水平。类似地,如果在步骤1中确定转矩需求减少,则在步骤4’控制器26命令调节压缩机马达27和(如果需要)压缩机马达28,以朝着从存储的映射图提供给控制器26的、并和在测量的发送机速度下的指令转矩相关的目标减少增压压力水平。或者,对于快速转矩减少指令,可以比增压和EGR流量的减少更快地进行燃料流量的减少,这是因为将具有过量的充气质量(chargemass),并且NOx的形成甚至将更低。在任何一种情况下,来自传感器31的实际的增压水平在步骤6中被检测,用于由控制器26进行与来自存储的映射图的所需的增压水平比较。
在完成上述的增压调节之后,在步骤7,控制器26确定一个合适的燃料需求以和确定的增压压力匹配。然后在步骤8燃料由直接汽缸燃料喷射器23喷射气缸。此后,在步骤9可根据燃料流量或增压水平确定转矩输出。然后该转矩输出可以与当前的转矩需求比较(如步骤1那样),进行合适的循环重复,以匹配当前的转矩需求。
提供了用于替代图2披露的方法的另一种方法,并示于图3。
参见图3,图3表示的方法遵循图2所示的优选方法中步骤1到步骤9的相同步骤,但是在次序上不同。和图2的主要区别在于,在图3所示的替代方法中,在转矩需求改变时,首先调节增压水平而不是调节EGR质量流量。不过,应当注意,该增压水平和EGR水平在两个图中基本上被一同调节,这是因为控制器的循环比增压系统或EGR系统的响应特性快得多。在其它方面,本方法的其余部分和图2的优选方法类似。因而,在图3所示的方法中,在步骤1检测到转矩需求的增加或减少时,在步骤4(或4’)立即进行增压的相应增加或减少。在步骤6确定实际的增压。然后在步骤7和步骤8相应于即时的增压而喷射燃料。对于这些实施例的每一个,燃料馈给和即时增压水平的匹配都考虑进气温度,以便对于相应的密度改变进行校正。优选地,对于每一负载(即增压水平)进气温度被控制为目标温度。
然后在步骤3中确定入口氧气浓度,进行EGR流量的调节(分别通过在步骤2中增加或在步骤2’中减少),直到入口进气氧气浓度被确定处于在此给定的时刻的目标氧气浓度范围内。然后确定转矩并将其与驾驶员的需求比较,此后执行返回循环,如步骤9所示。
此外,在获得所需的进气氧气浓度时需要随时考虑到附加的考虑因素。例如,在使用高压EGR系统的情况下,只利用由压缩的环境空气提供的增压代替进气混合物,增压调节将引起最终的进气氧气浓度的改变。类似的情况也可能存在于低压EGR系统中,例如如果允许增压改变出现在EGR流量改变之前,这也将引起增压调节,从而引起在最终的进气氧气浓度中的增加的改变。
这个附加的挑战可以借助于提供其中驾驶员要求更大的转矩的情况,以更具体的方式被说明。在这种情况下,发动机负载的增加需要更多的燃烧燃料。如上所述,为了维持燃烧温度为一个受控的水平,Cv必须随燃料量的增加而合适地增加,这意味着必须通过增加入口进气的增压压力来合适地增加M。不过,因为进入气缸的进气的量保持常数,如果只通过压缩环境空气来满足,则进气密度的相应的增加引起进入燃烧气缸的氧气的总摩尔以及氧气浓度的增加。因而增压压力的增加可引起要进入气缸的进气的氧气浓度水平漂移到所需的浓度范围之外。最终的问题是,如何继续控制氧气浓度水平而不破坏入口进气所需的密度(增压)的校正,以便控制大多数的燃烧温度。
这个挑战可以通过先占或偏移由增压压力的增加或减小引起的对氧气浓度的改变的影响来解决,其中借助于通过改变再循环到发动机的废气的质量流量来附加地抵消对氧气浓度的调节。换句话说,除去和增压的改变成比例地调节EGR之外,可以通过附加的增量来调节EGR控制阀12’,以补偿由于增压调节而预期发生的氧气浓度改变。这允许增压压力和入口空气流量的相应的和抵消的增加,以便使进气氧气浓度增加回到所需的水平,使得响应驾驶员的更多的转矩需求,增压压力和进气密度的增加允许增加燃料馈给,而不提高燃烧温度。
由上述描述可以理解,虽然这里说明了本发明的几个特定实施例,但在不脱离本发明的范围和构思的情况下可以作出各种改变。因而这里提出的实施例应当认为是说明性的而不是限制性的,本发明的范围只由所附的权利要求限制。
权利要求
1.一种用于在燃料燃烧发动机中燃烧的方法,所述发动机利用进入燃烧室中的燃料后直接喷射,所述方法包括将用于燃烧的进气混合物中的氧气浓度保持在所需的氧气浓度范围内;压缩进气混合物;确定被压缩的进气混合物的最终增压压力;把压缩的进气混合物送入燃烧室内;响应于压缩的进气混合物的确定的增压压力向燃烧室中直接喷射一定量的燃料;以及在燃烧室内燃烧所述燃料和进气混合物。
2.如权利要求1所述的方法,其中所需的氧气浓度范围是位于10%和18%之间某处的范围。
3.如权利要求1所述的方法,其中所需的氧气浓度范围是在12%和14%之间的范围。
4.如权利要求1所述的方法,其中所述进气混合物通过低压EGR循环来形成。
5.如权利要求1所述的方法,还包括确定压缩的进气混合物的温度;使喷射到燃烧室的燃料量与进气混合物的密度相匹配,所述进气混合物的密度是由增压压力和压缩的进气混合物的温度确定的。
6.如权利要求5所述的方法,还包括把压缩的进气混合物的温度调节到所需的温度范围。
7.如权利要求1所述的方法,还包括确定要由发动机产生的功率需求;把进气混合物压缩到对应于所述确定的功率需求的所需的进气增压压力;以及按对应于该所需的进气增压压力的量将一定量的燃料直接喷射到发动机气缸中。
8.一种用于操作机动车辆中的内燃机的方法,所述内燃机利用进入燃烧室中的燃料的直接喷射,所述方法包括组合再循环的废气和环境空气以形成进气混合物;在需要时调节进气混合物的氧气浓度,以使其落入所需的氧气浓度范围内;确定要由内燃发动机产生的功率需求;确定对应于所述功率需求的所需的进气增压压力;把进气混合物压缩到或较接近于所需的进气增压压力;确定压缩的进气混合物的增压压力;将压缩的进气混合物送入发动机的气缸内用于燃烧;确定对应于压缩的进气混合物的确定的进气增压压力的用于燃烧的所需量的燃料;把所需量的燃料直接喷射到发动机气缸中;以及在发动机气缸内燃烧所述燃料和进气混合物。
9.如权利要求8所述的方法,其中所需的氧气浓度范围是位于10%和18%之间某处的范围。
10.如权利要求8所述的方法,其中所需的氧气浓度范围是在12%和14%之间的范围。
11.如权利要求8所述的方法,其中所述进气混合物通过低压EGR循环来形成。
12.如权利要求8所述的方法,还包括确定压缩的进气混合物的温度;使喷射到燃烧室的燃料的所需量和进气混合物的密度相匹配,所述进气混合物的密度由增压压力和压缩的进气混合物的温度确定。
13.如权利要求12所述的方法,还包括把压缩的进气混合物的温度调节到所需的温度范围。
14.一种直接喷射内燃机,包括多个气缸,每个气缸提供燃烧室;废气再循环系统,用于组合由所述燃烧室产生的废气的一部分和环境空气,以形成进气混合物,并将所述进气混合物返回到所述气缸用于燃烧;增压系统,用于在把所述进气混合物送进所述气缸用于燃烧之前压缩所述环境空气或进气混合物;燃料喷射系统,用于把燃料喷射到每个所述气缸中进行燃烧;控制器,用于调节废气再循环系统、增压系统和燃料喷射系统的操作,其被编程用于(1)调节所述废气再循环系统以把进气混合物的氧气浓度控制在目标范围内;(2)响应于来自发动机的功率需求调节所述增压系统,以控制进气混合物的增压压力;以及(3)响应于进气混合物的增压压力调节喷射到每个气缸中的燃料的量。
15.如权利要求14所述的内燃机,其中调节喷射到每个气缸中的燃料的量,以便在考虑进气的温度的情况下直接响应在由增压系统压缩之后的压缩进气混合物的即时检测的增压压力。
16.如权利要求14所述的内燃机,其中目标氧气浓度范围是位于10%和18%之间某处的范围。
17.如权利要求14所述的内燃机,其中目标氧气浓度范围是在12%和14%之间的范围。
18.如权利要求14所述的内燃机,其中废气再循环系统通过废气排出控制阀和低压EGR循环形成进气混合物。
19.如权利要求14所述的内燃机,其中所述燃料喷射系统在压缩冲程的后期向气缸内直接喷射燃料,使得产生分层的、非预混和的燃烧。
20.如权利要求14所述的内燃机,其中所述控制器还被编程用于确定压缩的进气混合物的温度,并把喷射到每个气缸中的燃料量调整到进气混合物的密度,该密度由压缩的进气混合物的增压压力和温度确定。
21.如权利要求14所述的内燃机,其中所述控制器还被编程用于把压缩的进气混合物的温度调整到所需的温度范围。
全文摘要
用于和增压调节一道以这种方式精密控制和调节气缸内的氧气浓度水平的方法,即,使得在利用燃料后直接气缸喷射的发动机中在瞬变期间的有害排放物最少。在瞬变期间以和增压压力改变一道的链接方式按闭环利用EGR控制阀调节EGR流量,以维持入口进气氧气浓度和增压水平在用于受控温度、低排放燃烧的临界范围内。此外,为了在操作状态下于快速瞬变期间有害的排放最少,进入气缸的燃料馈给的改变等待或跟随用于燃烧的进气的增压水平的改变。这解决了如下问题在柴油机中在加速期间,瞬变期间具有超过所需的燃料/氧气比的暂时燃料水平,导致由于用于快速完全燃烧的氧气不足而增加PM量。通过响应送入气缸进行燃烧的进气的增压水平控制燃料馈给,在瞬变期间暂时燃料水平不会超过所需的燃料/氧气比。
文档编号G01M99/00GK1871415SQ200480030715
公开日2006年11月29日 申请日期2004年9月15日 优先权日2003年9月19日
发明者小查尔斯·L.·戈雷 申请人:美国环境保护署
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1