用于双轴车轮测试机的车轮外倾角最优化方法

文档序号:6155575阅读:278来源:国知局
专利名称:用于双轴车轮测试机的车轮外倾角最优化方法
技术领域
本发明涉及一种控制双轴车轮测试机以在测量对车轮的潜在破坏时在测 试周期期间提供精确的车轮外倾角或倾斜角信息的方法。
背景技术
在双轴测试机中的车轮实验室测试可需要在测试轨道上测量轴向或横向 以及径向车轮测试负载数据并将其转换以用于对双轴测试机进行编程。这通
过经由耐久性程序运行加权原型车轮(weighted prototype wheel)实施,在该 耐久性程序中,安装在车轮上的车轮力传感器提取加载在中央服务器上的主 轴负载数据(spindle load data ),以供工程人员分析。车轮耐久性工程人员将 时间/历史形式的数据处理为用在用于双轴测试机的阻滞周期测试模式(block cycle test profile )中的联合概率分布。
该数据基于主轴中央负载,但测试机需要将输入转化为轮胎侧壁输入。 该转化基于轮胎平均寿命(expectation of tire life),且必须使轮胎抵靠滚筒运 转以产生轴向力而非使用轮胎着地处(patch,轮胎与地面接触的底部),这增 加了轮胎温度和磨损。
应变仪可连接至安装在Flat-Trac 机器上的车轮的高应力区域。 Flat-Trac 机器包括移动带,轮胎压紧该移动带。可对车轮施加负载以反映 轴向和径向车轮测试负载数据。该机器提供主轴负载控制并记录应变仪的输 出。
车轮安装在双轴车轮测试机上并施加负载以反映由Flat-Trac 机器记 录的轴向和径向车4仑测试负载数据。在施加各个轴向和径向负载对的同时, 车轮可倾斜至多个外倾角或倾斜角。将外倾角与提供轨道负载的模拟的负载 相比较,实际应变测量值与Flat-Trac 机器记录的那些值相关。
2004年11月9日授予Schwendemann的美国专利6,813,938中描述的流 程提出了前述关联流程的简化。Schwendemann专利意图使得可以计算外倾角 而不用对车轮应用应力仪且不用使用Flat-Trac 机器。Schwendemann流程
6包括在双轴测试机中装载附加负载元件以跟踪外倾负载,并进一步包括使用 几何学计算与所需的负载对匹配的外倾角。
在测量对车轮的潜在破坏时需要更为精确地确定车轮外倾角度数。

发明内容
根据本发明的一个方面,提供了 一种确定在模拟驾驶状况下车轮经历的 负载的双轴车轮测试机上的车轮外倾角的方法。使轴向负载和车轮外倾角保 持恒定来确定动态滚动半径值,并响应于径向负载单位的改变的径向位置改 变。通过确定响应于径向负载单位改变的径向位置改变的比例来得出径向刚 性值。根据径向负载和径向刚性值的函数确定新的动态滚动半径值。
根据本发明的另一个方面,提供了一种确定车轮外倾角或倾斜角时获得 上述更高精度的方法。该方法控制用于模拟车轮在实际驾驶状况下经历的负 载的双轴车轮测试机。测试机包括具有垂直轴和水平轴的圆形滚筒,在该滚
筒内容纳车轮。将被测试的车轮包括碗状物、轮辋和轮胎并具有中央径向平 面。驱动单元旋转内部具有一对间隔开、沿着圆周放置的双轴边缘的滚筒。 测试机进一步包^"用于可控地施加垂直力的垂直力驱动器、用于可控地施加 水平力的水平力驱动器、枢轴头和用于使车轮关于枢轴头定位以控制车轮外 倾角的外倾驱动器。测试机还具有测量单元用于测量外倾驱动器力。对车轮 施加垂直力和水平力以迫使轮胎抵靠双轴边缘和滚筒的内壁以使车轮与滚筒 一起旋转。
降低在确定车轮外倾角或倾斜角中不精确性的方法的一个实施例包括下
列步骤基于先前在道路测试期间确定的车轮上的垂直力和水平力调节垂直 力、水平力、和外倾角;使用反作用力径向分力和反作用力轴向分力的合力 在轮胎上的着力点作为调节外倾角的控制尺度;测量外倾驱动器力并使用测 量到的外倾驱动器力作为确定轮胎上合力的着力点的控制尺度;通过下列公 式计算合力着力点和车轮中央径向平面的最小距离
其中Rs为合力着力点和车轮中央径向平面的最小距离; 为围绕枢轴头的力的力矩;
Fa为反作用力的车轮轴向分力;Rdy 为轮胎动态滚动半径;
Fr为反作用力的车轮径向分力;
al为枢'轴头和轮胎中心点之间的最小距离;
通过根据下列步骤计算更为精确的Rdyn的值来降低确定外倾角的不精确

(a) 使轴向或横向负载和外倾角保持恒定而车轮旋转,测量响应于径向 负载单位改变的径向位置的改变;
(b) 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚 性;以及
(C )通过以径向负载乘以径向刚性值来计算新的Rdyn值。
该方法根据下列步骤通过计算更为精确的Rs值从而进一步降低了合力 着力点和中央径向平面之间最小距离的不精确性
(d)使外倾角保持为0度而车轮旋转,测量响应于轴向负载单位改变的 轴向位置的改变;
(e )通过确定响应于轴向负载单位改变的轴向位置改变率计算0度轴向
刚性;
(f) 使径向位置保持恒定而外倾角保持为-15度,响应于轴向负载的单 位改变测量轴向位置的改变;
(g) 使外倾角保持为恒定-15度,通过确定响应于轴向负载单位改变的 轴向位置改变率来计算轴向刚性;
(h) 对基于两种外倾角的比率值求平均;以及
(i) 使轴向负载乘以平均斜率值并将这个新的值加至Rs的原始值。
为了抵消任何随着上述Rs和Rdyn修正的误差,该方法还包括下列步骤 (j)从每对负载、Fa和Fr的计算出的外倾角减去准确的应变仪测量的基 于车轮的值以确定经验修正系数;
(k)将修正系数组合入基于车辆类型和轮胎侧壁高度的族内; (1)在各个族内对修正系数求平均值以提供通用机器修正因子。


图1 一部分为截面图,一部分为表示双轴车轮测试才几相关部分的示意图。
具体实施例方式
本发明提供了控制用于模拟实际驾驶状况下车轮承受负载的双轴车轮测 试机(总体上以附图标记8指示)以精确确定被测试车轮(总体上以附图标
记16指示)的外倾角或倾斜角的度数的方法的实施例。附图中图示了由本发 明的方法所控制的测试4几8的优选实施例,其部分为截面图而部分为示意图 且没有显示整个测试机8。测试机8包括具有垂直轴和水平轴的圆形滚筒10, 其中容纳车轮16。车轮16具有中央径向平面CRP并包括碗状物18、围绕碗 状物18周边形成的轮辋20和安装在轮辋20上的轮胎22。滚筒10具有在内 周设置的双轴边缘12、 14。待测车轮16的轮胎22显示为挤压边缘14中的 一个。双轴边缘12、 14之间的间距是可变的以适应不同尺寸的车轮16。滚 筒10通过驱动轴26连接至驱动单元24,驱动单元24使滚筒10围绕滚筒旋 转轴Da旋转。碗状物18可释放地连接至可旋转枢轴头S,其由附图标记S 确定的点S象征性代表。枢轴头S距离车轮16的中央点CP —段间隔(由双 箭头al代表)定位并枢轴地支撑车轮16。由双箭头a2象征性表示的第一杠 杆臂在其第一端部ii连接至枢轴头S;由双箭头a3象征性表示的第二杠杆 臂在其第一端部13以一定角度连接至第一杠杆臂a2的第二端部15以形成总 体上由附图标记28指示的连杆机构。第二杠杆臂a3的第二端部17连接至轴 承点A。如以附图标记Fs指示的箭头所象征性地表示的,外倾驱动器,例如 伺服液压加载缸,连接在轴承点A和轴承点B之间以围绕枢轴头S放置车轮 16并调节车轮外倾角。各个元件的尺寸依赖于被测试的具体车轮的特性。
测试机8具有原点位于枢轴头S的x-y坐标系,该枢轴头S为外倾角枢 轴点。x轴沿附图标记X指示的线延伸,而y轴平行于滚筒旋转轴Da延伸并 由附图标记Y指示。连接有由箭头Fv象征性指示的垂直力驱动器以可控地在 枢轴头S上施加垂直力,且连接有由箭头Fh象征性指示的水平力驱动器以可 控地在枢轴头S上施加水平力。这些力被传递至车轮16。
车轮16具有原点位于车轮16的中央点CP的x'-y'坐标系。x'轴在由表示
力R和Fa的矢量和表示力Fv和Fh的矢量限定的平面中沿径向方向延伸并由
附图标记X'指示。y'轴在与车轮16的旋转轴一致的轴向或横向方向延伸并由 附图标记Y'指示。如图所示,车轮16的旋转轴关于y轴以外倾角倾斜;即 y'轴关于y轴以外倾角倾斜。双箭头a4指示平行于y轴并穿过枢轴头S的线 与平行于y轴并穿过轴承点B的线之间的最小距离。双箭头a5指示平行于x轴并穿过枢轴头S的线与平行于x轴并穿过轴承点B的线之间的最小距离。
附图标记al、 a2、 a3、 a4和a5代表测试机几何常数。下面的公式显示 了它们与多个要讨论的力的关系,并定义了附图标记y。 Y=倾斜角x (兀/180°)
Fa = -([(l+[-0.03xY2]+
)xFv]+[([-0.254xY]+
)xFh]) Fr = -([(l+[-0.0379xY2]+
)xFh]+[([-0.249xY]+
)xFv]) Ax = a2 x sin(y) + a3 x cos(力 Ay = -a2 x cos(y) +a3 x sin(力
Fsxy= ^)2 + (-a5-人)2
M =FS x [(a4 x Fsy) + (a5 x Fsx)]
《、
以代表力Fv的矢量象征性指示的垂直力驱动器(例如伺服液压加载缸) 在枢轴头S上并因此在车轮16上施加与x轴平行的方向的垂直力;类似的但 以代表力Fh的矢量象征性指示的水平力驱动器在枢轴头S上并因此在车轮16 上施加与y轴平行的方向的水平力。控制和评估单元(未显示)分别控制水 平力和垂直力Fh和Fv的幅度,以及先前道路测试期间确定的基于水平力和垂 直力的外倾角。由反作用力的车轮径向分力Fr和反作用力的车轮轴向分力Fa 产生的合力F^的着力点位置P用作为调节外倾角的控制尺度。下列公式显 示了 Fv和Fh与Fr和Fa及与Y的关系 = —Fr x cos(j) +Faxsin(7)以及
尸/,=—《x sin(j) — & x cos(j)
其中Fv为垂直驱动器力;
Fh为水平驱动器力;
Fa为反作用力的车轮轴向分力;
Fr为反作用力的车轮径向分力;以及Y=倾斜角x (兀/180°)。
车轮16的动态滚动半径为车轮旋转轴Y'和穿过合力F^在轮胎22上的
着力点P的与Y'的平行的线之间的最小距离,并以附图标记Rdyn指示。如图
所示,车轮16的轮胎22与滚筒10的内壁以及双轴边缘14接触,并由于轮 胎22与它们抵紧因而轮胎22可与滚筒10 —起自由旋转。随着外倾驱动器 Fs在轴承点B上施加力,作用在外倾驱动器Fs上的反作用力产生导致杠杆臂 a2和a3使车轮16围绕枢轴头S旋转的外倾驱动器力矩。控制外倾驱动器Fs 从而控制外倾角。
图中显示了与车轮16的旋转轴Y'垂直并穿过车轮16中央点CP的中央 径向平面CRP。还显示了代表反作用力的径向分矢量Fr、代表反作用力的轴 向分矢量Fa、和代表由两个反作用力分量Fr和Fa产生的合力的矢量F,合
力F^的轴与车轮16的中央径向平面CRP以角度卩相交。合力Fw在点P作
用至轮胎22,点P的位置依赖于外倾角。如图所示,距离Rs代表合力Fres 的作用点P和车4仑16的中央径向平面CRP之间的最小距离。距离Rs与外倾 角成比例变化。例如如果垂直轴X沿车轮16的中央径向平面CRP延伸,角 度|3、力Fa和距离Rs可均等于零。
外倾驱动器Fs在轴承点B上施加的力的量为使得能够使用反作用合力 F^在轮胎22上的作用点P的位置作为控制元件所需的因素。确定外倾驱动 力的优选简单方式为使用例如众所周知的膜盒式测力计(capsule-type dynamometer)的测量单元(未显示)。在外倾驱动器Fs以这种方式确定力而 非使用压力测量,降低了获得已受摩擦损耗或测量误差影响的测量值的可能 性。
如在发明背景技术部分所述,对于一些应用,需要比Schwendema皿方 式更为精确地确定车轮外倾角的度数。目标是在测试周期期间使测试机不精 确性保持在0.2度外倾角以下。Schwendemann方式对动态滚动半径使用基于 标准欧洲公式的计算值R^:
I轮胎半径x2x3.051 ,,、<formula>formula see original document page 11</formula>
然而数字3.05来自于轮胎如何压缩的经验测试;其没有为所有的车轮和 轮胎组合提供正确解决方案。Schwendemann方式还使用下列公式提供的计算 值以寻找反作用合力Fw在轮胎22上的着力点P和轮胎16的中央径向平面CRP之间的最小距离Rs:<formula>formula see original document page 12</formula>
其中Rs为合力F^的着力点P和车轮中央径向平面CRP之间的最小 距离;
MFs为围绕枢轴头s的力矩;
Fa为反作用力的车轮轴向分力;
Rdyn为轮胎的动态滚动半径;
Fr为反作用力的车轮径向分力;以及
al为枢轴头S和轮胎中央点CP之间的最小距离;以及
y=倾斜角x (兀/180°)。
该计算方法没有考虑由响应于不同道路状况下加至轮胎的变化力的轮胎 弯曲所导致的相对恒定的变化。相反地,该计算仅产生了静态近似或平均。 确定动态滚动半径Rdyn时精度低于期望是来自于车轮16的轮胎部分的弯曲导 致车轮16的半径出现变化这一事实。半径的变化随着径向负载的增加而增 加,但其非线性函数。类似地,确定Rs的值时精度低于期望是来自于轮胎动 力学非线性和缺少对于轮胎侧壁高度的补偿。随着轮胎22代表的动态滚动半 径R^的百分比增加,轮胎轴向抗变形性降低。因此,Rs的计算值的不精确 性随着侧壁高度的增加以及轴向负载的增加而增加。
为了改进Rs值的精度,将测试车轮16安装在滚筒10中并通过在测试期 间将径向负载设置为从零至预期最大负载的双轴负载程序运转。可通过将碗 状物18的半径加至轮胎22的侧壁高度来确定车轮16的完整半径。收集到对 应于测量的径向负载和车轮主轴位置的数据。随后可使用该数据通过从车轮 16的静态半径中减去在该径向负载下的位置改变来确定任何径向负载下的动 态滚动半径Rd,由于对每对负载均计算外倾角,相比于不精确计算的动态 滚动半径R^,新值Rd^将为在该对负载下的实际值。由于如带括号的数字
(2)所指示的前述公式所示,Rs的值为Rdyn值的函数。因此,R^值的精确
性的增加将增加Rs值的精确性。
如带括号的数字(1)所指示的Rdyn公式所示,带括号的数字(2)所指
示的前述Rs公式为非线性情况的线性模型。更加精确地确定Rs值的方式包 括以经验计算该值。通过将测试车轮16安装在测试机8上并使用类似于车辆角重(vehicle corner weight)的径向负载测量轴向负载和轴向4立置之间的关系
来确定轴向轮胎刚性。与不依赖于外倾角的动态滚动半径Rdyn不同,该信息
取决于使用的外倾角。随后收集该信息用于三个不同情况,即零度外倾角和 正、负方向外倾角极值。随后将该生成的信息用于对径向和轴向负载对的任 意组合补充更加精确的Rs值。如果Rs值产生与Rs输入相背离的外倾角,则 必须重复该过程。除了轮胎刚性外,轮胎压力是本过程考虑的另一个因数。
本发明提供了一种方法的实施例,用于控制前述双轴车轮测试机8并用 于降低确定车轮外倾角度数时的不精确性。该方法包括下列步骤
a. 基于先前在道路测试期间确定的车轮垂直力和水平力来调节垂直力、 水平力和外倾角;
b. 使用车轮径向分力和车轮轴向分力的合力在轮胎上的着力点的位置作 为调节外倾角的控制尺度;
c. 测量外倾驱动器的力并使用测量到的外倾驱动器力作为确定合力在轮 胎上的着力点的控制尺度;
d. 通过下列公式计算合力的着力点和车轮中央径向平面之间的最小距

气+(&>< )
其中RS为合力Fres的着力点P和车轮中央径向平面CRP之间的最小
距离;
为围绕枢轴头S的力矩; Fa为反作用力的车轮轴向分力; Rdyn为轮胎的动态滚动半径; Fr为反作用力的车轮径向分力;
al为枢轴头S和轮胎中央点CP之间的最小距离;以及
e. 通过将轴向负载和外倾角保持恒定并测量响应于径向负载单位改变 (unit change )的径向位置的改变来计算更加精确的Rdyn值从而降低确定外倾
角中的不4青确性;
f. 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚性;
以及
g. 通过将径向负载乘上径向刚性值来计算新的R^值。
13可通过根据下列步骤计算更为精确的Rs值使得在确定外倾角中的不精确性进一步降低a. 将旋转滚筒10内的车轮和外倾角保持恒定零度,测量响应于轴向负 载单位改变的轴向位置改变;b. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算零度轴向 刚性;c. 将旋转滚筒10内的车轮和径向位置保持恒定而将外倾角保持在负15 度,测量响应于轴向负载单位改变的轴向位置改变;d. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算负15度 外倾角时的轴向刚性;e. 对基于两个外倾角的比率值求平均;以及f. 通过将轴向负载乘上平均斜率值并将该新值加至Rs原始值来计算新 的Rs值。可通过下列步骤实现抵消任何剩下的不精确性a. 对于各对负载Fa和Fr从计算的外倾角中减去准确的、应变仪测得的、 基于车轮的值(solution)以确定经-验YI"正系数;b. 将修正系数组合入基于车辆类型和轮胎侧壁高度的族内;以及c. 在各个族内对修正系数求平均值以提供通用测试机修正因子。 本发明提供了用于控制前述双轴车轮测试机8和用于降低确定车轮外倾角度数中不精确性的方法的另 一实施例。该方法包括下列步骤a. 基于先前在道路测试期间确定的车轮垂直力和水平力调节垂直力、水 平力和外倾角;b. 使用车轮径向分力和车轮轴向分力的合力在轮胎上的着力点的位置作 为调节外倾角的控制尺度;c. 测量外倾驱动器的力并使用测量到的外倾驱动器力作为确定合力在轮 胎上的着力点的控制尺度;d. 调节垂直力、水平力和外倾角直至达到下列^^式的明确解 al其中Rs为合力Fres的着力点P和车轮中央径向平面CRP之间的最小距离;Fv为垂直力;且 Fh为水平力;为围绕枢轴头S的力矩; Fa为反作用力的车轮轴向分力; Rdyn为轮胎的动态滚动半径; Fr为反作用力的车轮径向分力; al为枢轴头S和轮胎中央点CP之间的最小距离; y=倾斜角x (兀/180°);以及e. 通过将轴向负载和外倾角保持恒定计算更加精确的Rdyn值并测量响应 于径向负载单位改变的径向位置的改变来降低在确定外倾角中的不精确性;f. 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚性;以及g. 通过将径向负载乘上该径向刚性值来计算新的Rdyn值。可通过根据下列步骤计算更为精确的Rs值来实现进一步降低外倾角确 定中的不精确性a. 将旋转滚筒10内的车轮和外倾角保持恒定零度,测量响应于轴向负 载单位改变的轴向位置改变;b. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算零度轴向 刚性;c. 将旋转滚筒10内的车轮和径向位置保持恒定而将外倾角保持在负15 度,测量响应于轴向负载单位改变的轴向位置改变;d. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算负15度 外倾角时的轴向刚性;e. 对基于两个外倾角的比率值求平均;以及f. 通过将轴向负载乘上平均斜率值并将新值加至Rs原始值来计算新的 Rs值。可通过下列步骤实现抵消任何剩下的不精确性a.对于各对负载Fa和F,人计算的外倾角中减去准确的应变仪测得的基 于车轮的值以确定经验修正系数;b.将修正系数组合入基于车辆类型和轮胎侧壁高度的族内;以及 C.在各个族内对修正系数求平均值以提供通用测试机修正因子。 本发明提供了用于控制前述双轴车轮测试机8和用于降低确定车轮外倾角度数中不精确性的方法的再一实施例。该方法包括下列步骤a. 基于先前在道路测试期间确定的车轮垂直力和水平力调节垂直力、水 平力和外倾角;b. 使用车轮径向分力和车轮轴向分力的合力在轮胎上的着力点的位置作 为调节外倾角的控制尺度;c. 通过下列公式计算合力的着力点和车轮中央径向平面之间的最小距其中Rs为合力F^的着力点P和车轮中央径向平面CRP之间的最小 距离;为围绕枢轴头S的力矩; Fa为反作用力的车轮轴向分力; Rdyn为轮胎的动态滚动半径; Fr为反作用力的车轮径向分力;al为枢轴头S和轮胎中央点CP之间的最小距离;以及d. 通过将轴向负载和外倾角保持恒定并测量响应于径向负载单位改变的 径向位置的改变来计算更加精确的值从而降低确定外倾角中的不精确 性;e. 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚性;以及f. 通过将径向负载乘上径向刚性值来计算新的Rdyn值。可通过根据下列步骤计算更为精确的Rs值实现进一步降低外倾角确定 中的不精确性a. 将旋转滚筒10内的车轮和外倾角保持恒定零度,测量响应于轴向负 载单位改变的轴向位置改变;b. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算零度轴向16刚性;c. 将旋转滚筒10内的车轮和径向位置保持恒定而将外倾角保持在负15 度,测量响应于轴向负载单位改变的轴向位置改变;d. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算负15度 外倾角时的轴向刚性;e. 对基于两个外倾角的比例值求平均;以及f. 通过将轴向负载乘上平均斜率值并将新值加至Rs原始值来计算新的 Rs值。可通过下列步骤实现抵消任何剩下的不精确性a. 对于各对负载Fa和Fr从计算的外倾角中减去准确的、应变仪测得的 基于车轮的值以确定经验修正系数;b. 将修正系数组合入基于车辆类型和轮胎侧壁高度的族内;以及c. 在各个族内对修正系数求平均值以提供通用测试机修正因子。 本发明提供了用于控制前述双轴车轮测试机8和用于降^f氐确定车轮外倾角度数中不精确性的方法的又一 实施例。该方法包括下列步骤a. 基于先前在道路测试期间确定的车轮垂直力和水平力调节垂直力、水 平力和外倾角;b. 使用车轮径向分力和车轮轴向分力的合力在轮胎上的着力点的位置作 为调节外倾角的控制尺度;c. 调节垂直力、水平力和外倾角直至达到下列^^式的明确解其中Rs=合力的着力点和车轮中央径向平面之间的最小距离; Fv为垂直力;且 Fh为水平力;为围绕枢轴头S的力矩; Fa为反作用力的车轮轴向分力; Rdyn为轮胎的动态滚动半径;=—Fr x cos(")十F"xsin(;K)以及 尸A = 一巧x sin(;r) — Fa x cos("Fr为反作用力的车轮径向分力;al为枢轴头和轮胎中央点之间的最小距离;Y为倾斜角x (兀/180°);以及d. 通过将轴向负载和外倾角保持恒定并测量响应于径向负载单位改变的径向位置的改变来计算更加精确的Rdyn值从而降低确定外倾角中的不精确性;e. 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚性;以及f. 通过将径向负载乘上径向刚性值来计算新的Rdyn值。可通过根据下列步骤计算更为精确的Rs值实现进一步降低外倾角确定 中的不精确性a. 将旋转滚筒10内的车轮和外倾角保持恒定零度,测量响应于轴向负 载单位改变的轴向位置改变;b. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算零度轴向 刚性;c. 将旋转滾筒10内的车轮和径向位置保持恒定而将外倾角保持在负15 度,测量响应于轴向负载单位改变的轴向位置改变;d. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算负15度 外倾角时的轴向刚性;e. 对基于两个外倾角的比例值求平均;以及f. 通过将轴向负载乘上平均斜率值并将新值加至Rs原始值来计算新的 Rs值。可通过下列步骤实现抵消任何剩下的不精确性a. 对于各对负载Fa和Fr从计算的外倾角中减去准确的、应变仪测得的 基于车轮的值以确定经验修正系数;b. 将修正系数组合入基于车辆类型和轮胎侧壁高度的族内;以及c. 在各个族内对修正系数求平均值以提供通用测试机修正因子。尽管已经详细描述了用于执行本发明的最佳实施例,本发明相关领域的 技术人员将认识将有多种替代设计和实施例来实施由权利要求所限定的本发 明。
权利要求
1.一种确定模拟车轮在驾驶状况下经历的负载的双轴车轮测试机上外倾角的方法,包含使轴向负载和外倾角保持恒定来确定动态滚动半径值并确定响应于径向负载单位改变的径向位置改变;通过确定所述响应于径向负载单位改变的径向位置改变率来确定径向刚性值;以及根据所述径向负载和所述径向刚性值的函数产生新的动态滚动半径值。
2. —种控制用于模拟车轮在实际驾驶状况下经历的负载的双轴车轮测试 机的方法,所述测试^/L包括具有垂直轴和水平轴的圆形滚筒以及旋转所述滚 筒的驱动单元,其中,所述圆形滚筒中容纳有将被测试的具有中央径向平面 并具有碗状物、轮辋和轮胎的车轮,所述滚筒内部具有至少一个沿周边设置 的双轴边缘;所述测试机进一步包括用于可控地施加垂直力的垂直力驱动器、 用于可控地施加水平力的水平力驱动器、枢轴头和将车轮围绕所述枢轴头放 置以控制车轮外倾角或倾斜角的外倾角驱动器,所述垂直力和水平力被施加 至所述车轮以迫使所述轮胎抵靠双轴边缘和所述滚筒的内壁以使所述车轮与 所述滚筒一起旋转,其中,所述方法包含下列步骤a. 基于先前在道路测试期间确定的车轮垂直力和水平力调节所述垂直 力、所述水平力和所述外倾角;b. 使用车轮径向分力和车轮轴向分力的合力在轮胎上的着力点的位置作 为调节所述外倾角的控制尺度;c. 测量所述外倾驱动器的力并使用所测量到的外倾驱动器力作为确定所 述合力在所述轮胎上的着力点的所述位置的控制尺度;d. 通过下列公式计算所述合力着力点和所述车轮中央径向平面之间的最 小距离其中,Rs为所述合力Fres的所述着力点P和所述车轮中央径向平面CRP 之间的最小距离;为围绕所述枢轴头S的力矩; Fa为反作用力的车轮轴向分力; Rdyn为所述轮胎的动态滚动半径; Fr为反作用力的车轮径向分力;al为所述枢轴头和所述轮胎中心点之间的最小距离;以及e. 通过将轴向负载和外倾角保持恒定并测量响应于径向负载单位改变的径向位置的改变来计算更加精确的Rdyn值从而降低确定外倾角中的不精确性;f. 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚性;以及g. 通过将径向负载乘上所述径向刚性值来计算新的Rdyn值。
3. 根据权利要求2所述的方法,进一步包含下列步骤h. 将所述外倾角保持恒定零度,测量响应于轴向负载单位改变的轴向位 置改变;i. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算零度轴向 刚性;j.将所述径向位置保持恒定而将所述外倾角保持在负15度,测量响应 于轴向负载单位改变的轴向位置改变;k.将所述外倾角保持在负15度,通过确定响应于轴向负载单位改变的 轴向位置改变率来计算轴向刚性;1.对基于两个外倾角的所述比率值求平均;以及m.将所述轴向负载乘上所述平均斜率值并将新值加至Rs原始值,从而 通过计算更为精确的Rs值进一步降低所述合力着力点和轮胎中央径向平面 之间最小距离的不精确性。
4. 根据权利要求3所述的方法,进一步包含下列步骤n.对于各对负载Fa和R从计算的外倾角中减去准确的应变仪测得的基于车轮的值以确定经验修正系数;o.将所述修正系数组合入基于车辆类型和轮胎侧壁高度的族内;以及 p.在各个族内对修正系数求平均值以提供通用机器修正因子,从而抵消了任何剩下的不精确性。
5. —种控制用于模拟车轮在实际驾驶状况下经历的负载的双轴车轮测试机的方法,所述测试机包括具有垂直轴和水平轴的圆形滚筒以及旋转所述 滚筒的驱动单元,其中,所述圆形滚筒中容纳有将被测试的具有中央径向平面并具有碗状物、轮辋和轮胎的车轮;,所述滚筒内部具有至少一个沿周边设 置的双轴边缘;所述测试机进一步包含用于可控地施加垂直力的垂直力驱动 器、用于可控地施加水平力的水平力驱动器、枢轴头和将车轮围绕所述枢轴 头放置以控制车轮外倾角或倾斜角的外倾角驱动器,所述垂直力和水平力被 施加至所述车轮以迫使所述轮胎抵靠双轴边缘和所述滚筒的内壁以使所述车 轮与所述滚筒一起旋转,其中,所述方法包含下列步骤a. 基于先前在道路测试期间确定的车轮垂直力和水平力调节所述垂直 力、所述水平力和所述外倾角;b. 使用车轮径向分力和车轮轴向分力的合力在轮胎上的着力点的位置作 为调节所述外倾角的控制尺度;c. 测量所述外倾驱动器的力并使用测量到的外倾驱动器力作为确定所述 合力在轮胎上的着力点的位置的控制尺度;d. 调节所述垂直力、所述水平力和所述外倾角直至达到下列公式的明确解i^V = -巧x COS(" 和 FA = x sin(力一 F。 x cos(/)其中,Rs为所述合力Fres的着力点和车轮中央径向平面之间的最小距离;Fv为垂直力; Fh为水平力;为围绕枢轴头的力矩; Fa为反作用力的车轮轴向分力; R^yn为所述轮胎的动态滚动半径; Fr为反作用力的车轮径向分力; al为枢轴头和轮胎中央点之间的最小距离; y为倾斜角x (7c/180°);以及e.通过将轴向负载和外倾角保持恒定计算更加精确的R^值来降低确定 外倾角中的不精确性;测量响应于径向负载单位改变的径向位置的改变;f. 通过确定响应于径向负载单位改变的径向位置改变率计算径向刚性;以及g. 通过将径向负载乘上所述径向刚性值来计算新的Rdyn值。
6. 根据权利要求5所述的方法,进一步包含下列步骤h. 将外倾角保持恒定零度,测量响应于轴向负载单位改变的轴向位置改变;i. 通过确定响应于轴向负载单位改变的轴向位置改变率来计算零度轴向 刚性;j.将径向位置保持恒定而将外倾角保持在负15度,测量响应于轴向负 载单位改变的轴向位置改变;k.将外倾角保持于负15度,通过确定响应于轴向负载单位改变的轴向 位置改变率来计算轴向刚性;1.对基于两个外倾角的比率值求平均;以及m.通过将轴向负载乘上平均斜率值并将新值加至Rs原始值,从而通过 计算更为精确的Rs值进一步降低所述合力着力点和所述轮胎中央径向平面 之间最小距离的不精确性。
7. 根据权利要求6所述的方法,进一步包含下列步骤n.对于各对负载Fj口 Fr从计算的外倾角中减去准确的应变仪测得的基于车轮的值以确定经验修正系数;o.将修正系数组合入基于车辆类型和轮胎侧壁高度的族内;以及p.在各个族内对修正系数求平均值以提供通用机器修正因子,从而抵消了任何剩下的不精确性。
全文摘要
本发明提供了一种用于双轴车轮测试机的车轮外倾角最优化方法,所述方法是一种控制用于模拟测试车轮在实际驾驶状况下经历的负载的双轴车轮测试机并实现精确确定车轮外倾角的方法。
文档编号G01M17/013GK101650266SQ20091016539
公开日2010年2月17日 申请日期2009年8月11日 优先权日2008年8月15日
发明者大卫·道格拉斯·弗里斯克 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1