功率测量系统、测量装置、负载终端以及设备控制系统的制作方法

文档序号:5863287阅读:106来源:国知局
专利名称:功率测量系统、测量装置、负载终端以及设备控制系统的制作方法
技术领域
本发明涉及一种以非接触的方式对一般家庭和店铺、中小建筑物等的电气设备所 消耗的功率进行测量的功率测量系统、构成功率测量系统的测量装置和负载终端以及测量 一般家庭和店铺、中小建筑物等的电气设备所消耗的功率并根据测量结果控制设备状态的 设备控制系统。
背景技术
以往,为了测量一般家庭和店铺、中小建筑物等的电气设备所消耗的功率,需要由 专业技术人员将电压变压器变流器安装于配电盘等而设置功率表(power meter)。另外,在 进行将需求系统(demand system)等设备的消耗功率限制在规定范围内的控制时,为了测 量功率,与所述同样地也需要由专业技术人员进行安装功率或功率量测量装置的工程。这 样,在引入这些系统时伴随着电气工程,因此存在如下问题在引入过程中需要由专业技术 人员进行施工,花费成本。另外,在将全部电气化设备引入到已建住宅时,由于室内电灯线 布线的电流限制而不得不放弃引入的情况较多。作为改进这些问题的以往例,有使用了非接触式的电压计的测定方法,该非接触 式电压计通过用导体包围作为测量对象的电线的护套从而构成电容器,用非接触电压计的 两个探针分别连接所述导体(电容器)与接地端,以非接触的方式测量在所述导体与接地 端之间流过的电流和电压。另外,设置用于算出电压的校正系数的单元,在电线的导电线 露出部与接地端之间直接连接以鳄鱼夹等连接于所述单元的电压测量用电线,测量对地电 压。然后,将通过该接触测量得到的电线的电压与由所述非接触电压计获取的电线的电压 进行比较,使用PLL回路自动地、或使用可变电容、可变电阻以手动方式求出电线电压的相 位系数和增益系数,并使用这些系数对以所述非接触方式测量得到的电压进行校正而算出 电压(例如参照专利文献1)。另外,已知如下的测量器为了简化工程,使构成闭磁路的电流传感器部与前端为 尖锐的形状的导电性电压检测部成为一体,以使传感器部分的安装变得容易(例如参照专 利文献2)。专利文献1 日本特开2002-55126号公报(第4页、图1 图2)专利文献2 日本特开2005-134233号公报(第6页 第7页、图1 图7)

发明内容
发明要解决的问题专利文献1所示的以往的非接触电压计如上所述设定通过接触测量而运算得到 的校正系数,以非接触的方式对测量电压进行校正来算出电压。然而,存在如下问题在设 置时需要进行基于接触方式的电压测量并对电压计输入其值的操作,且在设置时需要能够 操作这些设备的专业技术人员。另外,在专利文献2所示的以往的测量器中,记载了使电压和电流检测部的安装变容易的技术,但是实际上存在如下问题如果不简单化除测量部以外用于获取测量功率 的部分所消耗的功率的电气布线、作为用于取出测量值的单元的接口(下面有时称为I/F) 单元等,则无法防止错误布线、无法使测量器设置简单化。本发明是为了解决所述问题而完成的,第一目的在于提供一种如下的功率测量系 统、测量装置、负载终端以及设备控制系统在测量一般家庭和店铺、中小建筑物等的电气 设备所消耗的功率时,通过以非接触的方式测量电压和电流值,从而在设置工程中不需要 由电气工程师等具有专业技能的人员实施工程。另外,第二目的在于得到一种小型且廉价的功率测量装置和功率测量系统。用于解决问题的方案本发明所涉及的功率测量系统具备电压传感器,通过静电耦合以非接触的方式 检测电灯线的电压波形;电流传感器,通过电磁感应耦合以非接触的方式检测电灯线的电 流波形;测量装置,具有第一通信单元及与电压传感器和电流传感器连接的控制部;以及 与电灯线连接的负载终端,该负载终端具有具有规定值的负载;及测量部,测量流过负载 的电流的有效值,并根据得到的电流的有效值来计算电压的有效值,其中,负载终端的测量 部经由第二通信单元向测量装置发送电流的有效值和电压的有效值,测量装置的控制部根 据经由第一通信单元从负载终端接收到的电流的有效值和电压的有效值、以及从电压传感 器获取的电压波形和从电流传感器获取的电流波形,算出功率值。另外,本发明所涉及的功率测量装置具备电流检测器,检测连接有电气设备的电 路的电流;电路接触部,检测电路的电压;运算部,根据电流检测器的输出和电路接触部的 输出,计算电气设备的消耗功率;以及电源部,经由电路接触部从电路接收电力,并向运算 部提供电力,其中,电源部由电路和非绝缘的回路构成。发明的效果在本发明中,构成如下功率测量系统,该功率测量系统具备电压传感器,通过静 电耦合以非接触的方式检测电灯线的电压波形;电流传感器,通过电磁感应耦合以非接触 的方式检测电灯线的电流波形;测量装置,具有第一通信单元及与电压传感器和电流传感 器连接的控制部;以及与电灯线连接的负载终端,该负载终端具有具有规定值的负载;及 测量部,测量流过负载的电流的有效值,并根据得到的电流的有效值来计算电压的有效值, 其中,负载终端的测量部经由第二通信单元向测量装置发送电流的有效值和电压的有效 值,测量装置的控制部根据经由第一通信单元从负载终端接收到的电流的有效值和电压的 有效值、以及从电压传感器获取的电压波形和从电流传感器获取的电流波形,算出功率值, 并构成为以非接触的方式测量基础电灯线系统的功率,因此,在对基础电灯线设置功率测 量设备时不需要工程,通过引入功率消耗量的监视装置而能够以低成本引入人工进行的节 能、需求控制、消峰系统等,所以可期待促进这些系统的普及。另外,在功率测量装置内部设置了非绝缘结构的电源回路,因此能够廉价且容易 地设置功率测量装置,能够实现小型化。


图1是表示本发明的实施方式1中的功率测量系统的结构的图。图2是表示本发明的实施方式2中的功率测量系统的结构的图。
9
图3是表示本发明的实施方式3中的功率测量系统的结构的图。图4是表示本发明的实施方式4中的功率测量系统的结构的图。图5是表示本发明的实施方式5中的设备控制系统的结构的图。图6是表示本发明的实施方式6中的设备控制系统的结构的图。图7是表示本发明的实施方式7中的设备控制系统的结构的图。图8是表示本发明的实施方式8中的设备控制系统的结构的图。图9是表示本发明的实施方式9、11、12中的功率测量装置的结构例的图。图10是本发明的实施方式9 12中的功率测量装置的电源回路图。图11是表示本发明的实施方式9 12中的电流检测部的结构例的图。图12是表示本发明的实施方式9 12中的电流检测部的特性例的图。图13是表示本发明的实施方式9、11、12中的电流检测部的芯结构的图。图14是表示包括本发明的实施方式9、11、12中的功率测量装置的测量系统的结 构例的图。图15是表示本发明的实施方式10、11、12中的功率测量装置的结构例的图。图16是表示本发明的实施方式10、11、12中的功率测量装置的电流检测部的芯的 结构例的图。图17是表示包括本发明的实施方式10、11、12中的功率测量装置的测量系统的结 构例的图。附图标记说明1 电灯线2 电压传感器3 电流传感器4 测量装置5 控制部6 通信单元 7 蓄积部8 负载终端9 连接器10 测量部11 触点单元12 电压测量端子13 负 载14 通信单元15 控制器16 控制部17 显示操作部18 通信单元19 电气设备 20 设备主体21 通信单元101 功率测量装置102 电路103 电路接触部104 电 压检测部105 电源回路106 电流变压器107 电流检测部108 测量控制部109 无 线通信单元1010 电流限制器1012 测量控制器1013 电气设备1014 通信控制部 1015 通信接口部1016 夹具1017 磁性材料1041 电阻1042 二极管1043 电容器 1044 电压调节器1045 电容器。
具体实施例方式实施方式1.图1示出了本发明的实施方式1中的功率测量系统的结构图。在图1中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8进行通信的通信单元6构成,对控制部5连接所述电压传感器2和电流 传感器3,由控制部5进行功率运算。8是负载终端,通过插座和插头9而与电灯线1相连 接,由测量部10、具有规定值的电阻等负载13、用于闭合和断开电灯线1与负载13的连接 的触点单元11以及用于与测量装置4进行通信的通信单元14构成。
接着,使用图1说明本实施方式1的动作。在设置初期,测量装置4的控制部5经由通信单元6向负载终端8发送表示闭合 负载终端8的触点单元11的意思的指令。负载终端的测量部10在经由通信单元14接收 到表示使触点单元11 “闭合”的意思的指令时,闭合触点单元11而将负载13连接到电灯 线1,测量流过负载13的电流值(电流的有效值)并保存到内置存储器中。另外,测量部 10将所测量的电流值与负载13的阻抗相乘,计算电压值(电压的有效值)并保存到内置存 储器中。另一方面,测量装置4的控制部5使用电压传感器2,例如在商用频率的几个周期 等规定的期间获取此时的电压波形。另外,控制部5同时使用电流传感器3,例如在商用频 率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量并计算的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14接收 到监视请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压值。 测量装置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运算触 点单元11处于“闭合”时获取的电压波形和电流波形,算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和 电流波形,算出“断开”时的功率值Po,接着从Ps减去Po来算出与负载终端8的消耗功率 大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元11 的开闭和电压波形的获取、电流波形的获取,计算功率值Pd的平均值。在这种情况下,从重 复多次测量得到的功率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求 出降低了与负载终端8以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的 功率来作为测量装置4使用电压传感器2和电流传感器3测量得到的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数α,将由测量装置4进行功率运算时的 校正系数决定为α。Pr = α X Pdm.·. α = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数α来开始测量功率。在功率的测量中,通过对由电 压传感器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数 α,从而算出在电灯线1中消耗的功率。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率, 无需由专业技术人员进行的工程就能够实施功率测量。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、包含霍尔元件的磁电 转换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施方式中,以2线式记载了电灯线1,但是在单相3线式等的情况下, 在各相与中性线之间配置电压传感器,在各相配置电流传感器,另外,对各相的插座分别连 接一台负载终端,按每相求出校正系数,从而能够以相同的方式测量功率。实施方式2.图2示出了本发明的实施方式2中的功率测量系统的结构图。在图2中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8进行通信的通信单元6构成,对控制部5连接所述电压传感器2和电流 传感器3,由控制部5进行功率运算。8是负载终端,通过插座和插头9而与电灯线1相连 接,由测量部10、电压测量端子12、具有规定值的电阻等负载13、用于闭合和断开电灯线1 与负载13的连接的触点单元11以及用于与测量装置4进行通信的通信单元14构成。接着,使用图2说明本实施方式2的动作。在设置初期,测量装置4经由通信单元6向负载终端8发送闭合负载终端8的触点 单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元11“闭 合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,并测量流过负载13的 电流值而保存到内置存储器中。另外,测量部10测量电压测量端子12两端的电压值并保 存到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2,例如在商用频率 的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用电流传感器3,例 如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,释放触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14接收到监视 请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压值。测量装 置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运算触点单元 11处于“闭合”时获取的电压波形和电流波形,算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和 电流波形来算出“断开”时的功率值Po,接着从Ps减去Po来算出与负载终端8的消耗功率大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元11 的开闭和电压波形的获取、电流波形的获取,计算功率值Pd的平均值。在这种情况下,从重 复多次测量得到的功率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求 出降低了与负载终端8以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的 功率来作为测量装置4使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数α,将由测量装置4进行功率运算时的 校正系数决定为α。Pr = α XPdm.·. α = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数α来开始测量功率。在功率测量中,通过对由电压 传感器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数α, 从而算出在电灯线1中消耗的功率。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率, 无需由专业技术人员进行的工程就能够实施功率测量。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料 的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、包含霍尔元件的磁电 转换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施例中,以2线式记载了电灯线1,但是在单相3线式等的情况下,通 过在各相与中性线之间配置电压传感器,在各相配置电流传感器,另外对各相插座分别连 接一台负载终端,并按每相求出校正系数,从而能够以相同的方式测量功率。实施方式3.图3示出了本发明的实施方式3中的功率测量系统的结构图。在图3中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8进行通信的通信单元6构成,对控制部5连接所述电压传感器2和电流 传感器3,由控制部5进行功率运算。7是累计部,对规定时间的功率测量值进行累计来测 量功率量。8是负载终端,通过插座和插头9而与电灯线1相连接,由测量部10、具有规定 值的电阻等负载13、用于闭合和断开电灯线1与负载13的连接的触点单元11以及用于与 测量装置4进行通信的通信单元14构成。接着,使用图3说明本实施方式3的动作。
在设置初期,测量装置4经由通信单元6向负载终端8发送闭合负载终端8的触点 单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元11“闭 合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,测量流过负载13的电 流值并保存到内置存储器中。另外,测量部10将测量得到的电流值与负载13的阻抗相乘, 计算电压值并保存到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2, 例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用 电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量并计算得到的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14 接收到监视请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压 值。测量装置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运 算触点单元11处于“闭合”时获取的电压波形和电流波形,算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和 电流波形来算出“断开”时的功率值Po,接着从Ps减去Po来算出与负载终端8的消耗功率 大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元11 的开闭和电压波形的获取、电流波形的获取,计算功率值Pd的平均值。在这种情况下,从重 复多次测量得到的功率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求 出降低了与负载终端8以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的 功率来作为测量装置4使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数α,将由测量装置4进行功率运算时的 校正系数决定为α。Pr = α XPdm.·. α = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数α来开始测量功率。在功率测量中,通过对由电压 传感器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数α, 算出在电灯线1中消耗的功率。接着,控制部5向累计部7输入所计算出的在电灯线1中消耗的功率值,累计部7 在规定的时间蓄积该功率值,得到功率量。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率 量,无需由专业技术人员进行的工程就能够实施功率量测量。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、包含霍尔元件的磁电 转换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施例中,以2线式记载了电灯线1,但是在单相3线式等的情况下,在 各相与中性线之间配置电压传感器,在各相配置电流传感器,另外对各相的插座分别连接 一台负载终端,并按每相求出校正系数,从而能够以相同的方式测量功率量。实施方式4.图4示出了本发明的实施方式2中的功率测量系统的结构图。在图4中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8进行通信的通信单元6构成,对控制部5连接所述电压传感器2和电流 传感器3,由控制部5进行功率运算。7是累计部,对规定时间的功率测量值进行累计来测 量功率量。8是负载终端,通过插座和插头9而与电灯线1相连接,由测量部10、电压测量 端子12、具有规定值的电阻等负载13、用于闭合和断开电灯线1与负载13的连接的触点单 元11以及用于与测量装置4进行通信的通信单元14构成。接着,使用图4说明本实施方式4的动作。在设置初期,测量装置4经由通信单元6向负载终端8发送闭合负载终端8的触点 单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元11“闭 合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,测量流过负载13的电 流值并保存到内置存储器中。另外,测量部10测量电压测量端子12两端的电压值并保存 到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2,例如在商用频率的 几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用电流传感器3,例如 在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量得到的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14接收到 监视请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压值。测 量装置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运算触点 单元11处于“闭合”时获取的电压波形和电流波形,来算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和电流波形,来算出“断开”时的功率值Po,接着从Ps减去Po来算出与负载终端8的消耗功率 大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元11 的开闭和电压波形的获取、电流波形的获取,计算功率值Pd的平均值。在这种情况下,从重 复多次测量得到的功率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求 出降低了与负载终端8以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的 功率来作为测量装置4使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数a,将由测量装置4进行功率运算时的 校正系数决定为a。Pr = a X Pdm... a = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数a来开始测量功率。在功率测量中,对由电压传感 器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数a,从而 算出在电灯线1中消耗的功率。接着,控制部5向累计部7输入所计算出的在电灯线1中 消耗的功率值,累计部7在规定的时间蓄积该功率值,得到功率量。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率 量,无需由专业技术人员进行的工程就能够实施功率量测量。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料 的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、包含霍尔元件的磁电 转换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施例中,以2线式记载了电灯线1,但是在单相3线式等的情况下,在 各相与中性线之间配置电压传感器,在各相配置电流传感器,另外对各相的插座分别连接 一台负载终端,并按每相求出校正系数,从而能够以相同的方式测量功率量。实施方式5.图5示出了本发明的实施方式5中的设备控制系统的结构图。在图5中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8、其它终端进行通信的通信单元6构成,对控制部5连接所述电压传感器 2和电流传感器3,由控制部5进行功率运算。8是负载终端,通过插座和插头9而与电灯线 1相连接,由测量部10、具有规定值的电阻等负载13、用于闭合和断开电灯线1与负载13的 连接的触点单元11以及用于与测量装置4、其它终端进行通信的通信单元14构成。
15是控制器,由控制部16、显示操作部17、通信单元18构成,根据从测量装置4得 到的功率测量值等来控制电气设备19的状态。电气设备19由设备主体20和用于与控制 器进行通信的通信单元21构成。此外,电气设备19的方式既可以是设备主体20与通信单 元21成为一体的方式,也可以是通过适配器等方式连接通信单元21的方式。接着,使用图5说明本实施方式5的动作。测量装置4在设置初期经由通信单元6向负载终端8发送闭合负载终端8的触点 单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元11“闭 合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,测量流过负载13的电 流值并保存到内置存储器中。另外,测量部10将测量的电流值与负载13的阻抗相乘,计算 电压值并保存到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2,例如 在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用电流 传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量并计算的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14接收 到监视请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压值。 测量装置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运算触 点单元11 “闭合”时获取的电压波形和电流波形,来算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时所获取的电压波形 和电流波形,来算出“断开”时的功率值Po,接着从Ps减去Po来算出与负载终端8的消耗 功率大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元 11的开闭和电压波形的获取、电流波形的获取。在这种情况下,从重复多次测量得到的功 率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求出降低了与负载终端8 以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的功率来作为测量装置4 使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数a,将由测量装置4进行功率运算时的 校正系数决定为a。Pr = a X Pdm... a = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数a来开始测量功率。在功率测量中,对由电压传感 器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数a,从而 算出在电灯线1中消耗的功率。控制器15经由通信单元18以规定的时间间隔从测量装置4接收功率测量值。另外,控制器15经由通信单元18以规定的时间间隔从电气设备19接收电气设备19的运转 状况。另外,在电气设备19的动作状态由于设备主体20的操作等而被变更的情况下,在电 气设备19中,设备主体20经由通信单元21向控制器15发送状态变化的报告。这样,控制 器15掌握着所消耗的功率量和电气设备19的动作状况。另外,通过显示操作部17的操作, 对控制器15设定功率上限值和每个电气设备19的优先级。例如,在从测量装置4获取的 功率值超过所设定的功率量上限值的情况下,控制器15的控制部16根据对每个所述电气 设备19设定的优先级,对优先级低的电气设备19的设备主体的动作功率或电流值加以限 制,经由通信单元18向电气设备19发送控制信号使得功率值成为功率上限值以内。另外,在电气设备19处于运转状态且其它电气设备19想要开始动作的情况下,该 电气设备19向控制器15发送运转开始的意思的信息。此时,控制器15根据功率测量值和 开始运转的电气设备19的预先登记的消耗功率或根据运转信息测量得到的消耗功率,预 测该电气设备运转的情况下的功率值,例如在超过协定功率的情况下,经由通信单元18向 相应的电气设备19发送指令使得不允许该电气设备19运转、或者对动作功率值加以限制、 或者使已经处于运转中的电气设备19停止运转或者对其加以功率限制等,由此进行控制 使得全体的功率值成为规定值以下。如上所述,本设备控制系统实施电气设备的控制使得不超过一定量的功率值。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率, 无需由专业技术人员进行的工程,就能够构建在基于测量的功率值的规定功率值范围内对 电气设备进行运转控制的系统。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料 的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、包含霍尔元件的磁电 转换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施方式中,以2线式记载了电灯线1,但是在单相3线式等的情况下, 在各相与中性线之间配置电压传感器,在各相配置电流传感器,另外,对各相的插座分别连 接一台负载终端,按每相求出校正系数,从而能够以相同的方式测量功率,使用该方式同样 能够构成电气设备的运转控制系统。实施方式6.图6示出了本发明的实施方式6中的功率测量系统的结构图。在图6中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8、其它终端进行通信的通信单元6构成,对控制部5连接所述电压传感器 2和电流传感器3,由控制部5进行功率运算。8是负载终端,通过插座和插头9而与电灯线1相连接,由测量部10、电压测量端子12、具有规定值的电阻等负载13、用于闭合和断开电 灯线1与负载13的连接的触点单元11以及用于与测量装置4、其它终端进行通信的通信单 元14构成。15是控制器,由控制部16、显示操作部17、通信单元18构成,根据从测量装置4得 到的功率测量值等来控制电气设备19的状态。电气设备19由设备主体20和用于与控制 器进行通信的通信单元21构成。此外,电气设备19的方式既可以是设备主体20与通信单 元21成为一体的方式,也可以是通过适配器等方式连接通信单元21的方式。接着,使用图6说明本实施方式6的动作。测量装置4在设置初期经由通信单元6向负载终端8发送表示闭合负载终端8的 触点单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元 11 “闭合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,测量流过负载 13的电流值并保存到内置存储器中。另外,测量部10测量电压测量端子12两端的电压值 并保存到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2,例如在商用 频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用电流传感器 3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14接收到监视 请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压值。测量装 置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运算触点单元 11处于“闭合”时获取的电压波形和电流波形,来算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和电 流波形,来算出“断开”时的功率值Po,接着从Ps减去Po来算出与负载终端8的消耗功率 大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元11 的开闭和电压波形的获取、电流波形的获取,计算功率值Pd的平均值。在这种情况下,从重 复多次测量得到的功率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求 出降低了与负载终端8以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的 功率来作为测量装置4使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数a,将由测量装置4进行功率运算时的 校正系数决定为a。Pr = a XPdm... a = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数a来开始测量功率。在功率测量中,对由电压传感器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数a,从而 算出在电灯线1中消耗的功率。控制器15经由通信单元18以规定的时间间隔从测量装置4接收功率测量值。另 外,控制器15经由通信单元18以规定的时间间隔从电气设备19接收电气设备19的运转 状况。另外,在电气设备19的动作状态由于设备主体20的操作等而被变更的情况下,在电 气设备19中,设备主体20经由通信单元21向控制器15发送状态变化的报告。这样,控制 器15掌握着所消耗的功率量和电气设备19的动作状况。另外,通过显示操作部17的操作, 对控制器15设定功率上限值和每个电气设备19的优先级。例如,在从测量装置4获取的 功率值超过所设定的功率量上限值的情况下,控制器15的控制部16根据对每个所述电气 设备19设定的优先级,对优先级低的电气设备19的设备主体的动作功率或电流值加以限 制,经由通信单元18向电气设备19发送控制信号使得功率值成为功率上限值以内。另外,在电气设备19处于运转状态且其它电气设备19想要开始动作的情况下,该 电气设备19向控制器15发送运转开始的意思的信息。此时,控制器15根据功率测量值和 开始运转的电气设备19的预先登记的消耗功率或基于运转信息测量的消耗功率,预测该 电气设备运转的情况下的功率值,例如在超过协定功率的情况下,经由通信单元18向相应 的电气设备19发送指令使得不允许该电气设备19运转、或者对动作功率值加以限制、或者 使已经处于运转中的电气设备19停止运转或者对其加以功率限制等,从而进行控制使得 全体的功率值成为规定值以下。如上所述,本设备控制系统实施电气设备的控制使得不超过一定量的功率值。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率, 无需由专业技术人员进行的工程,就能够构建在基于所测量的功率值的规定功率值范围内 对电气设备进行运转控制的系统。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料 的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、包含霍尔元件的磁电 转换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施方式中,以2线式记载了电灯线1,但是在单相3线式等的情况下, 在各相与中性线之间配置电压传感器,在各相配置电流传感器,另外,对各相的插座分别连 接一台负载终端,按每相求出校正系数,由此能够以相同的方式测量功率,且使用该方式同 样能够构成电气设备的运转控制系统。实施方式7.图7示出了本发明的实施方式7中的设备控制系统的结构图。在图7中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8、其它终端进行通信的通信单元6构成,对控制部5连接所述电压传感器 2和电流传感器3,由控制部5进行功率运算。7是累计部,对规定时间的功率测量值进行累 计来测量功率量。8是负载终端,通过插座和插头9而与电灯线1相连接,由测量部10、具 有规定值的电阻等负载13、用于闭合和断开电灯线1与负载13的连接的触点单元11以及 用于与测量装置4进行通信的通信单元14构成。15是控制器,由控制部16、显示操作部17、通信单元18构成,根据从测量装置4得 到的功率测量值等来控制电气设备19的状态。电气设备19由设备主体20和用于与控制 器进行通信的通信单元21构成。此外,电气设备19的方式既可以是设备主体20与通信单 元21成为一体的方式,也可以是通过适配器等方式连接通信单元21的方式。接着,使用图7说明本实施方式7的动作。测量装置4在设置初期经由通信单元6向负载终端8发送闭合负载终端8的触点 单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元11“闭 合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,测量流过负载13的电 流值并保存到内置存储器中。另外,测量部10将所测量的电流值与负载13的阻抗相乘,计 算电压值并保存到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2,例 如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用电 流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量并计算得到的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14 接收到监视请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压 值。测量装置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运 算触点单元11处于“闭合”时获取的电压波形和电流波形,来算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和 电流波形,来算出“断开”时的功率值PO,接着从PS减去Po来算出与负载终端8的消耗功 率大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元 11的开闭和电压波形的获取、电流波形的获取。在这种情况下,从重复多次测量得到的功 率值中排除值与平均值大不相同的功率值,取剩余数据的平均等,求出降低了与负载终端8 以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的功率来作为测量装置4 使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数a,将由测量装置4进行功率运算时的 校正系数决定为a。Pr = a XPdm
... a = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数a来开始测量功率。在功率测量中,对由电压传感 器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数a,从而 算出在电灯线1中消耗的功率。接着,控制部5向累计部7输入所计算出的在电灯线1中消耗的功率值,累计部7 在规定的时间蓄积该功率值,得到功率量。控制器15经由通信单元18以规定的时间间隔从测量装置4接收功率量测量值。 另外,控制器15经由通信单元18以规定的时间间隔从电气设备19接收电气设备19的运 转状况。另外,在电气设备19的动作状态由于设备主体20的操作等而被变更的情况下,在 电气设备19中,设备主体20经由通信单元21向控制器15发送状态变化的报告。这样,控 制器15掌握着所消耗的功率量和电气设备19的动作状况。另外,通过显示操作部17的操 作,对控制器15设定功率量上限值和每个电气设备19的优先级。例如,在从测量装置4获 取的功率量超过所设定的功率量上限值的情况下,控制器15的控制部16根据对每个所述 电气设备19设定的优先级,对优先级低的电气设备19的设备主体的动作功率或电流值加 以限制,经由通信单元18向电气设备19发送控制信号使得功率量成为功率量上限值以内。另外,在电气设备19处于运转状态且其它电气设备19想要开始动作的情况下,该 电气设备19向控制器15发送运转开始的意思的信息。此时,控制器15根据功率量测量值 和开始运转的电气设备19的预先登记的消耗功率量或基于运转信息测量的消耗功率量, 预测该电气设备运转的情况下的功率量,例如在超过协定功率量的情况下,经由通信单元 18向相应的电气设备19发送指令使得不允许该电气设备19运转、或者对动作功率值加以 限制、或者使已经运转中的电气设备19停止运转或者对其功率加以功率限制等,由此进行 控制使得全体的功率值成为规定值以下。如上所述,本设备控制系统实施电气设备的控制使得不超过一定量的功率量。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率 量,无需由专业技术人员进行的工程就能够构建在基于所测量的功率量的规定功率量范围 内对电气设备进行运转控制的系统。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料 的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、霍尔元件等的磁电转 换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式 等也能够得到相同的功能、效果。另外,在本实施例中,以2线式记载了电灯线1,但是在单相3线式等的情况下,在 各相与中性线之间配置电压传感器,在各相配置电流传感器,另外,对各相的插座分别连接 一台负载终端,按每相求出校正系数,由此能够以相同的方式测量功率量,且使用该方式同 样能够构成电气设备的运转控制系统。
22
实施方式8.图8示出了本发明的实施方式8中的设备控制系统的结构图。在图8中,1是用 于向电气设备提供电力的电灯线,2是通过静电耦合来观测两条电灯线1之间的电压波形 的电压传感器,3是通过电磁耦合来观测由通过电气设备等的负载而流过电灯线1的电流 所产生的磁通并观测电流波形的电流传感器。在一般家庭中,该电压传感器2、电流传感器 3例如设置在配电盘的主断路器的室内侧布线连接部附近等。4是测量装置,由控制部5和 用于与负载终端8、其它终端进行通信的通信单元6构成,对控制部5连接所述电压传感器 2和电流传感器3,由控制部5进行功率运算。7是累计部,对规定时间的功率测量值进行累 计来测量功率量。8是负载终端,通过插座和插头9而与电灯线1相连接,由测量部10、电 压测量端子12、具有规定值的电阻等负载13、用于接通和断开电灯线1与负载13的连接的 触点单元11以及用于与测量装置4进行通信的通信单元14构成。15是控制器,由控制部16、显示操作部17、通信单元18构成,根据从测量装置4得 到的功率测量值等,控制电气设备19的状态。电气设备19由设备主体20和用于与控制器 进行通信的通信单元21构成。此外,电气设备19的方式既可以是设备主体20与通信单元 21成为一体的方式,也可以是通过适配器等方式连接通信单元21的方式。接着,使用图8说明本实施方式8的动作。测量装置4在设置初期经由通信单元6向负载终端8发送闭合负载终端8的触点 单元11的意思的指令。负载终端的测量部10在经由通信单元14接收到使触点单元11“闭 合”的意思的指令时,闭合触点单元11而将负载13连接到电灯线1,测量流过负载13的电 流值并保存到内置存储器中。另外,测量部10测量电压测量端子12两端的电压值并保存 到内置存储器中。另一方面,测量装置4的控制部5使用电压传感器2,例如在商用频率的 几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使用电流传感器3,例如 在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送使触点单元11“断 开”的意思的指令。负载终端8的测量部10在经由通信单元14接收到使触点单元11 “断 开”的意思的指令时,断开触点单元11。另一方面,测量装置4的控制部5使用电压传感器 2,例如在商用频率的几个周期等规定的期间获取此时的电压波形。另外,控制部5同时使 用电流传感器3,例如在商用频率的几个周期等规定的期间获取电流波形。接着,测量装置4的控制部5经由通信单元6向负载终端8发送利用所述方法测 量的电流值和电压值的监视请求。负载终端8的测量部10在经由通信单元14接收到监视 请求时,经由通信单元14向测量装置4发送内置存储器所保持的电流值和电压值。测量装 置4的控制部5在经由通信单元6从负载终端8接收到电流值和电压值时,运算触点单元 11处于“闭合”时获取的电压波形和电流波形,来算出“闭合”时的功率值Ps。接着,测量装置4的控制部5运算触点单元11处于“断开”时获取的电压波形和 电流波形,来算出“断开”时的功率值Po,接着从PS减去Po,从而算出与负载终端8的消耗 功率大致成比例的功率值Pd。测量装置4的控制部5重复多次进行负载终端8的触点单元 11的开闭和电压波形的获取、电流波形的获取,计算功率值Pd的平均值。在这种情况下,从 重复多次测量得到的功率值中排除值与平均值大不相同的功率值,取剩余数据的平均等, 求出降低了与负载终端8以外的电气设备的消耗功率变动相当的量的、负载终端8所消耗的功率来作为测量装置4使用电压传感器2和电流传感器3来测量的功率值Pdm。接着,控制部5根据从负载终端8得到的电流值和电压值,计算由负载终端8所消 耗的功率值Pr。控制部5利用式⑴求出校正系数a,将由测量装置4进行功率运算时的 校正系数决定为a。Pr = a XPdm... a = Pr/Pdm ... (1)以上是设置初期的动作。接着,说明测量功率时的动作。测量装置4通过决定校正系数a来开始测量功率。在功率测量中,对由电压传感 器2观测的电压波形与由电流传感器3观测的电流波形的相乘结果乘以校正系数a,从而 算出在电灯线1中消耗的功率。接着,控制部5向累计部7输入所计算出的在电灯线1中消耗的功率值,累计部7 在规定的时间蓄积该功率值,得到功率量。控制器15经由通信单元18以规定的时间间隔从测量装置4接收功率量测量值。 另外,控制器15经由通信单元18以规定的时间间隔从电气设备19接收电气设备19的运 转状况。另外,在电气设备19的动作状态由于设备主体20的操作等而被变更的情况下,在 电气设备19中,设备主体20经由通信单元21向控制器15发送状态变化的报告。这样,控 制器15掌握着所消耗的功率量和电气设备19的动作状况。另外,通过显示操作部17的操 作,对控制器15设定功率量上限值和每个电气设备19的优先级。例如,在从测量装置4获 取的功率量超过所设定的功率量上限值的情况下,控制器15的控制部16根据对每个所述 电气设备19设定的优先级,对优先级低的电气设备19的设备主体的动作功率或电流值加 以限制,经由通信单元18向电气设备19发送控制信号使得功率量成为功率量上限值以内。另外,在电气设备19处于运转状态且其它电气设备19想要开始动作的情况下,该 电气设备19向控制器15发送运转开始的意思的信息。此时,控制器15根据功率量测量值 和开始运转的电气设备19的预先登记的消耗功率量或根据运转信息测量的消耗功率量, 预测该电气设备运转的情况下的功率量,例如在超过协定功率量的情况下,经由通信单元 18向相应的电气设备19发送指令使得不允许该电气设备19运转、或者对动作功率值加以 限制、或者使已经运转中的电气设备19停止运转或者对其加以功率限制等,从而进行控制 使得全体的功率值成为规定值以下。如上所述,本设备控制系统实施电气设备的控制使得不超过一定量的功率量。如上所述,只是将负载终端8连接到插座等,另外将测量装置4配置在基础布线的 附近,并将非接触的电压传感器2和电流传感器3配置在电灯线1附近,就能够测量功率, 无需由专业技术人员进行的工程就能够构建在基于所测量的功率值的规定功率量范围内 对电气设备进行运转控制的系统。此外,虽然没有提及电压传感器2的材质,但是能够使用含有片状的金属性材料 的膜、分割金属环状的部件、金属制夹子、导电性片等。另外,关于电流传感器3,也能够利用 普通的空芯线圈、卷绕于分割芯的线圈、用膜基板等制造的膜状线圈、霍尔元件等的磁电转 换元件等将磁通转换为电信号的部件。另外,虽然没有特别指定所述通信部的方式,但是通信方式能够利用电力线传输 通信方式、无线通信方式、双线等有线通信方式,只要在可视范围内,使用红外线通信方式等也能够得到相同的功能、效果。另外,在本实施例中,以2线式记载了电灯线1,但是在单相3线式等的情况下,在 各相与中性线之间配置电压传感器,在各相配置电流传感器,另外对各相的插座分别连接 一台负载终端,按每相求出校正系数,从而能够以相同的方式测量功率量,且使用该方式同 样能够构成电气设备的运转控制系统。接着,详细说明负载终端8。实施方式9.图9示出了本发明的实施方式9中的功率测量装置101的结构图。该功率测量装 置101相当于图1 8的负载终端8。另外,在该图9中,省略了图1 8中的插头9和触 点单元11。在图9中,功率测量装置101包括电压检测部104,生成与经由导电性的电路 接触部103施加到单相3线式电路102的电压相应的信号;电源回路105,同样地经由导电 性的电路接触部103连接到电路,制作功率测量装置101进行动作所需的电源;电流变压器 106,由开磁路的磁性体芯和卷绕于该磁性体芯的线圈构成,配置于3线式单相电路102的 除中性线N之外的L1、L2的各线;电流检测部107,用于测量由电流变压器106得到的电流 信号;由个人计算机等构成的测量控制部108,根据与从电压检测部104得到的电路的电压 成比例的电压波形信号和与从电流检测部107得到的流过各个电路102的电流值成比例的 电流信号,通过运算而算出功率值;以及无线通信单元109,用于向外部发送由测量控制部 108测量的功率值等。此外,在图9的例子中,无线通信单元109由ZigBee Module (ZigBee模块)构成, 但是并不限于此。例如,既可以是红外线通信,也可以是无线LAN。另外,测量控制部108与 无线通信单元109之间通过串行输入输出(SI0)线进行连接,但是不限于此,也可以通过多 个线进行并行发送。此外,测量控制部108、电压检测部104和电流检测部107的组合相当于图1 8 中的负载终端8的控制部10与电阻13的组合,无线通信单元109相当于图1 8中的负 载终端8的通信单元14。图10是表示电源回路105的详细回路结构的图。在图中,1041是电阻,1042是整 流用二极管,1043是平滑用电容器,1044是使平滑后的脉动电流电压稳定为规定的直流电 压的电源调节器,1045是用于吸收负载电流的变动的电容器。电源回路105采用如下的非 绝缘性的结构经由与电路102相接触的电路接触部103,不通过交流变压器等绝缘单元而 连接到电路102。此外,电源回路105构成电源部,测量控制部108构成运算部,通信单元109构成 通信部,电流限制部1010构成电气断路器。图11是表示电流变压器106的原理的图。在图中,为了说明而示出了环状的闭磁 路芯的图,但是在本实施例中使用的电流变压器为图13所示的开磁路的结构。电流变压器 106构成为如下由用于得到与流过电路102的电线的电流IL成比例的电压值的检测线圈 和卷绕有流通规定的偏置电流ib的偏置线圈的芯构成,对芯施加规定的磁通,使得如图12 所示在由电流所产生的磁场与芯内的磁通密度相对于电流IL的变化呈线性的区域能够维 持动作点。图13是表示构成为开磁路的电流变压器106的结构和功率测量装置101的概要的图。功率测量装置101成为与电流限制器1010的端子部嵌合而设置的结构。电流变压 器106成为芯夹住除中性线N连接端子之外的L1和L2的布线的结构。电路接触部103成 为具有伸缩性且与LI、N、L2各个端子相接触的结构。如图14所示,如上所述构成的功率测量装置101被配置在电流限制器1010的端 子部,测量与电路102的各个L1-N相、L2-N相连接的电气设备103所消耗的功率,其测量 值经由无线通信单元109被发送到同样具有无线通信单元的测量控制器1012 (构成I/F单 元),从而进行功率测量。当功率测量装置101设置于电流限制器1010时,通过电路接触部 103而与电路102的L1-N相、L2-N相连接,向电源回路105输入商用频率的交流电压。在 电源回路105中,通过图10的电阻1041使该交流电压降低到规定的电压,通过二极管1042 进行半波整流,通过平滑电容器1043进行平滑化,在变换为包含规定的波动的直流电压之 后被输入到电压调节器1044,从该电压调节器1044向电压检测部104、电流检测部107、测 量控制部108以及无线通信单元109提供用于动作的电源。测量控制部108在通过接通电 源而自动复位之后,开始测量功率。关于该功率测量的开始,也可以根据经由无线通信单元 109接收到的来自测量控制器1012的命令来开始。接着,说明功率测量的动作。通过电压检测部104将振幅值变换为作为设备所允 许的输入电压范围、例如在将电源电压设为5V的情况下成为5V以下振幅的范围,对测量 控制部108输入电路102的1^14相、1^24相各自的电压乂1(0、乂2(0。同时,构成为开磁 路的电流变压器106分别测量流过L1和L2的电流,电流检测部107调整偏置电流ib使 得电流变压器106的输出电平成为图12所示的B-H曲线为线性的范围,并向测量控制部 108输入通过线路电流IL关于LI、L2相分别得到的电压电平Vil (t)、Vi2 (t)和偏置电流 值ibl(t)、ib2(t)。测量控制部108通过AD转换器等以规定的时间间隔分别读取所输入 的 VI (t)、V2 (t)、以及与电流成比例的 Vi 1 (t)、Vi2 (t)和 ibl (t)、ib2 (t)。LI相的电流值II (t)是从Vil (t)减去偏置部分ibl (t)而得到的值,II (t)= AVil (t)-ibl (t),其中,A是将通过线路电流IL得到的电压值变换为电流的常数。同样地,L2相的电流值I2(t)是I2(t) = AVi2(t)_ib2(t),其中,A是将通过线路 电流IL得到的电压值变换为电流的常数。利用L1相、L2相各自的电压值VI (t)、V2 (t),按照下式通过运算来计算功率。[式1] 这样计算出的功率值P1、P2经由无线通信单元109被传输到测量控制器1012,测 量控制器1012能够测量功率值。如上所述,功率测量装置101通过无线通信单元109向测量控制器发送测量数据, 因此不会错误布线而能够容易设置,另外,测量控制器(I/F单元)也构成为非接触的绝缘 结构,因此能够进行无触电等的安全的施工,而且电源回路105与电路之间的连接构成为 不使用绝缘元件的非绝缘型,因此能够低成本且容易地设置,回路规模也变小,能够实现小型化。
此外,在本实施方式中,由测量控制部进行功率值的计算,但是既可以构成为分别 计算PI、P2的累计值,也可以作为功率量表而发挥功能。而且,构成为能够从测量控制器 1012变更运算算法,构成为经由无线通信单元109向测量控制部108输入运算算法,由此能 够以同一结构构成为能够输出电压值、电流值各自的测量、有效功率、无效功率的测量等各 种测量值。此外,电流变压器106采用开磁路的结构,但是使用后述的图16所示的闭磁路的 结构也能够得到同一动作、同样的效果。此外,功率测量装置101具备通过电磁感应无线来传输功率和数据信号的第一线 圈、变换通过该第一线圈提供的功率的电源变换部以及对通过所述第一线圈而与测量控制 器1012之间交换的数据的通信进行控制的通信控制部,测量控制器1012的通信单元具备 通过电磁感应无线来传输功率和数据信号的第二线圈、接收通过该第二线圈从功率测量装 置101提供的功率的电源接收部、对通过所述第二线圈而与所述功率测量装置之间交换的 数据的通信进行控制的通信控制部以及通信I/F部1015。实施方式10图15示出了本发明的实施方式10中的功率测量装置的结构图。另外,图10和图 12还用于本实施方式10。在图15中,功率测量装置101包括电压检测部104,生成与经 由导电性的电路接触部103施加到单相3线式电路102的电压相应的信号;电源回路105, 同样地经由导电性的电路接触部103而与电路相连接,作成功率测量装置101进行动作所 需的电源;电流变压器106,由闭磁路的磁性体芯和卷绕于该芯的线圈构成,配置于3线式 单相的电路102的除中性线N之外的L1、L2的各线;电流检测部107,用于测量由电流变压 器106得到的电流信号;由个人计算机等构成的测量控制部108,根据与从电压检测部104 得到的电路的电压成比例的电压波形信号和与从电流检测部107得到的流过各个电路102 的电流值成比例的电流信号,通过运算而算出功率值;以及通信控制部1014,用于向外部 发送由测量控制部108测量的功率值等。通信控制部1014具有如下功能使用电磁感应无 线、光等非接触介质向具有LAN、RS232C、USB、模拟信号输出等中的任一个或多个I/F单元 的通信I/F部1015传送双方向数据信号和动作功率的供给。电源回路105的详细内容与实施方式9所示的图10相同,因此省略说明。另外, 在电流变压器106中,以闭磁路的方式构成了芯的形状,除此之外是相同的结构、动作,因 此省略说明。图16是表示构成为闭磁路的电流变压器106的结构和功率测量装置101的概要 的图。功率测量装置101成为与电流限制器1010的端子部嵌合而设置的结构。电流变压 器106成为芯夹住除中性线N连接端子之外的L1和L2的布线的结构。在用于嵌合的夹具 1016的下部配置有与芯相同的磁性材料1017,在嵌合时,由电流变压器106的芯材料和夹 具1016的磁性材料1017构成闭磁路。电路接触部103成为具有伸缩性且与L1、N、L2各个 端子相接触的结构。如图17所示,如上所述构成的功率测量装置101被配置在电流限制器1010的端 子部,测量与电路102的各个L1-N相、L2-N相连接的电气设备103所消耗的功率,其测量 值经由通信控制部1014和通信I/F部1015被发送到具有与通信I/F部相同的I/F单元而 连接的图17所示的测量控制器1012,进行功率测量。当功率测量装置101设置于电流限制器1010时,通过电路接触部103而与电路102的L1-N相、L2-N相连接,向电源回路105输 入商用频率的交流电压。在电源回路105中,通过图10的电阻1041使该交流电压降低到 规定的电压,通过二极管1042进行半波整流,并通过平滑电容器1043进行平滑化,在变换 为包含规定的波动的直流电压之后输入到电压调节器1044,从该电压调节器1044向电压 检测部104、电流检测部107、测量控制部108以及无线通信单元109提供用于动作的电源。 测量控制部108在通过接通电源而自动复位之后,开始测量功率。关于该功率测量的开始, 也可以根据经由通信I/F部1015和通信控制部1014接收到的来自测量控制器1012的命 令来开始。接着,说明功率测量的动作。通过电压检测部104将振幅值变换为作为设备所允 许的输入电压范围、例如在将电源电压设为5V的情况下成为5V以下振幅的范围,对测量 控制部108输入电路102的L1-N相、L2-N相各自的电压VI (t)、V2 (t)。同时,构成为开磁 路的电流变压器106分别测量流过L1和L2的电流,电流检测部107调整偏置电流ib使 得电流变压器106的输出电平成为图12所示的B-H曲线为线性的范围,并向测量控制部 108输入通过线路电流IL关于LI、L2相分别得到的电压电平Vil (t)、Vi2 (t)和偏置电流 值ibl(t)、ib2(t)。测量控制部108通过AD转换器等以规定的时间间隔分别读取所输入 的 VI (t)、V2 (t)、以及与电流成比例的 Vi 1 (t)、Vi2 (t)和 ibl (t)、ib2 (t)。LI相的电流值II (t)是从Vil (t)减去偏置部分的ibl (t)而得到的值,II (t)= AVil (t)-ibl (t),其中,A是将通过线路电流IL得到的电压值变换为电流的常数。同样地,L2相的电流值I2(t)是I2(t) = AVi2(t)_ib2(t),其中,A是将通过线路 电流IL得到的电压值变换为电流的常数。利用L1相、L2相各自的电压值VI (t)、V2 (t),按照下式通过运算来计算功率。[式2] 这样计算出的功率值P1、P2经由通信控制部1014和通信I/F部1015被传输到测 量控制器1012,测量控制器1012能够测量功率值。如上所述,功率测量装置101通过以非接触的方式绝缘的通信I/F部1015向测量 控制器发送测量数据,因此不会错误布线而能够容易设置,另外,通信I/F部1015也构成为 非接触的绝缘结构,因此能够进行无触电等的安全的施工,而且电源回路105与电路之间 的连接构成为不使用绝缘元件的非绝缘型,因此能够低成本且容易地设置,回路规模也变 小,能够实现小型化。此外,在本实施方式中,由测量控制部进行功率值的计算,但是既可以构成为分别 计算PI、P2的累计值,也可以作为功率量表而发挥功能。并且,构成为能够从测量控制器 1012变更运算算法,并构成为经由通信控制部1014和通信I/F部1015向测量控制部108输 入运算算法,由此能够以同一结构构成为能够输出电压值、电流值各自的测量、有效功率、 无效功率的测量等各种测量值。此外,电流变压器106采用闭磁路的结构,但是,使用开磁路的结构也能够得到同一动作、同样的效果。实施方式11.说明本发明的实施方式11中的功率测量装置的动作。此外,结构与实施方式9和 实施方式10相同,因此省略说明。本实施例所涉及的电压检测部104构成为除了商用频率 以外还能够检测从设备产生的高次谐波成分。另外,电流变压器106和电流检测部107也 同样地构成为除了商用频率以外还能够检测从设备产生的高次谐波成分。在如上所述构成的功率测量装置101中,用户或设置者在确认电气设备的动作和 电路102无异常之后,从测量控制器1012等向功率测量装置101发送正常的意思的信息。 功率测量装置101在规定的期间、例如2 3日左右观测电路102的L1-N、L2-N各相的高次 谐波信号,将高次谐波图案的特征量作为正常时的高次谐波信息而记录到测量控制部108 内。功率测量装置101除了进行普通的功率测量动作之外,还观测Ll-N、L2-N各相的高次 谐波信号,将所存储的特征量与所观测的高次谐波信号进行比较,在检测出不同的高次谐 波信号的情况下,通过无线通信单元109或通信控制部1014以及通信I/F部1015向测量 控制器1012报告该信息。测量控制器1012根据需要对用户输出设备劣化的警报。这样, 通过报告设备的经年劣化,能够安全地使用电气设备。实施方式12.说明本发明的实施方式12中的功率测量装置的动作。此外,结构与实施方式9和 实施方式10相同,因此省略说明。本实施方式所涉及的电压检测部104构成为除了商用频 率以外还能够检测从设备产生的高次谐波成分。另外,电流变压器106和电流检测部107 也同样地构成为除了商用频率以外还能够检测从设备产生的高次谐波成分。在如上所述构成的功率测量装置101中,除了进行普通的功率测量动作之外,还 观测Ll-N、L2-N各相的高次谐波信号,在检测出与存储在测量控制单元108中的电路的电 晕放电等插座等的放电、由设备的连接部的劣化引起的放电等的特征量一致的高次谐波信 号的情况下,通过无线通信单元109或通信控制部1014以及通信I/F部1015向测量控制 器1012报告该信息。测量控制器1012根据需要对用户输出电路劣化的警报。这样,通过报 告电路、设备连接部的经年劣化,用户能够实施修理等与该经年劣化对应的处理,能够安全 地使用电气设备。此外,在所述例子中,将特征量置于测量控制单元108内,进行异常判断, 但是即使构成为向测量控制器1012发送高次谐波的测量信号并在测量控制器1012内部具 有特征量来进行比较判断,也能够实现相同的动作和功能,能够得到相同的效果。另外,也 可以在测量控制器1012内部具有特征量,功率测量装置101在经由通信部109从测量控制 器1012向测量控制部108读入该特征量之后,由测量控制部108进行处理,得到相同的效^ o产业上的可利用性作为本发明的非接触功率测量系统和设备控制系统的应用例,列举出家庭用电气 化设备中的需求控制装置、消峰(peak cut)控制装置、中小建筑物和店铺用的设备管理系 统。另外,作为本发明的功率测量装置的应用例,列举出家庭用电气化设备中的需求 控制系统、能量管理系统、大厦和工厂等设备系统的能量管理、节能控制系统等。此外,在以上的说明中,“单元”能够置换为“部”、“装置”或“回路”。
权利要求
一种功率测量系统,其特征在于,具备电压传感器,通过静电耦合以非接触的方式检测电灯线的电压波形;电流传感器,通过电磁感应耦合以非接触的方式检测所述电灯线的电流波形;测量装置,具有第一通信单元及与所述电压传感器和所述电流传感器连接的控制部;以及与所述电灯线连接的负载终端,该负载终端具有具有规定值的负载;第二通信单元,与所述第一通信单元进行通信;及测量部,测量流过所述负载的电流的有效值,并根据得到的电流的有效值来计算电压的有效值,其中,所述负载终端的测量部经由所述第二通信单元向所述测量装置发送所述电流的有效值和电压的有效值,所述测量装置的控制部根据经由所述第一通信单元从所述负载终端接收到的电流的有效值和电压的有效值、以及从所述电压传感器获取的电压波形和从所述电流传感器获取的电流波形,算出功率值。
2.—种功率测量系统,其特征在于,具备电压传感器,通过静电耦合以非接触的方式检测电灯线的电压波形; 电流传感器,通过电磁感应耦合以非接触的方式检测所述电灯线的电流波形; 测量装置,具备第一通信单元及与所述电压传感器和所述电流传感器连接的控制部;以及与所述电灯线连接的负载终端,该负载终端具有具有规定值的负载;第二通信单元, 与所述第一通信单元进行通信;及测量部,测量流过所述负载的电流的有效值和所述电灯 线的电压的有效值,其中,所述负载终端的测量部经由所述第二通信单元向所述测量装置发送所述电流的 有效值和电压的有效值,所述测量装置的控制部根据经由所述第一通信单元从所述负载终端接收到的电流的 有效值和电压的有效值、以及从所述电压传感器获取的电压波形和从所述电流传感器获取 的电流波形,算出功率值。
3.—种功率测量系统,其特征在于,具备电压传感器,通过静电耦合以非接触的方式检测电灯线的电压波形; 电流传感器,通过电磁感应耦合以非接触的方式检测所述电灯线的电流波形; 测量装置,具备第一通信单元、与所述电压传感器和所述电流传感器连接的控制部、及 累计功率的累计部;以及与所述电灯线连接的负载终端,该负载终端具有具有规定值的负载;第二通信单元, 与所述第一通信单元进行通信;及测量部,测量流过所述负载的电流的有效值,并根据得到 的电流的有效值来计算电压的有效值,其中,所述负载终端的测量部经由所述第二通信单元向所述测量装置发送所述电流的 有效值和电压的有效值,所述测量装置的控制部根据经由所述第一通信单元从所述负载终端接收到的电流的 有效值和电压的有效值、以及从所述电压传感器获取的电压波形和从所述电流传感器获取 的电流波形,算出功率值,使所述累计部在规定的期间累计所述功率值。
4.一种功率测量系统,其特征在于,具备电压传感器,通过静电耦合以非接触的方式检测电灯线的电压波形; 电流传感器,通过电磁感应耦合以非接触的方式检测所述电灯线的电流波形; 测量装置,具备第一通信单元、与所述电压传感器和所述电流传感器连接的控制部、及 累计功率的累计部;以及与所述电灯线连接的负载终端,该负载终端具有具有规定值的负载;第二通信单元, 与所述第一通信单元进行通信;及测量部,测量流过所述负载的电流的有效值和所述电灯 线的电压的有效值,其中,所述负载终端的测量部经由所述第二通信单元向所述测量装置发送所述电流的 有效值和电压的有效值,所述测量装置的控制部根据经由所述第一通信单元从所述负载终端接收到的电流的 有效值和电压的有效值、以及从所述电压传感器获取的电压波形和从所述电流传感器获取 的电流波形,算出功率值,使所述累计部在规定的期间累计所述功率值。
5.根据权利要求1 4中的任一项所述的功率测量系统,其特征在于, 所述终端装置具备电流检测器,检测连接有电气设备的电路的电流; 电路接触部,检测所述电路的电压;运算部,根据所述电流检测器的输出和所述电路接触部的输出,计算所述电气设备的 消耗功率;以及电源部,经由所述电路接触部从所述电路接收电力,并向所述运算部提供电力, 其中,所述电源部由所述电路和非绝缘的回路构成。
6.根据权利要求5所述的功率测量系统,其特征在于,所述终端装置具备通信部,该通信部与外部的测量控制器进行无线通信等非接触通
7.根据权利要求5或6所述的功率测量系统,其特征在于,所述电流检测部由以开磁路构成的电流变压器和以闭磁路构成的电流变压器中的至 少一方构成。
8.根据权利要求7所述的功率测量系统,其特征在于,在所述终端装置中,所述电流变压器具备负载电流检测线圈和偏压施加用线圈。
9.根据权利要求5 8中的任一项所述的功率测量系统,其特征在于,所述终端装置具备电流测量部,将所述电流检测器的输出变换为用于输入到所述运 算部的信号;以及电压测量部,将所述电路接触部的输出变换为用于输入到所述运算部的信号,所述电压测量部具有第一高次谐波检测单元,该第一高次谐波检测单元检测商用频率 以上的高次谐波成分,所述电流测量部具有第二高次谐波检测单元,该第二高次谐波检测单元检测所述高次 谐波成分,所述运算部具有通过所述电路直接放电而产生的高频信号的特征量,将所述第一高次 谐波检测单元与第二高次谐波检测单元中的至少一方与所述特征量进行比较,在符合规定的必要条件的情况下,经由所述通信部向外部的测量控制器发送电路劣化的警告信号,促 使输出警报。
10.根据权利要求9所述的功率测量系统,其特征在于,代替所述运算部而具备如下运算部该运算部具有设备在正常时产生的高频信号的特 征量,将所述第一高次谐波检测单元和第二高次谐波检测单元中的至少一方与所述特征量 进行比较,在符合规定的必要条件的情况下,经由所述通信部向所述测量控制器发送电路 劣化的警告信号。
11.根据权利要求5或10所述的功率测量装置,其特征在于, 所述高频信号的特征量被预先编入到运算部中。
12.根据权利要求9或10所述的功率测量系统,其特征在于,经由所述通信部从所述测量控制器向所述运算部读入所述高频信号的特征量。
13.根据权利要求5 12中的任一项所述的功率测量系统,其特征在于,通过将所述电路接触部嵌合到电气断路器所具有的所述电路的端子板从而安装到所 述电气断路器,其中,该电气断路器具有所述电路的所述端子板及对所述电路的连接与断 路进行切换控制的开关。
14.根据权利要求5 13中的任一项所述的功率测量系统,其特征在于, 所述测量装置是具有与所述终端装置进行通信的通信单元的测量控制器,所述终端装置的通信部具备第一线圈,通过电磁感应无线来传输功率和数据信号; 电源变换部,变换经由该第一线圈提供的功率;以及通信控制部,对经由所述第一线圈而与 所述测量控制器之间交换的数据的通信进行控制,所述测量控制器的通信单元具备第二线圈,通过电磁感应无线传输功率和数据信号; 电源接收部,接收经由该第二线圈从所述功率测量装置提供的功率;通信控制部,对经由所 述第二线圈而与所述功率测量装置之间交换的数据的通信进行控制;以及通信I/F部。
15.根据权利要求14所述的功率测量系统,其特征在于, 所述通信I/F部由LAN回路构成。
16.根据权利要求14所述的功率测量系统,其特征在于, 所述通信I/F部由USB回路构成。
17.根据权利要求14所述的功率测量系统,其特征在于, 所述通信I/F部由RS232C回路构成。
18.根据权利要求14所述的功率测量系统,其特征在于, 所述通信I/F部由模拟输出回路构成。
19.根据权利要求9 13中的任一项所述的功率测量系统,其特征在于,所述测量装置是具有与所述终端装置进行通信的通信单元、以及警报输出单元的测量 控制器,所述测量控制器在经由通信单元从所述功率测量装置接收到所述电路劣化的警告信 号时,向所述警报输出单元输出警报。
20.根据权利要求1 19中的任一项所述的功率测量系统,其特征在于, 所述测量装置具有存储单元,所述测量装置的控制部在设置初期时从所述负载终端接收到所述电流的有效值和电压的有效值时,根据所述电流的有效值和电压的有效值算出第一功率值,根据从所述电流 传感器获取的电流波形和从所述电压传感器获取的电压波形算出第二功率值,根据所述第 一功率值和所述第二功率值算出校正系数并保存到所述存储单元中,在测量功率时,根据从所述电流传感器获取的电流波形、从所述电压传感器获取的电 压波形以及存储在所述存储单元中的校正系数,算出所述负载终端的功率值。
21.根据权利要求1 19中的任一项所述的功率测量系统,其特征在于,所述负载终端与所述电灯线连接,并具备具有规定值的负载和将所述电灯线与所述负 载之间的布线进行断开或闭合的触点单元,所述测量装置的控制部在设置初期时经由所述第一通信单元向所述负载终端发送第 一命令,所述负载终端的测量部在经由所述第二通信单元从所述测量装置接收到所述第一 命令时,闭合所述触点单元来获取流过所述负载的电流的有效值和所述电灯线的电压的有 效值,所述测量装置的控制部此时从所述电流传感器获取第一电流波形,从所述电压传感器 获取第一电压波形,接着,所述测量装置的控制部经由所述第一通信单元向所述负载终端发送第二命令, 所述负载终端的测量部在经由所述第二通信单元从所述测量装置接收到所述第二命令时, 断开所述触点单元,所述测量装置的控制部此时从所述电流传感器获取第二电流波形,从所述电压传感器 获取第二电压波形,接着,所述测量装置的控制部经由所述第一通信单元向所述负载终端发送第三命令, 所述负载终端的测量部在经由所述第二通信单元从所述测量装置接收到所述第三命令时, 经由所述第二通信单元向所述测量装置发送所述电流的有效值和电压的有效值,所述测量装置的控制部根据所述第一电流波形和所述第一电压波形算出第一功率值, 根据所述第二电流波形和所述第二电压波形算出第二功率值,根据所述第一功率值与所述 第二功率值之差来算出第三功率值,根据经由所述第一通信单元从所述负载终端接收到的 所述电流的有效值和电压的有效值算出第四功率值,根据所述第三功率值和所述第四功率 值算出校正系数。
22.一种测量装置,其特征在于,具备控制部,与电压传感器和电流传感器连接,其中,所述电压传感器通过静电耦合以非接 触的方式检测电灯线的电压波形,所述电流传感器通过电磁感应耦合以非接触的方式检测 所述电灯线的电流波形;以及存储单元,存储具有规定值的校正系数,其中,所述控制部根据所述电压传感器检测出的电压波形、所述电流传感器检测出的 电流波形以及所述存储单元中存储的校正系数,算出电灯线的功率值。
23.一种测量装置,其特征在于,具备控制部,与电压传感器和电流传感器连接,其中,所述电压传感器通过静电耦合以非接 触的方式检测电灯线的电压波形,所述电流传感器通过电磁感应耦合以非接触的方式检测 所述电灯线的电流波形;以及存储单元,其中,所述控制部在设置初期时根据从外部的负载终端获取的电流的有效值和电压的 有效值、以及所述电压传感器检测出的电压波形和所述电流传感器检测出的电流波形,算 出校正系数并保存到所述存储单元中,在测量功率时,根据所述电压传感器检测出的电压波形、所述电流传感器检测出的电 流波形以及所述存储单元中存储的校正系数,算出所述电灯线的功率值。
24.一种测量装置,其特征在于,具备控制部,与电压传感器和电流传感器连接,其中,所述电压传感器通过静电耦合以非接 触的方式检测电灯线的电压波形,所述电流传感器通过电磁感应耦合以非接触的方式检测 所述电灯线的电流波形; 存储单元;以及 通信单元,其中,所述控制部在设置初期时,经由所述通信单元向外部的负载终端发送数据请求, 在经由所述通信单元从所述外部的负载终端接收到电流的有效值和电压的有效值时,根据 所接收到的电流的有效值和电压的有效值、以及所述电压传感器检测出的电压波形和所述 电流传感器检测出的电流波形,算出校正系数并保存到所述存储单元中,在测量功率时,所述控制部根据所述电压传感器检测出的电压波形、所述电流传感器 检测出的电流波形以及所述存储单元中存储的校正系数,算出所述电灯线的功率值。
25.一种负载终端,其特征在于, 该负载终端与电灯线连接,并具备具有规定值的负载、将所述电灯线与所述负载之间的布线进行断开或闭合的 触点单元、测量部、通信单元以及存储单元,所述测量部在经由所述通信单元从外部的测量装置接收到第一命令时,闭合所述触点 单元而获取流过所述负载的电流的有效值和所述电灯线的电压的有效值并保存到所述存 储单元中,在经由所述通信单元从所述外部的测量装置接收到第二命令时,断开所述触点单元, 在经由所述通信单元从所述外部的测量装置接收到第三命令时,经由所述通信单元向 所述外部的测量装置发送所述存储单元中保存的电流的有效值和电压的有效值。
26.一种设备控制系统,其特征在于,具备权利要求1 21中的任一项所述的功率测量系统; 至少一个具有主体和第三通信单元的设备;以及控制器,具有与所述第一通信单元和所述第三通信单元进行通信的第四通信单元、控 制所述设备的设备控制部、以及显示操作部,其中,所述控制器根据来自所述测量装置的功率测量值或累计的功率量测量值,控制 所述设备。
27.根据权利要求26所述的设备控制系统,其特征在于,所述第一 第四通信单元的至少一个的通信方式是电力线传输通信方式。
28.根据权利要求26所述的设备控制系统,其特征在于,所述第一 第四通信单元的至少一个的通信方式是无线通信方式。
29.根据权利要求26所述的设备控制系统,其特征在于,所述第一 第四通信单元的至少一个的通信方式是有线通信方式。
30.根据权利要求26所述的设备控制系统,其特征在于,所述第一 第四通信单元的至少一个的通信方式是红外线通信方式。
全文摘要
提供一种在设置工程时不需要由电气工程师等具有专业技能的人员进行工程的功率测量系统、测量装置、负载终端以及设备控制系统。电压传感器(2)以非接触的方式检测电灯线(1)的电压波形,电流传感器(3)以非接触的方式获取所述电灯线的电流波形。负载终端(8)的测量部(10)使触点单元(11)进行动作而将电灯线(1)与电压测量端子(12)进行连接,测量从电灯线(1)流过负载(13)的电流,根据得到的电流值和负载(13)算出电压值。当负载终端(8)的测量部(10)根据来自测量装置(4)的请求而经由通信单元(14)向测量装置(4)发送所测量的电流值和算出的电压值时,测量装置(4)的控制部(5)经由通信单元(6)从负载终端(8)接收电流值和电压值,根据该电流值和电压值、从电压传感器(2)获取的电压波形和从电流传感器(3)获取的电流波形算出功率值。
文档编号G01R21/06GK101925826SQ20098010284
公开日2010年12月22日 申请日期2009年2月4日 优先权日2008年2月6日
发明者久代纪之, 樋熊利康, 矢部正明 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1