分析反应期间的间歇检测的制作方法

文档序号:5865784阅读:500来源:国知局
专利名称:分析反应期间的间歇检测的制作方法
分析反应期间的间歇检测相关申请的交叉引用本申请是2009年3月7日提交的美国专利申请12/413,2 的继续申请,其要求 2008年9月M日提交的美国临时申请号61/099,696,2008年12月19日提交的美国临时申请号61/139,402的权益。其全部公开内容全部在此出于所有目的完整引用以供参考。本申请还涉及2008年3月观日提交的美国专利申请61/072,160,2009年3月 27日提交的美国专利申请号12/383,855和2009年3月27日提交的美国专利申请号 12/413,258,其全部公开内容全部在此出于所有目的完整引用以供参考。有关联邦资助研究的声明无
背景技术
在分析化学、生物化学和生物学领域中,广泛使用光学可检测的标记性基团,尤其是那些具有高量子产率的基团,例如荧光或化学发光基团。特别是通过提供高度可见的与特定反应有关的信号,人们能够更好地监测反应和任何该反应的可能效应物。这样的分析是基因组学、诊断学、药物研究和相关领域中生命科学研究的基础工具。通常在反应物量相对于所研究的反应所需量远远过量的情况下进行这样的分析。 这种过量的结果是提供了高度可检测性,以及补偿由于检测系统导致的任何损失,以及能够进行信号检测,而对反应物的影响最小。例如,基于荧光标记基团的分析通常需要使用针对反应混合物的激发辐射源,以激发荧光标记基团,然后可对其进行单独检测。然而,使用光学可检测标记基团的一个缺点是单独存在或在与如荧光基团等其它成分存在下,化学和生物化学反应物长时间接触这样的光源,会损伤这些反应物。这种缺陷的传统解决方案是使得存在的反应物远远过量,使得未损伤的反应物分子数远超损伤的反应物分子,从而使得光诱导损伤的效果最小化或消除。目前使用的各种分析技术已偏离了传统技术。特别是,许多反应基于越来越小量的试剂,例如在微流体或纳米流体反应容器中或通道中,或在“单分子”分析中。这样低的反应物体积在许多高通量应用,例如微阵列中日益重要。采用较小反应物体积,挑战了光学检测系统的使用。当使用较小反应物体积时,对反应物的损伤会成问题,例如来自接触荧光检测光源的损伤,而且对于特定分析的操作来说也有巨大的影响。在其它情况下,其它反应条件可能影响反应的延伸能力、速率、可靠性或持续时间。在许多情况下,这些不同反应或环境条件的效应可随着时间降低系统性能。这在例如包括能够使多种不同反应成分接触光能的荧光试剂的反应的实时分析中特别有害。另外,较小的反应体积可导致对施加光能产生的信号量的限制。另外,在合成-测序应用中,额外的挑战是开发对单个分子上的模板核酸的不连续部分进行有效测序的方法。在含有高度重复序列和/或长达成百上千个核苷酸的模板核酸中,例如某些基因组DNA片段,这种挑战更为加剧。从单个模板的这种不连续读数的困难会对构建长模板的共有序列的尝试产生阻碍,例如在基因组测序计划中的。因此,能够提高反应性能,例如能提高一感兴趣反应的延伸能力、速率、可靠性、或持续时间的方法和系统将对目前可得的方法和组合物提供有用的改善。例如,能够在某种程度上减轻感兴趣的反应中的光诱导损伤和/或提高各种其它反应的性能标准的方法、装置和系统是特别有用的。

发明内容
总的说,本文提供的方法利用间歇检测分析反应,从反应过程中的不同时间收集可靠数据;如果当检测持续整个反应时,这些数据会较难,或者不能被分析。特别是,某些检测法会导致反应成分的损伤,而这种间歇检测能够避免,或至少延迟损伤,从而能在更晚的阶段时还能检测反应。例如,如果检测法导致聚合酶延伸能力降低,那么间歇检测可以在模板核酸的不连续区域内收集数据,在模板上这些区域与持续检测下可达到的位置相比,离聚合酶的初始结合位点延伸要远得多。另外,一些检测法限制了在一个反应中可能产生的数据量或反应时间长短。间歇检测这样的反应能够在反应不同阶段收集该数据,从而提高了研究人员在反应不同阶段进行数据收集的灵活性。在某些方面,本发明特别适用于实时分析反应,即在反应过程中的定性。在一些方面,本发明特别适用于在分析反应中监测的单分子或分子复合物进行定性,例如单个酶、核苷酸、多核苷酸或其复合物。在某些方面,本发明针对从单个核酸模板的不连续部分获得序列数据的方法、装置和系统。该方法一般包括提供含有聚合酶、模板和引物序列,以及不同类型的核苷酸或核苷酸类似物的可监测测序反应物,这些核苷酸或核苷酸类似物在模板指导的引物延伸反应中由聚合酶掺入。通常,至少一种或多种,或全部核苷酸或核苷酸类似物都包含可检测部分,能够在掺入时或掺入后被识别。在本发明的情况下,在第一组反应条件下的第一阶段反应过程中获得模板核酸第一部分的序列数据,第一组反应条件包括至少一个导致反应性能降低的反应条件,但其可能导致掺入的核苷酸被检测。在反应的第二阶段,可降低性能的影响被消除或削弱,可能导致不能从模板核酸第二部分获得序列数据或是能力降低,但是模板核酸的第二部分与第一部分是连续的。然后,导致性能降低的反应条件被恢复,在反应的第三阶段获得模板核酸第三部分的序列数据,但是序列的第三部分并不与序列第一部分连续,而是与第二部分连续。反应第二阶段中,降低性能的影响的消除或减弱可能是通过改变或缩短一个或多个造成反应性能下降的反应条件实现的,例如,通过改变一个或多个反应条件(例如温度、PH、接触辐射、物理操纵等),特别是,可涉及改变与检测反应的一个或多个方面或产物有关的反应条件。然而,在优选例中,具有可检测性的核苷酸或核苷酸类似物在反应的所有阶段存在于反应混合物中,包括降低性能的影响被消除或减弱的那些阶段。 因此,在这样的实施方式中的第二阶段改变的反应条件并不包括除去或稀释这些可检测核苷酸或核苷酸类似物。在一些方面,本发明一般涉及增强光照反应性能的方法、装置和系统。本文所用的术语“光照反应”指接触光学能源的反应。在一些优选例中,光照反应包括一种或多种荧光或发荧光反应物。通常,提供光照以观察反应物或产物的产生和/或消耗,反应物或产物具有特别的光学性质以显示其存在,例如在反应混合物或其组成中吸光度谱和/或发射光谱的迁移。在一些方面,增强光照反应的性能意味着提高反应的延伸能力、速率、可靠性和/ 或持续时间。例如,提高光照反应的性能可涉及在反应过程中降低或限制光诱导损伤的效果。术语“光诱导损伤”一般指光照对反应中的一种或多种试剂的任何直接或间接的影响,导致对反应的不良影响。在一些方面,本发明的对分析反应定性的方法包括制备反应混合物,引发其中的分析反应,使反应混合物在分析反应过程中的度过至少一段检测期和至少一个非检测期, 收集检测期和非检测期的数据,并将合并所收集的数据以对分析反应定性。在一些实施例中,分析反应包括一种酶,与其在持续光照下的分析反应中的性能相比,该酶表现出性能的改进,这样的改进涉及各种酶活性方面,例如分析反应的延伸能力、可靠性、速率、持续时间等。在某些实施方式中,用终止或暂停点控制酶活性,这样的终止或暂停点可能包括例如大型光易降解基团、链结合基团、非天然碱基和本领域技术人员熟知的其它基团。在一些优选例中,一个或多个检测期是光照期,而一个或多个非检测期是非光照期。在一些优选实施例中,对多个位于固相载体上的分析反应进行定性,优选是以本文他处描述的配合形式。在一些优选例中,分析反应是测序反应,在检测期内,而不在非检测期内从核酸模板产生序列读数。例如,分析反应可包含至少两个或多个检测期,并可从单核酸模板产生多个不连续的读数。在一些实施例中,单核酸模板长至少100个碱基和/或包含多个重复序列。在一些实施例中,测序反应含有单核酸模板通过一纳米孔的通道,而在其它实施例中测序反应包含聚合酶的引物延伸。分析可任选的是实时监测的持续反应,即在持续反应的过程中。在优选例中,这样的持续反应是由持续酶进行的,该酶能够重复执行其催化功能,从而完成反应的多个顺序步骤。例如,持续聚合反应可包括聚合酶将多个核苷酸或核苷酸类似物重复掺入,只要在反应混合物内这些对于聚合酶是可得的,例如,不在模板核酸上停下。这样的持续聚合反应可通过掺入核苷酸或核苷酸类似物阻止,这些核苷酸或核苷酸类似物含有封闭额外掺入事件的基团,例如某些标记基团或其它化学修饰物。在一些优选例中,分析反应包括至少一种含有可检测标记的成分,例如荧光标记的核苷酸。在一些实施例中,标记的组分存在于分析反应的整个过程中,即同时存在于检测和非检测期内。该方法还可包含光学系统,以在检测期内收集数据,但可任选的不在非检测期内收集数据。在一些方面,本发明的方法包括提供一种基材,其上置有反应混合物,在反应过程中对基材上的反应混合物用激发辐射照射多个不连续的时期,从而使得反应混合物获得间歇激发光照。在一些实施例中,反应混合物包含第一反应物和第二反应物,其中对第一反应物的光诱导损伤是第一反应物和第二反应物在激发光照下的相互作用的结果。在一些实施例中,该方法还包括监测光照期间第一和第二反应物之间的反应,并且收集其产生的数据。 在一些实施例中,反应是引物延伸反应和/或第一反应物是聚合酶。在一些实施例中,第二反应物是发荧光或荧光分子。在另一个方面,方法有益于通过进行间歇光照,而不是恒定光照,减少了光照反应中的光诱导损伤。例如,本发明的一些方法监测反应混合物,其含有至少一种酶和酶的荧光或发荧光底物,其中酶和底物之间在激发光照下的相互作用可导致酶活性改变,例如,如果这样的激发光照存在一段持续的时间。这样的方法可包括将间歇激发光照导向第一观察区域第一段时间,它比间歇光照条件下光诱导损伤阈值期要短,但比恒定光照条件下光诱导的损伤阈值要长。如此,本发明的某些方面通过间歇灭活激发光源,延长了分析反应的光诱导损伤的阈值期,因为间歇光照下的光诱导损伤阈值期比恒定光照下的光诱导损伤阈值期要长。在一个相关方面,本发明还提供了进行酶反应的方法,包括在第一观察区内提供酶,使酶与酶的荧光或发荧光底物接触,导致激发辐射,并检测一段时间内来自第一观察区的信号,这段时间短于间歇光照条件下光诱导损伤阈值期,但长于恒定光照条件下的光诱导损伤阈值期。在另一个方面,本发明提供了监测引物延伸反应的方法,包括在第一观察区内提供聚合酶,使聚合酶与至少第一荧光或发荧光核苷酸类似物接触,并在一段时间内监测第一观察区响应激发辐射的光照从第一观察区发射的荧光信号,这段时间短于间歇光照条件下光诱导损伤阈值期,但长于恒定光照条件下的光诱导损伤阈值期。另外,本发明提供了从单个核酸模板分子产生多个不连续序列读数的方法。这些方法一般包括制备含有模板分子、聚合酶、和一组差别标记的核苷酸或核苷酸类似物的反应混合物,其中这组核苷酸或核苷酸类似物包含天然核酸碱基(A、T、C和G)每一种的至少一种核苷酸或核苷酸类似物。引发聚合反应,聚合酶开始持续将标记过的核苷酸或核苷酸类似物掺入新生的核酸链,在该掺入过程中,通过光学手段检测掺入事件,以监测反应,从而产生第一序列读数。在随后的一步中,标记过的核苷酸或类似物被未标记的结构式或核苷酸类似物替换,聚合能够继续进行,而不检测掺入事件。随后,未标记的核苷酸或类似物被标记过的核苷酸或核苷酸类似物替换,使聚合再次继续,实时检测掺入事件,从而产生与第一序列读数不连续的第二序列读数。用标记过替换未标记的,用未标记替换标记过的,核苷酸或核苷酸类似物的替换可以重复多次,以产生多个不连续的序列读数,当标记过的核苷酸或核苷酸类似物掺入新生链并实时检测这种掺入时,就产生其中的一个读数。在一些方面,本发明的装置可包括一个固相载体(例如基材),其具有观察区,固定在观察区内的第一反应物,位于观察区内的第二反应物,以及使观察区接受至少一段光照期和至少一个非光照期的部件。在一些实施例中,第一和第二反应物之间在激发光照下的相互作用导致对第一反应物的光诱导损伤,而且观察区接受间歇光照减轻了光诱导损伤。在一些实施例中,第一反应物是酶(例如聚合酶),第二反应物(例如核苷酸)具有可检测标记(例如荧光标记),和/或观察区在零模式波导内。使观察区接受一个或多个光照和非光照期的部件可包括例如激光、激光二极管、发光二极管、紫外光灯泡、白光源、遮光膜、衍射光栅、成阵列的波导光栅、光纤、光学开关、镜子、透镜、平行光管、光衰减器、滤光器、棱镜、平面波导、波片、延迟器、与基材整合的可移动支架、和可移动的光源。该装置还可包含在至少一个光照期内收集数据的部件,例如与包含机器可读介质的机器可操纵性整合的光学系统,介质上可以写入和存储这些数据。在其它方面,本发明提供了对分析反应进行间歇检测的系统,包括位于固相载体上的用于分析反应的试剂;用于接受固相载体的支承台;位于能与固相载体的至少一部分进行光通讯的光学系统,用于检测其上产生的信号;一种使固相载体的所述部分经历至少一个检测期和至少一个非检测期的部件;可操纵性整合在支承台上或光学系统的平移系统,用于使光学系统和固相载体之一相对于对方移动;和与光学系统可操纵性整合的数据处理系统。在一些优选例中,分析系统是测序系统和/或固相载体包括至少一个零模式波导。在其它方面,本发明提供了分析当照射比光诱导损伤阈值期长的时间,易受光诱导损伤的光照反应的系统,其包含其上置有反应试剂的固相载体,支持固相载体,配置成接受该固相载体的支承台,其位置与固相载体的一部分光学通讯的光学系统,以对固相载体的部分进行光照和检测其发出的信号,使固相载体经历至少一个检测期和至少一个非检测期的部件,和可操作性连接于支承台或光学系统的平移系统,使得光学系统和固相载体之
一相对于另一移动。在本发明的其它方面,提供了机器执行方法,用于将核苷酸序列读数数据转化成共有序列数据,其中对模板核酸的目标区域进行多次测序产生核苷酸序列读数,共有序列数据代表了模板核酸最可能的真实序列。这样的机器执行方法可包括多个步骤,例如a) 用局部比对方法将核苷酸序列数据对目标序列进行作图,所述比对方法产生一组局部比对值,包含最佳局部比对和次优局部比对;b)对局部比对组进行计数;C)构建权重定向图,其中局部比对组中的每个局部比对都表示成一个结点,从而在权重定向图中产生一组结点; d)如果配对代表模板核酸的可能重建,在权重定向图中的结点对之间画框;e)对步骤d中画出的框指定权重,其中给定框的给定权重代表给定的框连接的给定结点对确实是模板核酸的重建的对数可能值;f)为权重定向图中每一个结点寻找最短路径,从而为权重定向图产生一组最短路径;g)对最短路径进行分级,以确定最佳比对;和h)将步骤a_g的结果储存在机器可读介质上。在一些实施例中,机器执行方法的步骤是通过机器执行的用户界面进行的,该机器包括储存在机器可读介质中的指令和执行指令的处理器。还提供了计算机程序产品,其包括计算机可用介质,其具有体现于其中的计算机可读程序编码,所述计算机可读程序编码能够被执行,以实现本发明的机器执行方法,和计算机可读介质,在其上储存方法步骤的结果。本发明提供了进行分析反应,例如持续分析反应的方法,包括准备含有分析反应成分的反应混合物,其中至少一种成分是可检测成分,其在分析反应中的一个或多个检测期内可被检测,和其中至少一种成分是计时成分,其在分析反应中的一个或多个非检测期内可被检测。该方法还包括引发反应混合物中的分析反应,使分析反应进行;同时使其经历至少一个检测期和至少一个非检测期,其中计时成分和可检测成分都存在。在一些实施例中,在检测期间,可检测成分响应激发光照发射可检测信号,在非检测期间,所述可检测成分不发射可检测信号,但是计时成分发出计时信号。在检测期间收集可检测信号,在非检测期间收集计时信号,例如,使用光学系统。可任选的,还可在检测期和非检测期间都收集计时信号。在一些优选例中,在检测期间实时收集检测数据,在非检测期间实时收集非检测数据,检测数据和非检测数据都用于对分析反应定性。在一些实施例中,检测期和非检测期之间的转变不涉及在分析反应的进程中替换和/或添加反应成分,在其它实施例中转变涉及替换和/或添加反应成分,例如通过反应混合物交换。在一些优选例中,多个分析反应位于固相载体上,受到间歇光照,受到监测以收集数据,并基于收集的数据被定性。可检测成分和计时成分通常与分析反应中的不同分子连接。例如,在分析反应混合物中的,可检测成分可以与第一亚组的核苷酸类似物连接,计时成分可以与第二亚组的核苷酸类似物连接。另外,可检测成分和计时成分可以连接在分析反应中的单个分子上, 例如单个核苷酸或核苷酸类似物上。可检测成分与计时成分可都含有可检测标记(例如发光、荧光或发荧光标记,包括例如发光量子点),和在一些实施例中,含有不同的可检测标记,例如具有不同吸收峰。
在一些实施例中,根据本发明进行的分析反应包括至少一种酶,例如聚合酶、连接酶、核糖体、核酸酶和/或激酶。在一些实施例中,在分析反应中设计暂停或停止点以控制酶活性。可通过经历至少一个检测期和至少一个非检测期改变分析反应的许多方面,这些方面包括但不限于例如酶活性的延伸能力、可靠性、速率和持续时间。在一些优选例中,分析反应是测序反应,包括单核苷酸模板,其在检测期内通过检测可检测成分产生序列读数,而在非检测期内,由于暂停检测可检测成分而不产生序列读数。这样的测序反应通常包括至少两个或三个检测期,从单核酸模板产生多个不连续的序列读数。在一些实施例中,模板包括多个重复或互补序列。在一些实施例中,测序反应包括使单核酸或与其互补的新生链通过纳米孔。在一些优选例中,测序反应包括聚合酶引物延伸,所述可检测成分与核苷酸或核苷类似物连接。在一些实施例中,计时成分与聚合酶连接,可任选的可以是多组分标记,例如FRET标记。在一些方面,本发明提供了在光照反应中减轻光诱导破坏的方法,包括准备含有第一反应物和第二反应物的反应混合物,其中反应物之间在激发光照下相互作用,导致对第一反应物一定量的光诱导损伤。对经光照的反应间歇激发光照,其特征是最大光照期然后是改变而仍存在的光照期。间歇激发光照与持续最大激发光照下的光照反应相比,减少在光照反应期间对第一反应物的光诱导损伤,因此减弱对第一反应物的光诱导损伤。在一些优选例中,光照反应是引物延伸反应。在一些优选例中,第一反应物是酶,例如聚合酶或连接酶。在一些优选例中,第二反应物是荧光或发荧光分子。在一些实施例中,改变的激发光照是比最大激发光照的强度低的激发光照。在一些实施例中,一组光源提供了最大激发光照,而这组光源中的一个亚组提供了改变的激发光照。在其他方面,本发明提供了一种对模板核酸测序的方法,包括使模板核酸甲基化, 产生至少一个甲基化碱基;切下甲基化碱基,在模板核酸中产生至少一个脱碱基位点;让引物退火连接到模板核酸上;使模板核酸接触聚合酶,促使引物以模板依赖方式延伸;实时监测引物延伸,产生与模板核酸互补的核苷酸序列;使引物延伸,直到聚合酶遇到脱碱基位点,此时聚合酶在模板核酸上停下;通过使聚合酶绕过脱碱基位点重新引发引物延伸。重复监测、延伸和重新引发步骤,直到产生和收集所需数量的核苷酸序列读数;随后分析所需数量的核苷酸序列读数,以确定模板核酸序列。在一些实施例中,接触步骤在检测期内发生,或检测期紧随接触步骤。在一些实施例中,在聚合酶在模板上暂停一次或多次之前,检测期终止且非检测期开始。在一些实施例中,非检测期与一个或多个重新引发步骤同时终止,或紧随期后。在一些实施例中,重新引发步骤包括对聚合酶引入芘,其中聚合酶在新生相对链(nascent strand opposite)中掺入芘,因此在模板中与脱碱基位点“配对”。在一些优选例中,模板核酸是环状核酸,聚合酶在引物延伸过程中的同一脱碱基位点暂停多次。 在其它实施例中,该方法还包括当收集到所需长度的核苷酸序列读数时结束监测,例如通过除去或改变激发光照。可任选的,所需长度可以小于模板核酸的长度。另外,监测可以在重新引发引物延伸后或与重新引发同时进行。在另一个方面,本发明提供了一种进行光照反应的方法,包括准备反应混合物,其包含多个光学可检测成分,其能基于各自发射的信号彼此区分;引发光照反应;维持光照反应进行的条件,同时使反应混合物在光照反应持续期间经历至少一次最大光照期和至少一次改变的光照期。在一些优选例中,可光学检测的成分的至少一部分在最大光照期和改
14变的光照期间都可检测。在一些实施例中,最大光照期的特征是第一激发辐射强度,而改变的光照期的特征是第二激发辐射强度,第一激发辐射强度比第二激发辐射强度高。在一些优选例中,全部光学可检测成分都在最大和改变的光照期内可检测,而且能够在最大光照期内彼此区分,但在改变的光照期内不可被区分。在一些实施例中,最大光照期包括使反应混合物接触一组激发辐射波长,改变的光照期包括使反应混合物接触所述激发辐射波长组的亚组。在一些优选例中,全部光学可检测的成分都在最大光照期间可被检测和被区分,但仅所述光学可检测的组分的一亚组可在改变的光照期内被检测。在一些实施例中,在改变的光照期间引发光照反应,然后经历最大光照期,其中在改变的光照期中收集的数据被用于最大光照期间收集的数据的统计分析。例如,光照反应是多核苷酸测序反应,其可在改变的光照期内产生序列读数,随后用于产生序列骨架,以装配最大光照期间收集的序列读数。另外,或可任选的,光照反应是针对模板的测序反应,所述在改变的光照期间收集的序列读数被用于确定改变的光照期间聚合酶移位的速率。本发明的一些实施例包括进行多次光照反应,每次都在最大光照期间接触一组激发辐射波长,但在改变的光照期间接触所述激发辐射波长组的不同亚组,从而对于多次光照反应中的每一次,光学可检测成分中一个独特的亚组可在改变的光照期内被检测。换言之,对于两个这样的光照反应,虽然所有可任选的可检测成分都在其各自最大光照期内可被检测,但在每个反应中仅有光学可检测成分的一个亚组被检测,而第一反应中可检测的亚组优选与第二反应中可检测的亚组不同。


图1提供了分析反应的间歇光照的示范性实施例,光照在反应引发之前(A)或之后⑶引发。图2提供了用间歇光照对多个光照反应进行分析的示范性例子,包括描述了在固相载体上排列的多个反应(A)和来自本发明的一些实施例的预示数据(B)。图3提供了用间歇光照在固相载体上㈧和遮光膜⑶对多个光照反应进行分析的示范性例子。图(C)描述了来自本发明一些实施例的预示性数据。图4提供了用于本发明的方法的遮光膜的其它例子,包括能够照明反应物列(的遮光膜(A)和能够照明在一行或一列中的每个其它反应的遮光膜(B)。图5说明了本发明的一个方面,其中用间歇光照在一个固相载体上对多个样品进行分析。图5A说明了一个包含四个信号区的固相载体,每个信号区包含不同样品。图5B 说明了设计成选择性光照基材的遮光膜。图5C和5D显示了在固相载体上遮光膜的不同位置。图6提供了示意图,显示在序列比对基质中的路径,代表来自SMARTbell 模板的测序数据。图7显示了假设的指向图。图8提供了单分子合成-测序反应得到的数据。图8A提供了在反应起始时开始的两分钟间隔(即0-120秒)的数据。图8B提供了在300-420秒时的第二个两分钟间隔的数据。图8c提供了在600-720秒时的第三个两分钟间隔的数据。图9示意性描述了用于本发明的方法、装置和系统的一个系统的实施例。
图10提供了示意图,代表在利用间歇光照的测序反应过程中聚合酶活性对模板核酸不同部分的速率图11提供了示意图,代表在利用间歇光照的测序反应过程中聚合酶活性对模板核酸不同部分的速率。图12提供了利用间歇光照测序反应过程中实现的对模板核酸物理覆盖的分布, 其中A显示用不能对被排除的参比序列作图的序列读数(及其部分)对参照序列作图,而 B显示了类似的作图,其还包括对应于不存在于参比序列中的模板内的插入的序列读数。图13提供了利用间歇光照测序反应中产生的序列读数提供的物理覆盖的分布, 其跨越约401Λ的模板核酸。图14提供了本文产生的序列装配和参比序列之间比对的序列点状图。
具体实施例方式除非另外定义,否则本文使用的所有技术和科学术语的意思与本发明所属领域的普通技术人员所共知的一样。所有在本文中提到的出版物在此出于描述的目的引入本文以供参考,而所公开的在出版物中描述的装置、配方和方法可能与本文所述的发明相关使用。应注意到,本文和所附权利要求书所用的单数形式“一个”、“一种”和“这种”包括复数含义,除非另有明确说明。因此,例如,提到“一种聚合酶”可以指一种试剂或试剂的混合物,而提到“一种方法”可包括引用本领域技术人员已知的等价步骤和方法等。当提供一个数值范围时,应理解在本发明的范围内包括该范围上下限之间的每一个中间值,以及在该提到的范围内的任何其它所提到的或中间数值。所述较小范围内可独立地包含这些较小范围的上下限,它们也属于本发明范围,除非明确地排除所述范围的上下限。所述范围包括一个或两个限值时,排除这一个或两个所包括限值的范围也包括在本发明范围中。在以下说明部分,陈述了大量细节以便更好地理解本发明。但是,对本领域技术人员显而易见的是,本发明可以在没有这些具体细节中的一些或全部的情况下进行。在其它情况下,为了避免混淆本发明,并没有描述本领域技术人员熟知的公知特征和方法。虽然也可采用与本文所述相似或等同的任何方法和材料实施或测试本发明,但下面描述了优选的方法和材料。I.概述总的说,本文提供的方法、装置和系统利用间歇检测分析反应,作为从反应过程中的不同时间收集可靠数据的手段;如果当检测持续整个反应时,这些数据会较难、或者不能被分析。特别是,某些检测法可能导致反应成分的损伤,而这种间歇检测能够避免,或至少延迟损伤,从而能在更晚的阶段时还能检测反应。例如,如果检测法导致聚合酶延伸能力降低,那么间歇检测可以在模板核酸的不连续区域内收集数据,这些区域在模板上与持续检测下可达到的相比,离聚合酶的初始结合位点延伸要远得多。另外,一些检测法限制了在一个反应中可能产生的数据量或反应时间长短。间歇检测这样的反应能够在反应不同阶段收集该数据,从而提高了研究人员在反应不同阶段进行数据收集的灵活性。在某些方面,本发明特别适用于实时分析反应,即在反应过程中的定性。在一些方面,本发明特别适用于在分析反应中监测的单分子或分子复合物定性,例如单个酶、核苷酸、多核苷酸或其复合物。在某些方面,本发明针对从单个核酸模板的不连续部分获得序列数据的方法、装置和系统。该方法一般包括提供含有聚合酶、模板和引物序列,以及不同类型的核苷酸或核苷酸类似物的可监测测序反应物,这些核苷酸或核苷酸类似物在模板指导的引物延伸反应中由聚合酶掺入。通常,至少一种或多种,或全部核苷酸或核苷酸类似物都包含可检测部分,能够在掺入时或掺入后被识别。在本发明的情况下,在第一组反应条件下的第一阶段反应过程中获得模板核酸第一部分的序列数据,第一组反应条件包括至少一个导致反应性能降低的反应条件,但其可能导致掺入的核苷酸被检测。在反应的第二阶段,可降低性能的影响被消除或削弱,可能导致不能从模板核酸第二部分获得序列数据或能力降低,但是模板核酸的第二部分与第一部分是连续的。然后,导致性能降低的反应条件被恢复,在反应的第三阶段获得模板核酸第三部分的序列数据,但是序列的第三部分并不与序列第一部分连续,而是与第二部分连续。反应第二阶段中,降低性能的影响的消除或减弱可能是通过改变或缩短一个或多个造成反应性能下降的反应条件实现的,例如,通过改变一个或多个反应条件(例如温度、 PH、接触辐射、物理操纵等),特别是,可涉及改变与检测反应的一个或多个方面或产物有关的反应条件。例如,第二阶段中反应条件的这种改变可导致反应速率升高,例如,加速模板核酸通过纳米孔的过程;或可能减少反应成分接触有害辐射或其它与反应产物的检测有关的反应条件。然而,在优选例中,具有可检测性的核苷酸或核苷酸类似物在反应的所有阶段存在于反应混合物中,包括降低性能的影响被消除或减弱的那些阶段。因此,在这样的实施方式中的第二阶段改变的反应条件并不包括除去或稀释这些可检测核苷酸或核苷酸类似物。本文所用的“间歇检测”一般指在反应过程中间歇进行的监测反应的手段。间歇检测可指间歇使用一种或多种监测法,但不必须指所有监测给定反应的方法都是间歇停止的。例如,监测一种或多种核苷酸掺入,以产生核苷酸序列读数可以间歇停止,而测序反应的其它方面可以持续监测,例如温度、反应时间、PH等。在一些实施例中,间歇检测是通过间歇或差异光照给定的反应实现的,例如使用光照系统检测反应产物和/或进程的反应。虽然本发明的各方面在本文中用使用间歇光照的实施例进行了描述,应理解在本发明的方法中也可以使用通过其它手段(例如电化学、放射化学等)的可行间歇检测。类似的,进行间歇检测法的反应阶段可以被称作“检测期”,而不进行间歇检测的反应阶段可被称作“非检测期”。在光照反应中,这些时期也可分别被称作“光照期”和“非光照期”,虽然可以理解术语“非光照期”包括其中存在光照,但是与“光照期”中的光照相比经过改变的时期。例如, 非光照期的特征可以是完全不存在光照,或者光照经改变,包括但不限于波长、频率、强度和/或光源数的改变。另外或可任选的,被光源激发的反应成分可以改变或从反应混合物中被除去,以产生非光照期。例如,光照期过程中检测的荧光染料可以从反应混合物中被除去(例如通过缓冲液交换),从而产生非光照期,其中即使存在激发光源,荧光染料也不能被检测。在另一个实施例中,非光照期可表示光照反应中的一段时间,其中在光照期中发生的一类基于光照的检测不发生,例如,掺入新生链中的荧光标记的核苷酸类型不被识别或记录。在一些方面,本发明一般涉及进行光照反应的改良方法、装置和系统。本文所用的术语“光照反应”指接触光学能源的反应。通常,提供光照以观察反应物或产物的产生和 /或消耗,反应物或产物具有特别的光学性质以显示其存在,例如在反应混合物或其组成中
17吸光度谱和/或发射光谱的迁移。在一些优选例中,光照反应包括一种或多种发荧光或荧光成分。根据本发明的一些方法,这种经光照的分析中是间歇检测(例如数据收集)对于特定反应典型收集的一个或多个方面的数据。例如,对于核苷酸测序反应典型收集的数据方面包括核苷酸序列数据、读数质量数据、信号对背景比、反应速率和持续时间,对于反应可靠性的测定值,反应时间等。在一些优选例中,核苷酸序列数据在持续的测序反应中被反复收集,以产生模板核酸分子的至少两个或多个不连续区域的核苷酸序列读数。这些反复序列读数获取可以通过所用的测序技术以各种方式实现。例如,在利用产生指示碱基位置的身份的信号的发光成分的测序方法中,重复序列数据收集可以通过除去或改变光源(或与光源有关的反应),用发光成分替代不产生信号的未标记成分,或中断实验系统中的信号获得来实现。在一些优选例中,这样的光照反应可以光照一段时间,以实现分析的有效性能。传统上,光照反应是从开始到结束一直光照的,反应数据可靠收集的时间是由在恒定光照下的反应进程决定的(用延伸能力、速率、可靠性、持续时间等测定)。一些反应对这种恒定光照敏感,可能导致其性能(例如延伸能力)下降,从而阻止了在反应的随后阶段(即如果反应不受光照可能会发生的阶段)数据的收集。本发明提供了进行光照反应的方法,包括使反应接受间歇光照。这种间歇光照可以提高反应性能(例如延伸能力、速率、可靠性、持续时间等),从而能产生在恒定光照下不能收集的数据,例如那些来自进行中的反应的较后阶段,在恒定光照下进程受到破坏的数据。例如,在掺入测序反应中,使用间歇激发光照可提高延伸能力,其优点是提供了离聚合酶结合/起始位点比恒定接触激发光照的反应更远的序列读数。另外,本发明的一个目的是在一个反应中提供来自一条核酸模板不连续区域的序列数据。其它市售平台已经尝试通过例如复杂的克隆和测序策略获得这样的不连续序列数据。本发明提供了相对于这些策略明显的优势,即提供一种简单和经济的方案,能够用于各种平台,对于光照的单分子掺入测序反应特别有用。在优选例中,本发明所用的光照反应是核酸测序反应,例如掺入测序反应。在优选例中,这些光照反应分析一个分子,产生与该单分子相关的核苷酸序列数据。例如, 可对单个核酸模板进行掺入测序反应,产生对应于核酸模板的核苷酸序列的一个或多个序列读数。对于这些单分子测序的详细讨论,见例如美国专利号6,056,661,6, 917,726, 7,033,764,7,052,847,7,056,676,7,170,050,7,361,466,7,416,844 ;出版的美国专利申请号 2007-0134128 和 2003/0044781 ;以及M. J. Levene, J. Korlach, S. W. Turner,M. Foquet, H. G. Craighead, W. W. Webb, SCIENCE 299 :682-686, 2003 年 1 月,高浓度下单分子分析的零模式波导,所有其内容在此完整弓丨入以供参考。在一些实施例中,多个单核酸模板被单独分析,通常同时产生多个对应于多个核酸模板的核苷酸序列的多个序列读数。在一些优选例中,多个核酸模板包括至少两个核酸模板,其包括相同的核苷酸序列,因此这两个核酸模板的分析产生重叠的序列读数。在一些优选例中,至少一个核酸模板适合在一个序列读数中产生重复序列读数,例如通过复制、有义和反义序列和/或环状化。本发明的一些方面涉及产生核酸模板(例如染色体、基因组或其部分)的序列骨架的方法、装置和系统。本文所用的序列骨架指一组序列读数,其延伸跨越核酸模板的至少一部分。在一些实施例中,这样的序列骨架用于产生核酸模板的共有序列。在一些实施例中,核酸模板非常大,例如长至少100、1000、10000、100000或更多个碱基或碱基对。在一些
实施例中,序列骨架和/或共有序列基于核酸模板至少一部分上至少1-,2-,5_,10-, 20-, 50-, 100-,200-,500_,或1000-倍的覆盖。在一些优选例中,核酸部分是核酸模板总长度的至少约 10%, 20%, 30%,40%, 50%,60%, 70%,80%,90%,^; 100%。在某些方面,本发明特别适合散布有重复元件的核酸模板的测序。这些重复元件代表了测序策略产生的片段装配中后处理和计算上的主要困难,尤其是那些读数长度太短,不能跨越到重复区域外的测序策略。例如,人T-细胞受体基因座包含了胰蛋白酶原基因的5-倍重复,其长41Λρ,拷贝间有3-5 %的差异。因此,不能提高跨越含有基因座的单分子至少201Λ的核苷酸信息的测序策略将难于提供该基因座的共有序列。另外,Alu重复 (约300bp的逆转座子)也有问题,因为它们聚集在一起,且占到模板序列的50-60%,拷贝彼此之间变化为5-15%。人基因座含有估计一百万个Alu重复和200000个LINE元件(平均长度约IOOObp),分别粗略占整个基因组的10%和5%。在一些实施例中,本方法实现了有效和准确的对包含这些重复序列的长模板的序列测定,部分是由于本发明的方法不单单依赖于序列重叠来产生共有序列,而是包括聚合酶在模板核酸上的预期位置有关的信息, 从而将特定的序列读数与模板核酸上的特定位置联系起来。这大大促进了序列读数的准确装配,从而产生序列骨架和/或共有序列。本发明的一些方面涉及在光照掺入测序反应中通过在反应过程中除去激发光照, 然后重新引发激发光照产生多个序列读数的方法、装置和系统,这些序列读数彼此在单个核酸模板上是相隔的(即不连续的)。序列读数仅仅在激发光照存在期间产生,导致在单核酸模板得到的序列读数之间在激发光照不存在的期间产生“缺口”,但在“暗处”新生核苷酸的掺入仍然继续。由此,特定模板核酸产生的序列读数的数目与激发光源存在期的数目是相等的。本发明的一些方面涉及从多个包含相同核苷酸序列的核酸模板产生多个序列读数的方法、装置和系统。在一些实施例中,多个序列读数并不全部来自核酸模板的同一区域。在一些实施例中,在多个序列读数中有重叠。在一些实施例中,从多个核酸模板的每一个产生一个序列读数,而在其它实施例中多个不连续序列读数是来自多个核酸模板的每一个。在一些优选例中,来自多条核酸模板的每一条的多个不连续序列读数一起延伸,跨越核酸模板,从而能够合并提供核酸模板中相同核苷酸序列的共有序列。在一些实施例中,共有序列基于同一核苷酸序列的至少2_,5_,10-, 20-, 50-, 100-, 200-, 500-,或1000-倍的覆盖。在一些实施例中,相同核苷酸序列代表核酸模板的至少10^,20^,30^,40^,50%, 60%, 70%,80%,90%,^; 100%。本发明的一些方面涉及在光照反应,特别是使用荧光或发荧光反应物的反应中减少或限制光诱导损伤的方法、装置和系统。术语“光诱导损伤” 一般指光照对反应中的一种或多种试剂的任何直接或间接的影响,导致对反应的不良影响。不受操作的特定理论或机制所限,一些光照反应受到可能阻碍反应持续的光诱导损伤,例如通过损伤反应成分,例如酶、辅因子、模板等。如此,光照反应的光照可以直接或间接对反应延伸能力造成不良影响, 可根据反应持续的各种特征,例如延伸能力、速率、可靠性、持续时间等测定这种影响。本发明提供了使光照反应接受间歇光照的方法,其减少了反应过程中给定时间处的光诱导损伤量,使得反应能进行得比恒定接触光照时要久。
19
在一些实施例中,本文的方法还可包括在光照反应中加入一种或多种光诱导损伤减轻剂(例如三重状态的淬灭剂和/或自由基淬灭剂)。这些光损伤减轻剂是本领域技术人员公知的。光诱导损伤和相关化合物、组合物、方法、装置和系统的进一步讨论另见美国出版号2007016017 (2006年12月1日提交)和美国临时申请系列号61/116,048 (2008年 11月19日提交),在此出于全部目的完整引用,以供参考。II.分析反应的间歇光照本发明的一些方面一般涉及进行光照的分析的改良方法。术语“光照分析”和“光照反应”可以互换使用,通常指在光照下(例如用激发辐射)发生的分析反应,从而评估发光(例如荧光)反应物和/或产物的产生、消耗和/或转变。本文所用术语“反应物”和“试剂”可以互换使用。本文所用的术语“激发光照”和“激发辐射”互换使用。在一些实施例中,光照反应是测序反应,例如掺入测序反应。在一些实施例中,光照反应设计成分析单个分子,例如通过使分子与任何其它要分析的和/或存在于反应混合中的其它分子光学可分辨。在一些实施例中,反应的一种或多种成分易于受到激发辐射源直接或间接引起的光诱导损伤。在一些优选例中,光照反应在光照过程中接受间歇激发辐射。在一些优选例中,掺入测序反应在聚合反应的过程中接受间歇激发辐射,以从单个核酸模板产生多个不连续序列读数。在一些方面,本文的方法提供了相对于现用的对例如人基因组等大模板核酸测序的方法的优点。例如,传统鸟枪测序法对核酸片段进行测序,并分析得到的基因信息的重叠和与已知序列的相似性,以构建模板核酸的完整序列。鸟枪法的一个缺点是如果模板核酸包含许多重复序列,装配会困难,而且不能装配重复区域内的基因组序列会导致装配好的序列中存在缺口。(见例如Myers,G. “全基因组DNA测序”,《科学和工程化中的计算》;卷 1,第3期,33-43页,1999年5/6月)。分辨这些缺口的一种方法是对足够大,能够跨越这些重复区域的片段进行测序,但是对大片段测序可能是困难且耗时的。另一种跨越缺口的方法是确定具有已知间隔和朝向的大片段的两端,该方法通常称作配对末端测序(见例如 Smith, Μ. W.等,(1994)自然遗传学7 :40-47 ;和美国公开号2006/(^拟611,2006年6月6 日提交,两者都在此完整以任何目的引用)。该方法受到对长片段末端的间隔和朝向的信息的要求,和/或核酸模板复杂的样品制备的限制。本发明提供了能允许大重复区域,且不需要事先了解核苷酸序列(例如碱基序列、间隔、朝向等),或复杂样品制备的方法,从而能够经济、高效率有效地对长模板核酸从头测序或重新测序。在一些方面,本文的方法提供了各种实现光照反应的间隔光照的策略。必要的, 在光照反应过程中,对于至少一段时间存在至少一种类型的光照(例如激发光照)(“光照期”),和对于至少一段其它时间不存在(“非光照期”)。如上所述,术语“非光照”表示光照中的改变,包括但不限于完全不存在光照。例如,非光照期的特征还可以是与光照期不同的光源或强度,或反应成分的改变,例如可检测标记中。一般说,在非光照期间不收集光照期间收集的至少一类数据(例如核苷酸序列数据)。不存在光照可以是由于例如光源(例如激光、激光二极管、发光二极管(LED)、紫外光灯泡、和/或白光源)不激活,从光源除去光照反应(或相反),或可以是由于将光照与反应隔开,如下所述。光照的改变可由于例如调节光源强度,或用一种光照波长和/或频率替代另一种。另外,光照期间的可检测成分可以在非光照期间从反应混合物中除去,例如荧光标记的核苷酸可以被未标记的核苷酸替换。在不存在光照时的反应速率和时间 的信息被用于估计非光照期间的反应持续。例如,如果反应持续,每秒在大分子中掺入一个分子,那么不存在光照20秒时,可估计在非光照期内掺入了 20个分子。该信息在数据分析中用于提供光照期间收集的反应数据的背景。例如, 在掺入测序反应中,可以根据间隔的非光照期的时间长度和反应过程中掺入的已知速率和 /或在光照期内测定的掺入速率来估算光照期内产生的碱基位置分离序列读数的数目。掺入的已知速率可基于各种因素,包括但不限于由于模板核酸的核苷酸序列造成的核酸背景效应,所用的聚合酶的动力学,缓冲液效应(盐浓度,PH等),和甚至是从正在进行的反应中收集的数据。另外,可根据本领域技术人员已知的其它方法操纵或调节非光照期(或其它类型的非检测期)中酶的延伸能力。特别是,聚合酶复制动力学可以通过改变其操作的化学环境改变,这些方法详见2009年3月30日提交的美国专利申请号12/414,191 ;2009 年8月6日提交的12/537,130,和2009年9月4日提交的代理案卷号105-006301US的美国专利申请号(未指定),题为“改良掺入性质的工程化聚合酶和反应条件”,在此全部完整引入,出于所有目的以供参考。例如,提供了用于调节酶活性的方法,当用于提高检测期间的准确度和提高非检测期间的延伸能力时,这些方法与本发明密切相关。与酶转位速率和延伸能力有关的信息对于单模板核酸上的序列读数相对于彼此在模板核酸的序列骨架和/ 或共有序列中的定位是特别有用的。图1提供了分析反应的间歇光照方法的示范性实施例。在步骤100制备反应混合物。在左侧所示的程序A中,反应105的光照在反应110引发前开始,从而能够在引发时就收集“光照数据”。(在另一个实施例中,光照可与反应同时开始。)本文所用的“光照数据”指在光照期内收集的数据,即光照期的长度和来自反应产物的发光信号。在反应过程中发生至少一个非光照期115,然后是至少一个额外的光照期120。可跟随多个额外的非光照和光照期。在光照期(105和120)间,收集光照数据175。在非光照期间,收集非光照数据 180。本文所用的“非光照数据”指在非光照期间收集的数据,例如可监测非光照期的长度。 在右侧所示的程序B中,在第一非光照期150间引发反应155。在反应过程中发生至少一个光照期160,然后是至少一个额外的非光照期165。可跟随多个额外的光照和非光照期。与程序A—样,在光照期160间收集光照数据175,在非光照期(155和165)间收集非光照数据 180。本发明的一些实施例中提供的一个好处是,在引发后不再需要操纵反应(除了控制光照)。例如,该方法可用于分析反应混合物,而不需要缓冲液交换,加入其它反应成分, 或除去可检测成分(例如光可活化成分,如荧光团等)。例如,在掺入测序反应中,标记的核苷酸可在整个反应期间存在,甚至当反应不再产生核苷酸序列数据时(例如在非光照期间)。这提供了相对于在引发后需要额外处理反应的方法明显的好处,后者不仅往往是昂贵耗时的,而且还提供了污染反应的机会。例如,可在反应期间的任何时间重新引发光照,普通的操作人员只需要简单激活光照。在一些优选例中,在整个反应过程中,反应混合物中标记核苷酸或核苷酸类似物的浓度高于反应混合物中未标记的核苷酸的浓度,并可占到反应混合物中总核苷酸的至少约60 %,70 %,80 %,90 %,95 %,99 %,或100 %。确保反应混合物中标记对未标记核苷酸的高比例的方法是本领域已知的,一些优选实施例可见美国专利出版号2006/0063264,2006/0194232,和2007/0141598,在此出于全部目的完整引入以供参考。
在掺入测序反应接受间歇光照的例子中,排列光照期间收集的序列读数,并将其彼此用在间歇的非光照期间掺入新生链的核苷酸估计数隔开。然后用得到的具有缺口的读数评估模板核酸的一些特征。当对多条相同的模板核酸进行这样的掺入测序反应时,可合并得到的带缺口的读数组,产生模板核酸的序列骨架和/或共有序列。还可用额外方法帮助将带缺口的读数装配成模板核酸的序列骨架和/或共有序列。例如,在一些实施例中,可用其它标记法在反应过程中提供额外数据,例如来自光照或非光照期的数据。在一些优选例中,这些额外的标记方法可包括用掺入反应产物的标记。例如,在使用含有标记的末端磷酸(例如dNTP中的γ磷酸,或具有更多数量的磷酸基团的核苷酸类似物上的末端磷酸)鉴定掺入新生多核苷酸的核苷酸的掺入测序反应中,反应混合物还可包括含有与碱基连接的标记。在反应过程中,这些“碱基标记的核苷酸”将掺入新生链,但是与在掺入时被除去的末端磷酸标记不同,与碱基连接的标记不会在掺入时被聚合酶从核苷酸上切下,从而得到含有碱基连接的标记的新生链。可在反应混合物中调节这些碱基标记的核苷酸的浓度。以促使它们以预期的速率掺入新生链,例如基于模板的已知序列或给定核苷酸的平均频率。碱基连接的标记的存在和/或掺入的速率可提供在反应过程中对于产生的新生链长度的测定(因此能测定聚合酶沿模板核酸移动的距离),这种测定是通过接受激发碱基连接的标记(但优选不激发非碱基连接标记)的激发光照,然后检测发出的信号。碱基连接标记的激发优选是非光照期间或紧接其后的脉冲,而在反应的其它时间是不存在的。信号强度表示了新生链中存在多少标记,从而提供了对聚合酶在进行的反应中一段时间内(即在一个或多个光照或非光照期间)延伸能力的测量值。由于碱基连接的标记留在新生链中,它的好处是能够尽可能减少荧光团接受激发光照的时间,从而减少对反应成分的可能光诱导损伤。由此,在优选例中,碱基标记的核苷酸的激发光照波长与反应中的其它荧光标记是不同的。该方法可以各种形式改变。例如,碱基标记的核苷酸也可包含末端磷酸标记,从而使其掺入可在光照期间和非碱基标记的核苷酸一样被监测。在反应混合物中可能有一类碱基标记的核苷酸,或多种类型,例如,每种类型携带不同的核碱基。反应混合物中的碱基标记的核苷酸的浓度可能变化,虽然优选碱基标记的核苷酸与未碱基标记的核苷酸之比相对较低。例如,在含有一种类型的碱基标记的核苷酸(例如碱基标记的dATP)的反应混合物中,优选碱基标记的dATP对未经碱基标记的dATP的比小于1 8,更优选为1 10或以下。优选低浓度的碱基标记的核苷酸,以使得在顺序掺入多个碱基标记的核苷酸时,空间结构引起的聚合酶阻塞最小化。在一些实施例中,任何特定的碱基标记的核苷酸和相近似的同聚序列普遍性可用毛细管电泳预先确定最佳比例。在一些优选例中,在一次非检测期内至少50,75,100,125,或150个碱基标记的核苷酸被掺入到新生链中。碱基标记的核苷酸可存在于整个反应中,或可在非光照期内被洗入,并在激发光照脉冲后被洗出。含有被洗入的碱基连接的核苷酸的反应混合物还可含有未标记的核苷酸,用于在非检测期内掺入。在随后的光照期内,含有末端磷酸标记的核苷酸的反应混合物替换含有碱基连接的核苷酸和未标记的核苷酸的反应混合物。该方案是本发明方法的一个实施例,其中非检测期并不需要是非光照期,因为在这种情况下,可以存在光照,但是不会检测到核苷酸的掺入。另外,或另选的,可在测序反应中存在低浓度的第五种末端磷酸标记的核苷酸,其中该标记可以与反应混合物中的其它标记具有不同的激发波长。例如,少量的核苷酸类似物,例如dA6P可以用“第五种标记”标记。在非检测期内,当不监测核苷酸掺入的序列时, 用对第五种标记特异性的激发辐射照射反应位点,在检测期内该第五种标记激发辐射可以不被激活。掺入含第五种标记的核苷酸类似物后检测的发射被用于对非检测期内聚合酶的步调进行“计时”,例如,基于模板链中互补核苷酸的已知或估计的频率。可选择第五种标记,使激发和发射辐射较不可能,或不可能导致反应成分的光诱导损伤,例如通过选择一种具有长激发波长(即朝向可见光谱的红端)的标记,一种进入三重态倾向小的标记,和/或形成自由基倾向小的标记。由于第五种标记是在其它标记不被激发时激发的,不需要将其与反应混合物中的其它标记进行最佳光谱分离。另外,由于第五种标记不被用作测序,例如针对支化、准确率等的优化也是不需要的。可用各种标记作为本发明的第五种标记,包括但不限于有机或无机染料荧光团。例如,乳胶纳米颗粒或量子点特别适合,因为它们较难对某些分析反应成分造成光诱导损伤。在一些优选例中,量子点标记与用于鉴定新生链中碱基掺入顺序的标记(“测序标记”)具有在同一光谱窗中的发射光谱,但又不与测序标记的激发光谱重叠,从而能够用检测测序标记发射的同一光学系统检测第五种标记的发射。该方 法可以各种形式改变。例如,可用第五种标记标记核苷酸类似物的一个以上的小亚组,在某些实施例中,存在于反应混合物中的每种核苷酸类似物的一个小亚组可以用第五种标记标记。另外,在反应中可存在多种其它标记,每种存在于一小亚组的一种核苷酸类似物上,例如第六种,第七种,第八种标记。通过增加用第五种(或第六种、第七种、第八种)标记标记的不同类型核苷酸类似物的数目,其掺入频率也相应增加,从而改进了非检测期内聚合酶移位速率的计算。另外,每一种核苷酸类似物可同时包含对核苷酸中的关联碱基特异性的测序标记和用于聚合酶计时的第五种标记。在检测期间激发测序标记并检测,在非检测期间激发第五种标记并检测。由于每一种核苷酸类似物都用第五种碱基标记, 在非检测期间可对每个掺入事件进行计数,可确定准确的掺入速率。测序和第五种标记都可与核苷酸类似物上的相同或不同接头结合。在一些优选例中,核苷酸类似物上的接头将第五种标记置于光照区内使其激发,但是远离酶(例如聚合酶),以减少第五种标记激发和 /或发射导致的光诱导损伤。在一些实施例中,第五种标记还可由光照在检测期内激发。可用检测期间可实现的计时功能在测序分析期间鉴定得到的序列读数中当没有检测到信号时的位置(导致在读数中明显的“缺失碱基”),并能区分真实插入和分支化事件,其中对于一个掺入事件能检测到两个信号。在其它实施例中,用改变激发光照,而不是完全不存在激发光照的“非光照期”(可被称作“低光照期”)实现了带缺口的读数装配成模板核酸的序列骨架和/或共有序列。例如,在一些实施例中,在非光照期内使用较低强度的激发光照,其激发在光照期内被激发的一种或多种标记。如此,不像上面所述的各种策略,不需要第五种标记。较低强度的激发光照导致发射的强度也较低,但仍然足以从背景计数中鉴定出发射信号,虽然通常不会强到能够用于鉴定产生发射信号的特定标记。例如,如果标记“A”和标记“B”存在于反应混合物中,在光照期间,两者发射的信号强度都足够高,使得技术人员能够通过波长和/或信号频率分辨哪一种标记发射出特定的信号。然而,在低光照期间,技术人员仅能够鉴定出存在信号发射,但是不能分辨标记来源,因为其特定波长和/或频率不能被准确确定。激发光照强度的下降不仅减少了观察体积内反应成分的光诱导损伤,还能够让实施者对非光照期内的发射,乃至掺入进行计数。 在其它实施例中,在光照期内使用多重激发光源,在非光照期内除去第一亚组的光源,而保留第二亚组的光源。在非光照期内仍然保留的光源可在光照期内以相同形式存在,或可改变各种方面,例如可减低强度。例如,如果存在于反应混合物中的标记A和B被第一光源激发,存在于反应混合物中的标记C和D被第二光源激发,在非光照期内除去第一光源导致不能检测标记A和B,而C和D仍然能被检测。这种不完整的数据组可用于对非光照期内的反应进程进行计时。另外,还可以不同方式对光照期内收集的数据进行统计学分析。 例如,对于核苷酸测序应用(如本文他处所述),在非光照期内收集的不完整的数据组可在装配序列骨架时使用。例如,在从头序列装配中,产生序列(毗连群)的集合,但毗连群相对于模板核酸的顺序不总是清楚的。骨架装配过程使用额外的信息来确定毗连群的正确顺序。因此,如果仅两个碱基在非光照期内可被鉴定,包含仅这两个碱基掺入的不完整的序列读数可与光照期内收集的数据装配的毗连群的修改版本比对,但在该版本中,非光照期内并没有检测到的两个碱基被除去。一旦确定了毗连群的顺序,恢复在非光照期内没有检测的两个碱基的掺入数据,完成毗连群的装配。该方法可以各种形式改变。例如,实施者可根据不同特征选择在非光照期内要去除哪个光源,,例如其导致一种或多种反应成分光诱导损伤的可能性,对应发射信号导致一种或多种反应成分光诱导损伤的可能性,其能耗,和在光源装置上磨损-剥离。?另外,如本文其他部分所述,除了除去光源,被光源激发的反应成分可在非光照期内从反应混合物中除去,有效地使其不被检测。例如,在非光照期内,一种或多种荧光标记的核苷酸类似物可被未标记的核苷酸类似物替换。在一些方面,本发明提供了进行分子内重复测序的优点,其中用模板核酸产生多个感兴趣的序列读数的拷贝,不论是由于在模板中存在多个互补序列的拷贝,还是模板的重复复制,或者其组合。例如,在单链环形模板上模板依赖性测序反应的第一阶段可以包括非光照期,其中模板完全复制至少一次,对与模板互补的序列产生至少一条不完全序列读数。第一阶段后是第二阶段,包括光照期,期间模板复制多次,以产生互补序列的多个完整序列读数。第一阶段中产生的不完整读数可用于构建骨架,以装配第二阶段中产生的完整序列数据。另外,不完整的序列读数还可用于非光照期间反应的进程计时,通过提供可检测反应混合物的计数,合并该信息和模板(例如核苷酸组成或序列)的已知或估计特征。与光照期内可检测的数量相比,非光照期内可检测的信号发射的亚组不受限制, 而且可以根据一般技术人员所需的非光照数据和/或其它的考量来进行选择,例如减少延长读数时间下的光诱导损伤。例如,为了减少光诱导损伤的可能性,一般技术人员可以选择除去最有损害的光源,例如具有最高频率的光源。在一些实施例中,可对一个扩增模板进行多次测序反应,每次用不同组合的光源和/或可检测成分。另选或另外的,还可对光源和/ 或可检测成分的一个或多个组合进行多次复制反应。来自在一模板上进行的多次不同和/ 或重复反应的数据组合提供了统计学分析中的无数益处。如上所述,可合并数据,实现光照期间产生的毗连群的装配。来自非光照期的数据也可提供评估光照期间产生的序列读数质量的价值。还可用额外方法帮助将带缺口的读数装配成模板核酸的序列骨架和/或共有序列。例如,在一些实施例中,可用另选的标记方法在反应过程中提供额外数据,其可包含掺入反应的酶的标记。例如,可用FRET标记标记聚合酶的一部分,从而使得酶开放和封闭的状态之间的构象变化改变FRET值。例如,基于FRET的系统可用于监测DNA聚合酶手指亚结构域的开放和关闭,如Allen等,2008,蛋白科学17 :401_408,在此完整出于全部目的引入以供参考。在一些优选例中,关闭构象产生FRET信号,因为供体和受体彼此靠近;而开放构象熄灭信号,因为在供体和受体之间没有能量转移。通过监测FRET对的发射,可在非检测期内,可任选和另选的在检测期内监测每个掺入事件。在一些优选例中,FRET供体是 GFP (484nm处激发,5 IOnm处发射),FRET受体是YFP (512nm处激发,529nm处发射)。用FRET 标记监测聚合酶活性的方法是本领域已知的,例如在W0/2007/070572 A2中,其公开内容在此出于所有目的完整引入以供参考。
一特定反应能够经历一或多个光照期或非光照期,但优选经历至少两个光照期。 例如,提供来自一条模板核酸的核苷酸序列信息的特定反应可具有至少约2,3,5,10,20, 50,或100个光照期,其间隔有非光照期。在使用多个光照期和/或非光照期的实施例中, 光照期和非光照期都可以用相同的,例如100秒“开”和100秒“关”。另外,光照期可以比非光照期长或短。例如,在一些实施例中,非光照期可以比邻近的光照期长至少约2-,3_, 4_,6_,8_,10-, 20-,或50-倍;或光照期可以比邻近的非光照期长至少约2_,3_,4_,6_,8_, 10-,20-,或50倍。另外,每个光照期可以彼此相同或不同,每个非光照期可以彼此相同或不同。例如,一些实施例产生的长读数较少,而其它实施例产生短读数较多。应理解光照期和非光照期的数目和长度仅受到使用的实验系统和一般技术人员获得数据的目标的限制。在一些实施例中,在一次光照期间产生的核苷酸序列读数含有至少约20,30,40,50, 75,100,1000,10,000,25,000,50,000,或100,000个相邻核苷酸位点。在一些实施例中,在一次反应过程中非光照期间处理的核酸模板区域含有至少约20,30,40,50,75,100,1000, 10,000,25, 000,50, 000,或100,000个相邻核苷酸位点。在一些实施例中,在包含多个光照期的一次测序反应中产生的核苷酸序列读数组含有来自一个核酸模板的至少约40,60,80, 100,1000,10,000,25,000,50,000,100,000,250,000,500,000,或 1,000,000 个核苷酸序列位点。在一些实施例中,在含有多个光照期的一次测序反应中产生的核苷酸序列读数组包含来自一个核酸模板的核苷酸序列位点至少一部分的多个读数。如上所述,本发明提供了能够容忍大重复区域,而不需要对核苷酸序列的现有知识(例如碱基序列,间隔,朝向等)的方法。然而,这种信息如果可得的话,对于一般技术人员来说也可用于优化测序反应过程中的光照期和非光照期的周期,尤其是当对重复序列进行测序的情况下。例如,如果基因组区域已知含有五个相邻的Ikb核苷酸序列的拷贝(即五个“重复区”),有益的是使得非光照期足够短,从而能够可信地将得到的序列读数映射到正确的重复区。如果非光照期太长,在聚合酶移位速率中的天然变动将难于使序列读数定位到特定重复区,尤其是那些离聚合酶的结合/起始位点太远的区域。在另一个例子中,如果“拷贝,,各自具有几个能将其彼此区分开的突变,有益的是使得光照期足够长,以提高使得这些突变之一包括在得到的序列读数中的机会,从而使得读数被明确指派到一个特定的重复区。如果光照期太短,来自两个不同重复区的序列读数可能会相同,造成序列读数作图的困难。(另一种减少这些困难的方法将在模板核酸中掺入暂停或停止点,如下所述)。大致上,技术人员可以对每个光照期和非光照期设计数量和时间长度,以使其最适合要分析的光照反应,本发明并不限于此。在一些实施例中,技术人员可能希望提高聚合酶的延伸能力,从而在测序反应中将处理的模板核酸的长度延伸例如至少2_,3_,4_,6_,8-,10-,或20倍,从而产生比恒定光照实现的要离聚合酶结合/起始位点远得多的序列数据。在一些实施例中,本发明的实施者可能希望将正在进行的反应的一个或多个阶段的数据汇总,例如需要更多数据进行分析的阶段。在合成测序的情况下,可能需要对一个或多个模板核酸的特定区域进行重新测序。一些传统方法需要要制备的新模板核酸将一个要重新测序的区域靠得离测序反应的起始点更近,或如果需要对多个区域重新测序,需要制备多个新模板。相反,本文的方法使得实施者将与先前测序的模板(例如来自大的基因组DNA 样品制备物)相同的模板进行测序反应,其中光照期计时,以仅在聚合酶将核苷酸在一个或多个需要重新测序的特定区域掺入新生链时开始对样品进行光照。该优点充分减少了这些重新测序操作所需要的时间和资源,因此提供了相对于传统方法的显著优点。本发明考虑了各种在光照反应中提供非光照期的手段。在一些实施例中,在进行的反应中关闭光源,以产生一个或多个非光照期。在一些实施例中,在反应过程中保持光源打开,但是将经光照的反应从系统中移开一段时间。在一些实施例中,在反应过程中保持光源打开,但是阻挡光照,以产生一个或多个非光照期。例如,在光源和光照反应之间可手工或机械放置可移动遮光膜,以在非光照期间阻挡光照,并在光照期间移开,让其接触光照。 这样的遮光膜可以是动态控制的,例如薄膜晶体管显示器(例如LCD遮光膜)。用于阻挡光照的遮光膜及其制造方法是本领域一般技术人员熟知的,不需要在此详述。本发明的一个方面是单分子分析的大量多重化。对于许多应用,例如上述单分子方法,理想的是提供各种光学可分辨构型的反应成分,从而使得单个反应成分或复合物可以被单独监测。能通过许多机制提供这种独立的可分辨构型。例如,通过在适用于固定化的基材表面提供复合物的稀释溶液,人们能够提供各种光学可分辨的复合物。(见例如 Balasubramanian等的欧洲专利号1105529,其公开内容在此完整以所有目的引入以供参考。)另外,可以提供一种低密度活化表面,用于偶联复合物。(见例如出版的国际专利申请号W02007/041394,其公开内容在此完整以所有目的引入以供参考。)这样的各种复合物可以安置在平面基材上,或掺入其它结构中,例如零模式波导或波导阵列中,以实现其观察。 在一些实施例中,多个光照反应同时在例如固相载体上进行。在一些优选例中,固相载体包含反应位点阵列。在优选例中,固相载体上的反应位点彼此光学可分辨。在其它优选例中,固相载体上的每个反应位点含有不超过一个要调查的反应。例如,在掺入测序的实施例中,每个反应位点优选具有不超过一个聚合酶,不超过一个核酸模板。反应位点可以是限制元件(例如光学和/或物理限制元件),每个都具有有限观察体积,能够允许高于 1纳摩尔,或高于100纳摩尔,或微摩尔级别的浓度下存在的各个分子能够被分辨。在一些优选例中,各限制元件得到一有效观察体积,能够分辨生理相关浓度下,例如在高于1微摩尔,或高于50微摩尔,或甚至高于100微摩尔浓度下的各个分子。另外,为了在本文中讨论,不论特定试剂是通过阻挡其自由移动的结构屏障,或者化学系链连接,或固定在基材表面被限制的,它们都被称为“被限制”。如本文所用的,固相载体可以包含任何形式,从平板基材,例如载玻片或更大的结构中的平板表面,例如96孔板,384孔板和1536孔板中的多孔平板,或规则间隔的微米或纳米孔基材,或这些基材可以含有更多不规则的多孔材料,例如膜、气凝胶、纤维垫等,或可以含有颗粒基材,例如珠、球、金属或半导体纳米颗粒等。固相载体可包含一个或多个零模式波导或其它纳米级光学结构的阵列。
本文所用的“零模式波导”指光学波导,其中入射辐照的大部分被削弱,优选80 % 以上,更优选90%以上,甚至更优选99%以上的入射辐射被削弱。在这样高的削弱水平下, 在波导中不存在显著的电磁辐射的传播模式。因此,在波导入口入射电磁辐射的迅速衰减甚至在高达微摩尔级别的浓度下存在时也提供了监测单分子的有效极小观察体积。生物化学分析中ZMW (零模式波导)的制造和应用,以及在掺入测序方法中调用碱基的方法如例如美国专利号 7, 315,019,6,917, 726,7,013,054,7,181,122,和 7,292,742 ;美国专利出版号 No 2003/0174992和美国专利申请号12/134,186所述,其全部公开内容在此以所有目的完整引入以供参考。一组反应(例如包含在固相载体上的)可包含相同或不同的成分。例如,一条模板核酸可以在该组的所有反应中被分析,或多条模板核酸可以被分析,每条存在于反应组的其中一个反应或一个亚组中。在优选例中,在多个反应中分析包含相同核苷酸序列的模板核酸,这些反应足够提供准确的重复核苷酸序列数据,以确定模板核酸的共有序列。一些提供准确核苷酸序列数据的序列读数将会根据例如,模板核酸的质量和反应的其它成分变化,但是模板核酸或其部分的总覆盖率至少是约2_,5_,10-, 20-, 50-, 100-, 200-, 500-,或 1000-倍覆盖。另外,在一组反应物中特定反应的光照和非光照期的数量和长度可能对于该组中其它反应的数量和长度是相同或不同的。在一些实施例中,不同周期性的组合可用于一组含有相同模板核酸的反应。该策略的益处是可以提供来自模板序列不同区域的核苷酸读数,从而提高各反应之间重叠序列读数的相似性。这些重叠序列读数可以实现多个比可能的更牢固序列骨架的构建,只要这些反应接受相同的光照和非光照周期。在不同反应中控制聚合酶延伸和/或同步聚合酶的方法在离聚合酶起始结合位点较远的核酸序列读数的分析(例如作图,验证等)中也是有用的。在反应较早的检测期间(即靠近聚合酶开始处理模板核酸的时间,例如在第一光照期内),可用在给定的一组反应条件下基于聚合酶已知移位速率,一般较准确地估计聚合酶在模板上的位置。然而,随着反应时间增加,聚合酶移位速率中的天然变动使得仅根据移位速率估计准确确定聚合酶在模板上的确切位置变得越来越困难;通过每个随后光照期,这种对聚合酶位置的估计变得越来越不准确,使得随后对序列读数分析和在模板上作图变得越来越困难。在模板上调节聚合酶的位置的方法能够更准确的确定聚合酶的位置。例如,在非光照期内使得聚合酶暂停或停止在模板的一个给定位置,并在随后的光照期内,或立刻在其之前重新引发聚合,提供了一种将随后产生的读数重新定向到模板序列的方法,能够更方便的进行共有序列测定和作图分析。另外,这种暂停/停止点可提供一种在光照期内通过限制 聚合酶在模板上重新开始而控制处理模板的哪个区域的手段,从而使得本发明的实施者能在分析反应过程中的一个或多个检测期内,靶向一个或多个模板的特定区域用于分析。这些方法还可用于使一组同时监测的反应同步。例如,可以通过调节每个检测期的模板上聚合酶的起始点同步多个反应,每个包含一种聚合酶/模板复合物,从而建立一组序列读数,其在反应的较迟阶段中比不经过这样的调节会观察到的显示较少铺展(即在产生序列读数的模板上的位置中变化较小)。可以用各种方法控制或监测模板核酸上聚合酶的延伸。例如,如上所述,可以采用在模板序列中的反应终止或暂停点,例如在模板上的一个位置处的可逆结合封闭基团,例如在引物延伸中不使用的单链部分上。例如,在聚合起始后的选定时间,反应可以经历非光照期。掺入与模板核酸在一个位置偶联的合成性封闭基团,当其在非光照期内与聚合酶相遇时,会使聚合酶暂停。工程化暂停点的一个例子是在模板核酸上的已知序列,其中引物静止并阻止正在活性合成互补链的聚合酶延伸。引物存在本身能够在聚合酶测序中引起暂停,或可化学修饰引物,迫使引起完全停止(并同步多个反应中的多个聚合酶)。化学修饰可以随后被除去(例如通过光化学),聚合酶随后可以沿模板核酸继续延伸。在一些实施例中,在反应中可包括多个引物,以引起沿模板核酸的多个暂停或停止点。在合成中引入可逆暂停(停止)的其它方法是本领域已知的,并包括例如所需辅因子的可逆螯合(例如Mn2+, 一种或多种核苷酸等)。—旦聚合酶暂停在封闭基团处已经有一段时间,可重新引入光照并除去封闭基团。这能够控制模板核酸上的位置,在该位置聚合酶能够在光照期内产生核苷酸序列数据。可使用各种合成控制基团,包括例如与模板核酸偶联的大型光易降解基团,其能够抑制聚合酶介导的复制,链结合基团,其能够阻止持续合成,包括在引物和/或模板内的非天然核苷酸等。这样的反应终止/暂停点可对读数的彼此关系提供更高的可靠性。例如,由于能够知道各个序列读数开始的在模板核酸上准确的位置,得到的读数能够相对于彼此更好作图,从而构建序列骨架和/或共有序列。调节模板上聚合酶进程的这些和其它方法的进一步描述见例如U. S. S. N. 61/099696,美国专利出版号2006/0160113,和美国专利出版号 2008/0009007,其全部公开内容在此以所有目的完整引入以供参考。例如,可在含有非天然碱基的模板上,在没有与非天然碱基互补物的情况下开始测序反应,这不会影响模板上其它与天然碱基互补部分的总体序列测定。通过使得反应中对非天然碱基的互补物不足,人们可以阻止合成,以至测序进程,直到在混合物中加入非天然碱基互补物。这可为系统提供一种“热起始”能力和/或对测序进程和配制成不受到模板内感兴趣区域的序列分析影响的进程的内部检查,这些区域只会与天然碱基互补。在一些实施例中,序列混合物中的非天然碱基互补物上具有与序列中的四种天然碱基的互补物不同的可检测标记,与这种标记有关的掺入碱基信号的产生表示聚合酶开始或被重新引发。 虽然称作“非天然碱基”,应理解这可以包含一组非天然碱基,能够在模板结构中提供多个控制元件。在一些实施例中,在模板结构中包含两个不同的非天然碱基,但是在不同点,以调节测序进程的进行,例如,能够控制起始和在序列中靠后的终止/起始位置,例如在随后的光照期前。例如,可加入第一种非天然碱基的互补物,在第一光照期开始前立刻开始测序。在第一光照期后的第一非光照期间,聚合酶在例如靠近但在第二个光照期间要测序的核苷酸区域的上游的核苷酸位置遇到第二个非天然碱基。测序将会停止,直到在反应混合物中加入第二非天然碱基的互补物。类似的,可在模板中掺入多个这样的非天然碱基,从而将聚合酶有效靶向到需要序列数据的多个感兴趣的区域。另外,在要对多个相同模板进行测序的应用中,这将能对各种测序反应和从其产生的数据重新同步。在测序反应的不同阶段控制聚合酶进程的方法不仅还可用于建立“条件依赖性,, 非检测期(其中可存在或不存在光照),还可用于在非检测期内跨越给定长度模板所需的时间最短化(不论存在或不存在光照)。为了可靠地检测掺入事件,通常用非天然试剂条件限制检测期中的聚合至1-5,或约3个碱基/秒。在一些实施例中,用Mn2+离子替换Mg2+ 离子能稳定和减慢聚合酶的移位。当使用锰和可任选的天然核苷酸(例如缺乏荧光标记) 时,聚合酶的转位速率和/或延伸能力可提高达两个数量级。在非检测期间使用这种“迅速转位”条件可以提供无尽的好处,包括但不限于更迅速的聚合速率,提高的延伸能力(例如由于减少阻塞和错误掺入),以及由于减少使用昂贵的标记核苷酸类似物和/或减少氧化压力的试剂而总体节约成本。在一些实施例中,间歇检测的方案包括替换反应混合物,其中在检测期间使用的第一反应混合物可对序列读数生成优化,而在非检测期间使用的第二反应混合物可对延伸能力和/或迅速聚合优化。例如,当最优序列读数生成的试剂存在时,DNA合成速率变慢, 与每个掺入事件都有相关荧光信号存在。在用对于延伸能力和/或迅速聚合优化的反应物替换了对于序列读数 产生优化的反应物后,聚合酶迅速沿着模板行进。在一些实施例中,用流式细胞在反应过程中传递和切换两种(或多种)反应混合物。在一个示范性实施例中,第一反应混合物含有荧光标记的核苷酸类似物和将聚合限制在适合高保真检测核苷酸掺入的速率的锰离子。第一反应混合物还可包含额外的试齐IJ,用于减少反应混合物中各种成分的光诱导损伤。第二反应混合物包含天然核苷酸和合适的锰离子浓度,用于迅速合成与模板互补的新生链。测序反应的第一检测期是通过引入第一反应混合物引发的,在检测期间合成新生链后产生序列读数。在预定时间间隔后,足量的第二反应混合物流入反应位点,直到有效地用第二种反应混合物替换全部第一种反应混合物,从而引发第一非检测期。如上所述,在第二反应混合物中缺乏标记的核苷酸能够产生非检测期,因为不发射对应于天然核苷酸掺入的信号,但在一些实施例中也可除去光照,例如,以进一步减少非检测期间的光诱导损伤。在适合引发第二检测期的时刻,足量的第一反应混合物流到反应位点上,直到有效地用第一反应混合物替换全部第二种反应混合物,重新引发掺入事件的检测。重复反应混合物交换的循环,产生多个检测期和非检测期。用于反应混合物交换的流式细胞优选具有两个入口,它们确保仅一种反应混合物流到一个或多个例如在基材上的反应位点上。可用一条流出线从反应位点将反应混合物收集到一个收集容器中,或可使用多个收集容器,每一个用于一种反应混合物。另外,在非检测期间聚合酶移位距离的准确估计对于生物信息学应用也是重要的。如果反应混合交换的时间缓慢,该估计会很复杂。如此,优选流动速率足够让交换比反应混合物单独存在时所耗时间短得多。图2提供了用间歇光照分析多个光照反应的示范性例子。在该实施例中,在一条核酸模板上进行16个掺入测序反应(每个都包含相同的核苷酸序列),对于所有16个反应光照和非光照期的时间都一样。在A中,显示16个反应位于固相载体上的16个反应位点上,并且出于方便编了号。光照数据的代表如B所示,其中延伸过图的柱表示在每个反应的光照期间收集的光照数据。在该说明性例子中,每个反应接受三次光照期,每次后随一个非光照期,对于每个反应得到三个不连续的序列读数,即,每个测序的模板分子产生三个不连续读数。柱相对于χ轴的位置提供了序列读数相对于模板核酸序列的位置,其从位置0 (测序反应起始)延伸到η。在第一光照期间,序列读数一般重叠,但是在整个反应组中聚合酶移位速率中的天然变化导致序列读数“铺展”,因为第二和第三光照期在每个光照期开始和结束处各聚合酶在模板上的准确位置中的变动增加。因此,越早的光照数据在较小部分的模板核酸上提供了更好的序列信息重复(“过度采样”),而较晚的光照期在较大的模板核酸区域内提供了重复性较低的测序数据。光照期之间的非光照期的计时以及掺入已知或计算出的速率被用于确定得到的序列读数之间的大致间隔,用于构建序列骨架或共有序列。重要的是应注意,虽然A中所示置于固相载体上,B中所示数据也可从不位于固相载体上的反应产生,也不需要同时进行,而且方法一般并不受此限制。另外,如上所述,反应较晚阶段得到的序列读数的铺展可以通过使反应同步来减轻,例如通过对于每个检测期调节聚合酶在模板上的起始点,从而建立一组能够提供较好重复性的序列读数(即在产生序列读数的点开始在模板上的位置更重叠),尤其是在反应的较晚阶段中。 用能够在一次反应中重复测序的模板(例如环形模板)可提高核酸模板中产生核苷酸数据的百分比,从而对于进一步分析提供更完整的数据,例如构建核酸模板的序列骨架和/或共有序列。例如,每次对环形模板测序时,光照和非光照期的计时都可以重设,以改变产生核苷酸序列数据的模板的区域。如上所述,可以根据间隔的非光照期的时间长度和反应过程中掺入的已知速率和/或在光照期内测定的掺入速率来估算光照期内产生的分隔序列读数的碱基位置的数目。掺入的已知速率可基于各种因素,包括但不限于由于模板核酸的核苷酸序列造成的序列背景效应,所用的聚合酶的动力学,缓冲液效应(盐浓度, PH等),和甚至是从正在进行的反应中收集的数据。可用这些因素根据实施者的实验目的来确定光照和非光照期的合适计时,不论是要尽可能扩大在给定模板核酸上序列覆盖的长度或深度,或优化来自特定感兴趣区域的序列数据。另外,每次对环形模板测序时,可保持光照期和非光照期计时相同,以提供模板内一个或多个感兴趣区域更大倍数的覆盖。用于产生重复序列的各种方法是本领域已知的,某些特定的方法见美国专利号7,302,146 ;美国专利号7,476,503,2008年9月5日提交的U. S. S. N. 61/094,837 ;2008年9月24日提交的 U. S. S. N. 61/099,696 ;和 2008 年 3 月 28 日提交的 U. S. S. N. 61/072,160,其全部公开内容在此以所有目的完整引入以供参考。还在本文列出的示范性应用部分提供了具体实施例。用间歇光照分析多个光照反应的另一个示范性例子包括在多个反应中的不同时间开始的第一光照期。例如,第一反应的光照期可以在0秒开始,第二反应的光照期可以在 5秒开始,第三反应的光照期可以在10秒开始,如此类推。另外或另选的,第一亚组的反应可以在第一时间开始,第二亚组的反应可以在第二时间开始,依此类推。第一光照期持续一段给定的时间,然后是非光照期,然后是第二光照期。可任选的,多个非光照期和光照期在第一光照期后。交错起始时间可以为多个反应提供交错数据组(例如两个或多个序列读数),从而在不同反应中能够调查整个反应中的多个不同阶段。优选交错数据组重叠到一定程度,能够进一步分析和验证反应数据。例如,本发明实施例进行的掺入测序反应优选在各不同反应的序列读数之间有足够的重叠,从而能构建模板核酸的序列骨架和/或共有序列。可设计用于固相载体的遮光膜(例如限制元件阵列),允许对固相载体的一个或多个部分的光照,而阻挡对固相载体其它部分的光照。例如,遮光膜可包括一个或多个窗口,允许激发光照通过遮光膜。这样的遮光膜可以在固相载体表面物理移动(或固相载体可相对于遮光膜移动),例如选择性允许激发光照到达阵列中限制元件的亚组。例如,允许 10%反应位点接受光照的遮光膜可通过在固相载体上的光照区域(接受激发光照的区域) 前后移动提高序列骨架覆盖。10%反应将在任何给定的时间期覆盖核酸模板的一些区域 (因此覆盖模板中序列的区域)。在一些实施例中,可使用在反应/获得过程中选择性控制固相载体上反应的光照时间的自动化遮光膜,而不使用需要物理移动的遮光膜。
对于固相载体上的一组反应的光照和非光照期的计时可以相同或可改变,可以是同步的或是随机的。在一些实施例中,激发光源被打开或关上,对于该组反应光照和非光照期的时间将是相同的。在其它实施例中,例如,那些包括使用遮光膜的例子中,对于反应组的光照和非光照期的时间可以改变,从而当反应的一个亚组被光照时,反应的另一亚组不被光照。可用于固相载体上的一组反应的各个示范性和非限制性的遮光膜的例子如图3-5 所示,如下所述。在一些实施例中,在整个固相载体中每个反应的光照/非光照状态可能是随机的,例如,以排除在给定时间主动选择要光照的反应引入的可能实验误差,只要从光照反应产生的序列读数和不被光照的这些反应时间足够指定一个特定反应。为了方便讨论, 光照和从感兴趣的反应收集发射信号的作用,或发生感兴趣反应的固相载体上特定区域都被称作“调查”该反应和/或该区域。这样被调查的区域称作“观察区”。 图3提供了用间歇光照和遮光膜分析多个光照反应的示范性例子。如图2所示, 固相载体310上的反应阵列含有16个反应位点,方便地如(A)编号。在B中,提供了具有一个窗口 330的遮光膜320,使得光照通过到固相载体上的一个反应亚组。窗口 330足够宽,能够使光照到固相载体310上的至少两列反应位点。如图2所示,光照数据的代表例如 C所示,其中延伸过图的柱表示在每个反应的光照期间收集的光照数据。柱相对于χ轴的位置提供了序列读数相对于模板核酸序列的位置,其从位置0(测序反应起始)延伸到η。当测序反应在固相载体310上所有位置开始时,窗口 330的位置能够仅光照反应1、5、9和13, 而这四个反应提供反应最早阶段的序列读数350。然后移动窗口 330,对反应2、6、10和14 提供光照期,同时继续对反应1、5、9和13提供光照期。反应2、6、10和14的光照数据提供序列读数360,其与反应1、5、9和13的序列读数350部分重叠。窗口 330再次移动,以对反应3、7、11和15提供光照期,而同时继续对反应2、6、10和14提供光照期,但除去对反应1、 5、9和13的光照。3、7、11和15的光照数据得到序列读数370,其与反应2、6、10和14的序列读数360部分重叠。遮光膜320的第四个位置引发反应4、8、12和16的光照期,而继续对反应3、7、11和15提供光照,但结束对反应2、6、10和14的光照期。序列读数380对应于来自反应4、8、12和16的序列读数。最后,移动窗口,结束反应3、7、11和15的光照期, 同时继续对反应4、8、12和16提供光照期。重复上述过程能够从每个反应产生第二读数, 第二读数与第一读数不连续。例如,反应1、5、9、和13对应于读数350,而在反应较后对应于读数355。在一个反应中产生的两个读数不重叠,由在两个光照期之间的非光照期掺入的一定长度的核苷酸隔开。遮光膜可任选再数次通过基材,产生额外读数,直到反应完成或不再提供可靠数据,例如当总光照时间(将多个光照期的时间相加)超过了光诱导损伤阈值期。另外,遮光膜可以前后移动,或可以仅以一个方向通过固相载体,例如总是左至右,或相反。另外,与图2Β中所示数据(在覆盖模板核酸的序列中具有缺口)不同,该实施例中提供的策略导致至少覆盖整条模板核酸两倍(图3C),虽然重复倍数稍低。仅被读数380 和读数355覆盖的模板部分具有最小的重复倍数,在一些情况下覆盖中的缺口可在该区域中存在,因为遮光膜320的运动是从固相载体310最右边移动到最左边。当然,将重复反应加到反应组中过度采样,或使用在一个反应中允许重复测序的模板(例如环状模板)能够提高核酸模板的覆盖,因此提供更多的构建核酸模板的序列骨架和/或共有序列的数据。 用于产生重复序列的各种方法是本领域已知的,一些具体方法见美国专利号7,302,146 ;美国专利号7,476,503,2008年9月5日提交的U. S. S. N. 61/094, 837 ;2008年9月24日提交的 U. S. S. N. 61/099,696 ;和 2008 年 3 月 28 日提交的 U. S. S. N. 61/072,160,其全部公开内容在此以所有目的完整引入以供参考。在反应组中聚合酶移位速率的天然变动因为序列读数的铺展和在反应较晚阶段中邻近列中反应读数之间与较早阶段相比重叠的减少也在该预言性例子中清楚可见。图4A提供了一个与图3中提供的类似的遮光膜的例子,除了它包括三个窗口,能够同时光照多列不邻近的反应位点。图4B提供了包含12个窗口的遮光膜的例子,每一个都能光照固相载体上的一个反应位点。窗口在遮光膜中的方向能够光照每列和每行中每隔一个的反应。应理解这些遮光膜设计仅仅是示范性和非限制性的例子,本领域的一般技术人员完全能够根据实验设计或要调查的光照反应确定合适的遮光膜设计。图5说明了本发明的一个方面,其中用间歇光照在一个固相载体上对多个样品进行分析。四个不同样品被置于固相载体上,每一个一式四份,为510、520、530和540(A)。所用的遮光膜550具有两个窗口 560,能够让多列反应位点同时被光照(B)。在C中显示了该遮光膜在固相载体上的第一个位置,其中每四份中的两个反应被光照。遮光膜的第二个位置能够让先前未被光照的反应得到光照,如D所示。遮光膜可以如双箭头所示前后移动,从而对于包含四个样品中之一的每个反应提供多个光照期和非光照期。本发明还用于重复调查感兴趣的固相载体的反应或部分。在一些方面,不同观察区域的依次调查可重复数次,例如超过2,5,10,50,100,500,1000次,或甚至超过10,000 次。一般说,从一个观察区跨到另一个,优选邻近区域,和重复调查过程的方法通常称作“步进重复”过程,可用各种方法进行,包括但不限于将入射光和固相载体彼此相对移动,和将遮光膜移过固相载体表面,如上所述。虽然描述成“步进重复”法,在一些观察区移过基材的实施例中,该运动不是步进重复的,而是构成一个连续动作,基本连续的动作,或分步运动, 或重复运动,其中各重复步骤调查与先前调查的区域的一些部分重叠的新区域。特别是,基材可连续相对于光学系统移动,从而使得观察区连续移过要调查的基材(以“扫描模式”)。本发明可任选的与提供光照和/或收集发射光照的光学系统联合。优选光学系统与反应位点可操纵性连接,例如在固相载体上。特别优选的光学系统的一个例子如2005年 8月11日提交的U. S. S. N. 11/201,768所述,其出于所有目的在此完整引入以供参考。光学系统进一步如下所述。在一些实施例中,固相载体和光学系统之一或两者在调查期间移动。例如 ,要调查的固相载体可以维持静止,而光学系统移动,或固相载体可相对于静止的光学系统移动。可用任何不同的操作硬件或机器人设置,例如分档器/进样装置实现这种移动,还可使用高性能印刷术和半导体工业中已知的手段。例如,可用机器人系统拾起和将特定固相载体重新定向,以调查固相载体的不同区域,或使得固相载体先前未达到的区域(例如被夹子、支持结构等遮挡)可达到。这样的机器人系统可以从例如Beckman Inc. ,Tecan,Inc. ,Caliper Life Sciences 等获得。除了上述,应理解在感兴趣的特定反应中的试剂,包括那些根据本发明减弱光诱导损伤的试剂可以任何不同的构型提供。例如,它们可以是在溶液中游离的,或与其它材料复合,例如与其它试剂和/或固相载体复合。类似的,可提供与珠、颗粒、纳米晶体或其它纳米颗粒偶联的这样的试剂,或其可连接在大固相载体上,例如基质或平板表面上。这些试剂还可进一步偶联或与其它 试剂复合,或作为分开的试剂群,或甚至作为单个分子,例如能在反应空间内与其它分子可分辨检测的分子。如上所述,不论特定试剂是通过阻挡其自由移动的结构屏障,或者化学系链连接,或固定在基材表面被限制的,它们都被称为“被限制”。 这些被限制的试剂的进一步的例子包括表面固定或局部化的试剂,例如表面固定或结合的酶、抗体等,其在表面上被调查,例如通过荧光扫描显微法或扫描共焦显微法,内全反射显微法或荧光流式计数,利用渐逝波的显微法(见例如2007年8月31日提交的美国专利出版号 20080128627 ;2007 年 10 月 31 日提交的 20080152281 ;和 200801552280,其全部公开内容在此以所有目的完整引入以供参考),表面显像等。例如在一些优选例中,阵列系统中的一种或多种试剂被限制在光学限制元件中。这种光学限制元件可以是内部反射限制元件 (IRC)或外部反射限制元件(ERC),零模式波导,或其它光学结构,例如含有具有反射率介质的多孔膜,或用系数匹配固体的限制元件。提供了各种类型的光学限制元件的许多详细描述,见例如国际申请出版号W0/2006/083751,其全部公开内容在此以所有目的完整引入以供参考。本发明一般用于各种不同类型的需要充分光照和/或光活化转换或激发例如荧光团等化学基团的光学试验。例如,本文提供的组合物和方法可与荧光显微法、光学镊子和光钳、分光光度法、荧光关联光谱法,共聚焦显微法、近场光学法、荧光共振能量迁移 (FRET)、结构化光照显微法、内全反射荧光显微法(TIRF)等。本文提供的方法特别用于接触长时光照会有直接或间接的不良影响的阵列。特别有兴趣的是那些会由于在光照过程中由于三重态形式或自由基的产生和/或聚集受损的试验。一个特别容易从本发明受益的分析的例子是单分子生物学分析,包括但不限于单分子核酸测序分析,单分子酶分析,杂交试验(例如抗体试验),核酸杂交试验等,其中原始引入的试剂接受相对集中的光源(例如激光或其它聚焦光源,例如汞、氚、卤素或其它灯) 的长期光照,其环境是当产生相关产物时,发生光转换/激发。在一些实施例中,在依赖于荧光或发荧光剂的检测的核酸测序过程中使用方法、组合物和系统。这些测序技术的例子包括例如 SMRT 核酸测序(如美国专利号 6,399,335,6,056,661,7,052,847,7,033,764, 7,056,676,7,361,466,7,416,844所述,其全部公开内容在此以所有目的完整引入以供参考),非实时,或“一次一碱基”测序法,例如Illumina,Inc. (San Diego, CA),Helicos Biosciences (Cambridge,MA) ,Clonal Single Molecule Array ,提供的那些,和SOLiD 测序。(见例如Harris等(2008)科学,320 (5872) 106-9,其全部公开内容在此以所有目的完整引入以供参考)。这些长时光照可对试剂产生不良影响(例如引入光诱导损伤),并使其在所需反应中失效。III.预防光诱导损伤本文提供的方法对利用相当有限浓度的反应物,例如单分子检测/监测试验的分析特别有用。应理解,在这些试剂有限的分析中,关键试剂的任何损失、降解或耗竭都会通过进一步限制试剂而对分析产生剧烈影响,不仅会对可检测信号产生不良影响,还会直接影响要监测的反应,例如通过改变其速率、持续时间或产物。例如,光诱导损伤可包括给定试剂中的光诱导改变,其降低试剂在反应中的反应性,例如光漂白荧光分子,其减弱或消除其作为信号传递分子的作用。在光诱导损伤的术语中还包括其它改变,其减弱反应物在反应中的可用性,例如通过使得试剂在反应中的活性的特异性减弱。类似的,光诱导损伤通过使得试剂与另一种光诱导反应的产物相互作用,诱导试剂中不良反应,例如在荧光激发时间中产生单重激发态氧,其中单重激发态的氧可破坏有机的或其它试剂,例如蛋白质。光诱导损伤还包括对反应物损伤的下游事件,例如受损反应物和其它反应的关键成分,例如反应性蛋白质或酶之间的相互作用。例如,对催化被监测的反应的酶的损伤可导致反应速率下降,在一些情况下还能使其停止,或可使反应的持续时间或可靠性下降。如上所提到的,光诱导损伤一般指给定试剂、反应物等中由于光诱导反应直接或间接造成的改变,其导致试剂在所需反应中的功能性改变,例如活性下降,特异性降低,或能够对其它分子反应、转换或改变的能力降低,例如,光诱导反应产生与一种或多种其它反应物相互作用,并导致其损伤的反应物。典型的,这种光反应直接影响感兴趣的反应物,例如直接光诱导损伤, 或影响这种感兴趣反应物的一步、两步或三个反应步骤内的反应物。另夕卜,这种光反应直接影响感兴趣的反应,例如导致反应速率、持续时间、延伸能力或可靠性改变。在光诱导损伤前可进行的,从而使得反应物不再能用于分析的光照分析的时间量被称作“光诱导损伤阈值期”。光诱导损伤阈值期视试验而定,其受到许多因素影响,包括但不限于试验中酶的特征(例如对光诱导损伤的敏感度和这种损伤对酶活性/可延伸能力的影响),辐射源的特征(例如波长、强度),信号产生分子的特征(例如发射类型,对光诱导损伤的敏感度,进入三重激发态的可能性,和这种损伤对信号亮度/持续时间的影响), 以及试验中其它成分的类似特征。还依赖于试验系统的各种成分,例如信号传递和检测,数据收集和分析程序等。一般技术人员能够决定给定试验的可接受的光诱导损伤阈值期,例如通过在光损伤剂存在下监测信号衰减和鉴定信号能够可靠作为试验量度的时间期。对于本发明,光诱导损伤阈值期是发生这种光诱导损伤的光照分析期,其中与不存在该光照的相同反应相比,该反应的反应速率或延伸能力降低至少10 %,20 %,30 %,40 %,50 %,60 %, 70%,80%,或90%。本发明的一个目的是提高光诱导损伤阈值期,从而增加能够向完成反应进行的反应时间量,而使得对反应物的损伤最小化,从而能够延长可检测信号是反应进行的准确测量值的时间。在一些情况下,“光诱导损伤”反应可以是假活性,因此可能比所需更活跃。在这些情况下,应理解感兴趣的光诱导损伤阈值期的特征是在具有假活性的光照分析期内测量的,例如反应速率中的增加或非特异性反应速率中的增加不超过非光照反应中的10%, 20%,30%,40%,50%,60%,70%,80%,或90%。在一个非限制性例子中,当由于光损伤事件核酸聚合酶开始不正确地在模板定向合成过程中掺入核苷酸时,这种活性会影响上述的光诱导损伤阈值期。在这种情况下,本发明的方法、装置和系统将提高光诱导损伤阈值期, 从而延长在上述假活性发生前反应能够继续的时间。对于核酸分析来说,已经观察到用荧光核苷酸类似物作为底物的核酸模板定向合成中,延长光照会导致聚合酶合成DNA新生链的能力明显下降,如前在例如美国出版专利申请号20070161017中所述,其在此出于任何目的完整引入以供参考。对聚合酶、模板序列和/或引物序列的损伤会显著阻碍聚合酶处理较长核酸链的能力。例如,聚合酶延伸能力的下降导致基于序列成分掺入新生链对其进行鉴定的测序过程阅读长度的缩短。如基因分析领域所理解的,序列连续读数的长度直接影响来自基因组DNA的片段装配基因组信息的能力。在酶活性中的这种下降会对不同类型的反应产生显著影响,除了测序反应,还包括连接、切割、消化、磷酸化等。不 特别联系操作理论或机制,据信酶活性的光诱导损伤(特别是在荧光试剂存在下)的至少一个原因,是由于光诱导损伤的荧光试剂对酶的直接作用。另外,相信该荧光试剂的光诱导损伤(和可能的对酶的额外损伤)至少部分是由于在三重态荧光团释放过程中产生的反应性中间物(例如反应性氧)介导的。光诱导损伤的荧光试剂和/或其反应性中间物中的一种或两种可以包括在光诱导损伤的整体有害效果中。在一些方面,本发明针对在光照反应过程中减少一种或多种反应物的光诱导损伤的方法、装置和系统,例如从而通过提高延伸能力、速率、可靠性、或反应持续时间来促进反应。特别是,提供的方法与在不存在这些方法、装置和系统的反应相比,导致光诱导损伤水平下降和/或光诱导损伤阈值期延长。在特殊实施例中,这些方法包括使光照反应如上所述在反应过程中接受非光照期,或通过暂时除去据信会导致这些损伤的反应混合物的成分,如下所述。如本文所述,有限量的试剂或反应物可存在于溶液中,但其浓度非常有限,例如少于200nM,在一些情况下少于ΙΟηΜ,或在另一些情况下,少于ΙΟρΜ。然而在优选的方面,这种有限量的试剂或反应物指固定或限制在给定区域或反应位点(例如零模式波导)的反应物,从而在给定的区域中提供有限量的试剂,或在一些情况下,在给定面积内提供少量该试剂的分子,例如1-1000个分子,优选1-10个分子。应理解,给定区域内固定化反应物的光诱导损伤对该区域的反应性有显著影响,因为其它未损伤的反应物不能弥散入该区域并屏蔽这种损伤的效果。固定化反应物的例子包括表面固定或局部化的试剂,例如表面固定或结合的酶、抗体等,其在表面上被调查,例如通过荧光扫描显微法或扫描共焦显微法,内全反射显微法或荧光流式计数,利用渐逝波的显微法(见例如2007年8月31日提交的美国专利出版号20080128627 ;2007年10月31日提交的20080152281 ;和2007年10月31日提交的200801552280,其全部公开内容在此以所有目的完整引入以供参考),表面显像等。 上面描述了可以固定一种或多种反应物的各种类型的固相载体。根据本发明的某些方面,在一段或多段时间内调查在第一观察区内的感兴趣的反应,其累积比光诱导损伤阈值期短,如本文另述。这种调查可以与对含有第一观察区的固相载体上其它观察区的调查一同发生,或彼此独立。根据本发明,观察区通常包含容易受到光诱导损伤的被限制的试剂(例如酶、底物等),可包括一个平面或其它固定有受限制的试剂的固相载体的区域。另外或另选的,观察区可包括限制易受光诱导损伤的试剂的物理阻挡, 包括例如微孔、纳米孔、含有疏水屏障以限制试剂的平板表面。根据本发明的某些方面,利用反应可检测成分的间歇存在,利用恒定光照间歇调查在第一观察区内的感兴趣的反应,其中这种可检测成分的存在能够直接或间接导致一种或多种其它反应成分的光诱导损伤。例如,含有反应可检测成分的缓冲液能够被含有反应相同成分不可检测形式的缓冲液替换,从而中断反应数据的获取。当数据获取重新开始时, 含有可检测成分的缓冲液替换含有不可检测成分的缓冲液。这种反应成分的替换可重复多次,以产生在反应不连续阶段收集的多组数据。例如,这种替换可以在反应进程中发生至少约 2、4、6、8、或 10 次。在一些优选例中,可检测成分是荧光标记的成分,其可能由于接触激发光照受到损伤,还可进一步导致其它反应成分的损伤,如上所述。例如,掺入测序反应可以在荧光标记的核苷酸存在下开始,其掺入能指示聚合酶合成的新生链的核苷酸序列,而且根据互补性,也表明模板核酸分子的核苷酸序列。在正在进行的反应中的一个所选的时间点,可除去标记的核苷酸,例如通过缓冲液交换用未标记的核苷酸替代。在由于不存在来自进行的反应的信号打断了数据获取一段时间以后,可重新引入标记的核苷酸重新开始数据获取。可除去和重新引入标记的核苷酸多次和各种不同长度的时间段,如一般技术人员优选的。以这种方式,可实时从一个核酸分子产生多个不连续的序列读数。 本文所述的方法延缓了一种或多种试剂光诱导损伤的积聚,因此能间接减少光诱导损伤在感兴趣的进行中的反应中的影响。例如,减少关键酶成分接触光照辐射的方法 (例如通过使反应经历非光照期,或通过暂时除去引起这种损伤的反应成分)并不必须预防对酶成分的光诱导损伤,但宁可通过延缓反应混合物中光诱导损伤的积聚而延长光诱导损伤阈值期。可通过提供与接受恒定光照的反应相比光诱导损伤水平的减少,对由于实施间歇光照而导致的光诱导损伤的减少进行定性测量。类似的,作为暂时除去引起损伤的反应成分减少光诱导损伤的测量可以通过提供与一直存在这种成分的反应相比,光诱导损伤水平的下降定性。另外,光诱导损伤的减少常利用比较经历本发明的方法和/或系统的反应混合物和不经历它们的反应混合物之间的反应速率、持续时间,或可靠性,例如酶活性的延伸能力,和/或光诱导损伤阈值期来定性。在本发明的情况下,实施本发明的方法、装置和系统通常导致给定反应中一种或多种反应物的光诱导损伤减少,如用系统中“防止反应性损失”测定的。使用本领域已知的方法,防止活性损失的量可以是反应性损失减少,或延伸能力提高至少10%,优选大于 20 %、30 %、或40 %和更优选至少50 %,而且在许多情况下大于90 %,并且在反应性损失减少或延伸能力提高中大于90%,或甚至高于99%。为了说明和纯粹是举例目的,当用光诱导损伤的减少作为存在和不存在间歇光照下酶活性的量度时,如果一个反应包括具有100 单位酶活性的反应混合物,其在恒定光照下仅会获得具有50单位活性的反应混合物,则光诱导损伤中10%的减少将得到具有55单位的反应混合物(例如本来会损失的50单位的 10%将不再损失)。另外,本发明的使用预期将提高在恒定光照下会具有不良影响的反应的性能(例如延伸能力、持续时间、可靠性、速率等),其比在恒定光照下反应实现的性能提高至少约2_,5_,10-, 20-, 30-, 50-, 80-, 100-, 500-,或1000倍。例如,本发明的一个特别的目的是提高测序反应中聚合酶的延伸能力,使得数据收集能够跨越更长的模板。为了测序用途,本文的方法实现了易受光诱导损伤的反应中核酸序列的骨架构建。例如,如果测序装置在恒定光照下具有平均1000个碱基对的读数长度,可使反应进行定时的光照期,从而在读数的新生链中掺入约100个核苷酸,然后是定时的非光照期,使得 “在暗处”掺入约1000个核苷酸。该实验性设计得到的序列读数将包括10个长100个核苷酸的序列读数,彼此间隔约1000个核苷酸。如果以这种方式进行多次测序反应,并且适当交错光照期,多个反应的读数能够合并提供整条模板核酸的核苷酸序列数据。这将能够比短读数系统更容易地建立序列骨架,能实现对先前高度重复的DNA不可能测序的部分的结构分析,只要测序系统能在没有光损伤的情况下得到长读数。IV.软件和算法实施本文的方法能够用许多序列比对方法进行,包括那些由不同类型的已知多重序列比对(MSA)算法产生的。例如,序列比对可以包括能用参比序列比对每个读数的一种或多种MSA算法衍生的比对方法。在一些实施例中,在参比序列对于含有目标序列的区域是已知的情况下,可用参比序列使用中心星(center-star)算法的变体产生MSA。另外,序列比对可包括一种或多种MSA算法衍生的比对,其能够不使用参比序列而将每一个读数相对于每个其他读数进行比对(“从头装配途径”),例如PHRAP、CAP、ClustalW、T-Coffee, AMOS 制备-共有或其它动态编程的MSA。根据所用的序列产生的方法,序列比对的确定还可涉及分析读数质量(例如使用TraCeTUnerTM、Phred等)、信号强度、峰数据(例如高度、宽度、 邻近峰的接近程度等)、指示读数朝向的信息(例如5’ 一 3’朝向)、表明序列中可用调用范围的清晰范围标示 等。序列比对的其它算法和系统是本领域技术人员熟知的,进一步在例如G. A. Churchill, Μ. S. Waterman(1992) "DNA序列的准确性估计序列质量”基因组学 14 89-98 ;M. St印hens,等,(2006) “来自二倍体样品的自动化基于序列的检测和SNP基因分型”自然遗传学,38 375-381 J. Hein (1989)分子生物学进化学,6 :649_668 ;2008年6月 5 日提交的 U. S. S. N. 12/134,186 和 2008 年 11 月 20 日提交的 U. S. S. N. 61/116,439。DNA测序中的标准序列比对问题是将较短片段(< 2kb)的序列与较长的目标序列比对。假定该片段代表DNA的一个连续部分,被定位于参比序列的一个位点。随着核酸测序技术(例如来自 Illumina 公司(San Diego, CA),Helicos Biosciences (Cambridge, ΜΑ),和应用生物系统公司(Foster City, CA))和伴侣配对测序方案(见例如美国专利出版号2006/02926141A1,其全部内容在此出于任何目的在此引入以供参考)的进一步发展,比对问题延伸到了用一些对于期望的伴侣对构象(距离和朝向)的知识比对来自参比序列相同读数的两个片段。对于伴侣配对读数,用距离限制条件和朝向限制条件对两个片段进行作图,其用各种短读数作图算法处理过,例如R Li,Y Li,K Kristiansen,J Wang. “SOAP 短寡核苷酸比对程序〃生物信息学,24,713-714 (2008);和Maq,一组对固定长度的Solexa/SOLiD读数进行作图和装配的程序(SourceForge,Inc.)。虽然这些算法能够处理简单的伴侣对比对情况,一般能用仅两个来自伴侣配对序列的读数处理具体问题,并用距离限制条件作为一个严格过滤条件(即如果两个读数彼此在χ个碱基对之内,并且朝向正确,将其报道为符合伴侣对),本文提供的方法更能广泛应用,并能处理更复杂的数据组,包括那些具有多个读数的,存在或不存在参比序列的,可能的非模板序列(例如衔接子或下文所述的接头部分), 以及复杂的距离和朝向限制条件。实时单分子测序代表了能从一个DNA测序读数获得复杂得多的序列片段的机会。两个例子是用本文所述的脉冲或间歇检测系统(例如间歇光照)和连续阅读来自环形模板(SMRTbel 1 模板,见例如2008年9月24日提交的U. S. S. N. 61/099,696 ;2009年3 月27日提交的美国专利申请号12/383,855,和2009年3月27日提交的美国专利申请号 12/413,258,其全部公开内容在此以所有目的完整引入以供参考)阅读来自一条长DNA链的多个不连续序列片段。本发明的一些方面提供了用分子构型和/或用于产生相关序列读数的测序方案优化比对这些序列和参比序列的方法。特别是,提供了克服多条片段用不同距离和朝向限制条件对参比序列作图的一般问题。从核酸测序仪产生的原始序列数据开始(步骤1),用产生次佳局部比对和最佳比对的局部比对方法,例如,Smith-Waterman算法将序列数据对目标序列作图(步骤2)。另一种更灵活的局部比对法的例子是使用将非常短的片段与目标序列比对的方法(例如 kmer-指示,后缀树、后缀阵列等)的拉链法,并将得到的命中重新连入显著匹配的较长链中(见例如D. Gusfield,串、树、和序列上的算法,剑桥学报,剑桥,英国,1997,其全部公开内容在此以所有目的完整引入以供参考)。链并不必须用动态编程细化,以用于下列算法, 能够实现非常迅速的算法。在一些实施例中,链的动态编程细化可能提高算法的效率(ROC 曲线下面积)。

目标序列是由查询的分子模板的可能假设构成的。在用重复光照的核酸测序法, 对来自线性DNA序列的鸟枪片段进行测序的例子中,可能的假设是基因组的两个朝向(因为我们不知道片段的原始朝向)。在对SMRTbell 模板进行测序的例子中(例如见本文实施例1),假设包括基因组的两个朝向以及已知的衔接子序列。可以改变测定每个局部片段中报道了多少个命中的参数,以改变该算法的特异性和灵敏度。图6显示了对于SMRTbell 模板这些命中看起来会是怎样(代表了序列比对矩阵中的路径,通常被称作动态编程矩阵,虽然并不需要用动态编程来寻找这些路径)。在列举了可能的局部比对后,构建权重定向图,其中每个局部比对表示成图中的一个结点(步骤3)。如果用预期分子构型的知识说明代表原始分子模板的一种可能重建, 在结点之间绘制框线。比对路径A与比对路径B的直接连接被解释成“B代表的目标序列将会在原始分子中跟随A代表的目标序列”。例如,如果用重复光照法对线性DNA分子进行测序,则不会预期相对朝向的片段会相连接。一般说,代表测序读数中同一段,但与目标序列上不同区域比对的片段不会被连接。除了这些例子,连接结点的规则应当较宽松,允许探索能在考虑所有证据(例如所有序列读数)时获得显著性的微弱可能性。边权的指定能够对这些边缘的可能性进行正确的权衡,可以通过优化修除高度不可能边缘来调节算法的速度。一般这代表速度和灵敏度之间的一个折衷。在代表目标片段A在原始分子中被目标片段B跟随的对数可能性的图中对连接 (A — B)指定权重w (A — B) = -log P (B | A)条件概率P(B|A)对可能分子构型的了解和B的比对显著性进行编码。P(B|A) = f(B)g(A, B)其中f是比对显著性值(理论或经验获得的)而g编码代表允许的分子构型的物理限制条件。例如,在使用反复光照的测序的情况下,可能了解下列一段片段末尾和下一个片段开始之间间隔的时间是200秒。如果聚合酶以平均速率4碱基对/秒的速率(标准误差为1碱基对/秒)掺入碱基,可以假定目标片段2跟随目标片段1的可能性由目标上这些片段之间的距离和正常概率确定g{A, B)=々二·) exp[- (d - 800)/ 2(200^ ]在SMRTbell 的例子中,预期的插入大小和片段间观察到的距离和朝向的知识可用于对两个片段可能来自一个正确产生的SMRTbell 模板的可能性指定权重。该权重可能包括聚合酶的预期速率以及片段彼此的朝向规则,以及其在原始读数中分开的距离。例如, 当预期指派到目标基因组中的相同区域的两个正向片段可能来自SMRTbell 分子周围的多个途径,这些片段并不被认为在测序时间内是紧接着的。可以根据这些片段之间预期时间量计算加权函数(即花费的时间将预期足够长,能够包括两个衔接子序列和反向序列)。一般来说,加权函数可以任意复杂,并且被调整成给定可得的知识(目标序列上片段之间的距离,片段间的测序时间,预期的模板长度等)的测序片段之间经验观察到的关系。例如,可观察经验概率分布值,以显示比高斯概率模型预测到的更长的尾。使用条件对数可能性指定边权是由以下逻辑启发的在可能的局部比对图中,理想的是找到能够最佳解释观察到的数据的高度可能路径。考虑通过三个结点A、B和C的路径,其中P (ABC)是 ABC是正确指定的概率P (ABC) = P (C | AB) P (B | A) P (A)^ P (C I B) P (B I A) P (A)其中对目标序列的允许指定之间的限制条件的观察验证了最后的逼近,在本质上通常是局部的。归纳对于路径al,……aN的公式,并对两边取负对数,得到
N-I
- log/5。
) = -^logP(ai+l|a/)-IogjP(^1)
/=1很明显,如果使用对数可能性,边权是加成的,我们可以对有向图用标准最短路径算法寻找最佳路径。图7显示了假设的有向图。该图对应于上面所绘的比对描述的情况。 交叉排线的增加,即单个,两个,三个交叉排线组显示了路径可能性的增加,其中三个交叉排线显示了最佳路径。虚线代表禁止的转移。图中不是所有的通路都考虑,以避免表示上的混乱。上面列出的通式仅仅包含了一个“一体”术语P(al),表示每个通路中的起始结点,其代表该起始比对是正确的概率的权重。为了使该概率适应寻径算法,我们在图中加入了连接每个可能结点的假来源(没有在上图中显示)。连接假来源和结点ai的边缘权重是-logP(ai)。这能够用从假来源开始的常规单源最短路径算法。所需概率P(ai)可以来自比对显著性的测定值(理论或经验确定的),或可以是在所有比对中统一设定的,从而能用路径逻辑测定最佳路径指定,不受起始点的相对值限制。预计为了高相似性比对,此处需要阈值来仅仅允许假来源和结点之间的边缘,否则下一步中的最短路径算法不能得到所需的路径。在权重定向图构建后,确定通向每个结点的最短路径(步骤4)。图是定向和非环状的(DAG),因此我们能使用标准最短路径DAG算法(见例如T. H. Cormen,CE Leiserson, RL Rivest,《算法介绍》,MIT出版社剑桥,麻省,1990).该算法表示成0 (V+E),对于这些图应当非常迅速。在确定了通向每个结点的最短路径后,需要对路径进行评级,以确定最佳指定。建议最佳度量应当是奖励那些能够解释更多具有高度相似性的测序读数(更长路径)的路径。一种这样的度量可以是标准化的负对数相似性路径总权重除以该路径中解释的测序读数的碱基数。对于更复杂的图或者边缘权重指定,可使用Dijkstra的算法, Bellman-Ford算法或A*算法。其它可使用的算法包括但不限于Floyd-Warshall算法。对于噪声序列数据,可能在步骤2中的局部比对偶然会在测序读数中彼此重叠, 即使它们在完美的系统中这种重叠不可能发生。因此,在步骤3的边缘指定逻辑中必须允许一定量的不稳定性,以弥补不知道各局部比对的精确边界的损失。一旦确定解释观察到的读数的最佳物理模型,可细化局部比对的边界,以反映测序读数中各碱基只能存在于一个局部比对中的物理必要性。还理想的是解释所有在局部比对之间没有指定到图中的碱基。一种直接细化的方法是构建序列的完美模型,并对该序列重新比对测序读数。该细化算法将保留物理限制条件(测序读数中的每个碱基仅能被模板中的一个位置解释),并指定最佳路径中的所有极值结点之间的碱基。 可以改变或变换本文所述的软件和算法实施方式的一些方面,而不违背本发明的精神和范围。例如,对于算法分配,可对次佳局部比对的原始测定值(步骤2)使用许多算法。常规例子包括FASTA、BLAST或Smith-Waterman。预期使用短序列比对算法(后缀阵列,后缀树、Boyer-Moore, Rabin-Karp, kmer-指示等),然后链接起来建立显著匹配区,以获得最佳益处。本文所述的算法的一个优点是不需要动态编程细化得到的链,因此可以非常迅速,虽然预期使用动态编程细化步骤2中的链会提高算法的效力。对于图构建,改变边缘指定的逻辑来保持图的大小可管理具有优点。可能可迫切合并步骤2和3,将较为缓慢的步骤2集中在图的生产区域内。例如,如果在步骤2中较早地发现特别强的命中时,可能有益于搜索仅在该局部附近存在的次佳命中,如果知道该强命中会在最终方案中的话。调整图的构建可能包括阈值,在其下不产生边缘。另外,有许多参数(最小链长度、边缘指定的最小概率、长度对准确性的相对加权等)可用于该算法并调整,以使得给定情况的算法灵敏度和特异性最大化。虽然在本发明的一些优选例中是有用的,本文上面提供的算法并不能方便地处理当模板不匹配物理驱动的预期模型的情况。这种情况的一个相关例子是当模板含有基因组结构改变(SV),例如转座时的情况,其中在模板中正确相邻的两个片段在参比基因组中相隔甚远。这种结构变化情况能根据目前算法通过报道观察到的路径的可信度和报道当没有物理预期的途径看来与所观察到的数据符合的情况来最佳处理。一般说,结构变化的检测需要多种高度显著的局部比对存在,其能被鉴定成通过片段的基因组顺序与其自身的参数匹配推翻解消假设(null hypothesis)的多种高度显著的局部比对。无论如何,使用例如 SMRTbell 测序等分子重复测序来适应鉴定SV事件的能力的提高。这样的改变可以是反馈法,能够在步骤3中修改连接限制条件,使得当单独比对非常显著时,实现目标序列上的遥远分离。仅需要一对这样的非常显著的配对,从而能拯救支持同一 SV假设的较不显著的部分匹配。本文提供的软件和算法实施方式特别适用于将各种测序技术(例如合成测序、分子内重复测序、Sanger测序、毛细管电泳测序、焦磷酸测序、连接酶介导的测序等)产生的序列读数转化成共有序列数据,其代表了经历测序反应并产生序列读数的模板核酸的实际核苷酸序列。本文提供的软件和算法实施方式优选是机器执行的方法。本文提到的各种步骤优选是通过机器执行的用户界面进行的,该机器包括储存在机器可读介质中的指令和执行指令的处理器。这些方法的结果优选也储存在机器可读的介质上。另外,本发明提供了包含计算机可用介质的计算机程序产品,其包含计算机可读程序编码,计算机可读程序编码适合实施本文所述的一种或多种方法,可任选的还提供了对本发明方法的结果的储存。在另一个方面,本发明提供了将来自一个或多个测序反应的序列读数转化成代表一个或多个测序反应中分析的一条或多条模板核酸的实际序列的共有序列数据的数据处理系统。这些数据处理系统通常包括用于根据本文所述的步骤和方法处理序列读数的计算机处理器,以及用于储存最初序列读数和/或转化的一个或多个步骤的结果(例如共有序列数据)的计算机可用介质。
当描述上述的一些具体应用时,应理解这些方法也可用于其它类型的复杂数据组,本发明不应限于本文提供的特定例子。本方法的其它应用对于本领域一般技术人员是清楚的,并被认为是本发明的额外方面。V.装置和系统 本发明还提供了与本发明的组合物和方法联用,以提供分析反应的间歇检测的系统。具体说,这些系统通常包括本文所述的试剂系统,联合分析系统,例如用于检测来自这些试剂系统的数据。例如,测序反应可以接受间歇光照,而测序系统可以包括与市售核酸测序系统一起提供或出售的系统组件,例如购自Illumina公司的基因组分析仪系统,购自 454生命科学公司的GS FLX系统,或购自生命技术股份公司的ABI 3730系统。在一些优选例中,用能够以单分子水平检测和/或监测反应物之间的相互作用的光学系统监测接受间歇光照的反应。这样的光学系统通过首先产生和对反应物传播入射波长,然后收集和分析来自反应物的光学信号实现这些功能。这样的系统通常使用将信号从反应定向到检测器的光学系统,在一些多个反应位于固相表面的实施例中,这些系统通常将来自固相表面(例如限制元件的阵列)的信号定向到基于阵列的检测器的不同位置,从而同时检测来自多个不同反应的每一个的多个不同光学信号。具体说,光学系统通常包括光栅或楔形棱镜,同时分离来自阵列内的各限制元件的具有不同光谱特征的特征性信号, 并将其定向到基于阵列的检测器(例如CCD)上的不同位置,还可包括额外的光学传播元件和光学反射元件。可用于本发明的光学系统优选包含至少一个激发光源和光子检测器。激发光源产生和传播入射光,以光学激发反应中的反应物。视所需用途,入射光的光源可以是激光、 激光二极管、发光二极管(LED)、紫外灯泡和/或白光源。另外,激发光可以是散射光源, 例如内全反射显微镜中,将光带到反应位点的一些类型的波导(见例如美国申请出版号 20080128627,20080152281,和200801552280)或零模式波导,如下所述。如需要,可同时使用一个以上的光源。多光源的使用对于使用多种具有不同激发光谱的不同试剂化合物的应用特别有效,能随后检测一种以上的荧光信号,以同时跟踪一种或多种分子的相互作用。本领域已有各种类型的光子检测器或检测器阵列。代表性的检测器包括但不限于光学读数仪、高效光子检测系统、光电二极管(例如雪崩二极管(APD))、照相机、电荷耦合装置 (CCD)、电子倍增电荷耦合装置(EMCCD)、增强型电荷耦合装置(ICCD)和装有任何上述检测器的共焦显微镜。例如,在一些实施例中,光学系统包括能够分辨来自各个测序复合物的荧光信号的荧光显微镜。如需要,光学限制元件的主要阵列含有多个比对辅助或键,以实现光学限制元件和激发光源、光子检测器或下述光学系统之间准确的空间位置。主光学系统还可包括光学系统,其功能可以各式各样,可包含一种或多种光传播或反射元件。这些光学系统优选包含各种能够将光以改变或不改变的状态从一个位置导向另一个位置的各种光学装置。第一,光学系统收集和/或将入射波长定向到反应位点(例如光学限制元件)。第二,其将反应物发射的光学信号传播和/或定向到光子检测器。第三,其可选择和/或改变入射波长或来自反应物的出射波长的光学性质。在一些实施例中, 光学系统控制光源的开/关周期,以对一个或多个光照反应位点提供光照和非光照期。这些光传播或反射元件的说明性例子是衍射光栅、阵列型波导光栅(AWG)、光纤、光开关、镜子 (包括二向色镜)、透镜(包括显微透镜、纳米透镜、物镜、显像透镜等)、瞄准仪、光学衰减器、滤光器(例如极化或二向色滤光器)、棱镜、波长滤光器(低通、带通、或高通)、平面波导、波片、延迟器、和任何能够指导光传播通过恰当的折射率和几何性质的其它装置。特别优选的光学系统的一个例子如2005年8月11日提交的美国专利出版号20070036511,其出于所有目的在此完整引入以供参考。在 一个优选例中,含有感兴趣反应的反应位点(例如光学限制元件)与光子检测器可操纵连接。反应位点和各个检测器能够空间上对齐(例如1 1排列),从而有效收集来自反应物的光学信号。在一些优选实施例中,反应基质被置于平移台上,其通常与恰当的机器人连接,以在固定的光学系统的两个方向上提供基质的侧向平移。其它实施例可以将平移系统与光学系统偶联,以使得系统相对于基质移动。例如,平移台提供了将反应基质 (或其部分)移出光路的手段,从而产生反应基质(或其部分)的非光照期,和之后将基质移回,开始随后的光照期。2006年12月1日提交的美国专利公开号2007061017提供了一个示范性例子。在特定的优选方面,这种系统包括反应区阵列,例如零模式波导阵列,其受系统光照以检测从其得到的信号(例如荧光信号),该信号与在各反应区中进行的分析反应相联系。每个反应区可操作性与各种微米透镜或纳米透镜偶联,优选空间上对齐,以优化信号收集效率。另外,可在一光学系统中使用物镜、光谱过滤装置或棱镜,用于分辨不同波长的信号,以及显像透镜的组合,以将来自每个限制元件的光学信号定向到阵列检测器,例如CXD 上,同时将来自每个不同限制元件的独立信号分到多个组成的信号元件,例如对应于在每个限制元件中发生的不同反应事件的不同波长光谱。在优选例中,设置还包括控制各个限制元件光照的部件,这些部件可能是光学系统的组件,或可以在系统的他处,例如作为限制元件阵列上方的遮光膜。在例如2005年9月16日提交的美国专利出版号2006003264中提供了这种光学系统的详细描述,其全部公开内容在此以所有目的完整引入以供参考。本发明的系统还通常包括信息处理器或计算机,其与系统的检测部分可操作性连接,以将从检测器获得的信号数据储存在计算机可读介质,例如硬盘、CD、DVD或其它光学介质,闪存等上。为了本发明的该方面,这种可操作性连接提供了将数据从检测系统到处理器的电子传递,以供随后的分析和转换。可操作性连接可以通过任何熟知的计算机网络或连接方法实现,例如Firewire 、USB连接、无线连接,WAN或LAN连接,或其它优选包括高速数据传输的连接。计算机还通常包括分析原始信号数据,鉴定可能与掺入事件有关的信号脉冲,并识别在测序反应中掺入的碱基的软件,以将原始信号数据转换或转化成用户可翻译的序列数据(例如见美国专利申请号2009-0024331,其全部公开内容在此以所有目的完整引入以供参考)。示范性系统如2007年9月14日提交的美国专利申请号11/901,273,2008年6月 5日提交的美国专利申请号12/134,186详述,其全部公开内容在此以所有目的完整引入以
供参考。另外,如上所述,本发明提供了用于将序列读数转换成共有序列数据的数据处理系统。在一些实施例中,数据处理系统包括通过调查模板核酸分子产生序列读数的机器。在一些优选例中,机器用如本文他处所述的合成测序技术产生序列读数,但是机器也可用其它本领域普通技术人员已知的其它测序数据产生序列读数,例如焦磷酸测序、连接介导的测序、Sanger测序、毛细电泳测序等。本领域技术人员能够得到这些机器和使用它们的方法。产生的序列读数代表了模板 核酸的核苷酸序列,其程度仅为特定测序技术能够产生这样的数据,因此可能与实际的模板核酸分子序列不相同。例如,与模板的实际序列相比,在给定位置可能存在缺失或不同的碱基,例如,当缺失碱基调用或不正确时。这样,有利的是产生重复序列读数,本文所述的方法提供了操纵和计算的方法,将重复序列读数转化成共有序列读数,与来自一条模板核酸分子的一次读数的序列读数相比,通常能更好地代表模板核酸分子的实际序列。重复序列读数包括多个读数,每个包括与多个读数中的至少另一个的至少一部分有重叠的至少一部分序列读数。如此,多个读数不需要完全彼此重叠, 而第一个亚组可能相对于第二个亚组与模板核酸的不同部分重叠。可用各种方法,包括单核酸分子模板的重复测序,对多个相同核酸模板测序或其组合产生这样的重复序列读数。在另一个方面,数据处理系统可包括本文提供的软件和算法实施方式,例如那些配置成将重复序列读数转换成共有序列读数的,如上所述,这些方式通常比来自一条模板核酸分子的一次读数的序列读数更能代表模板核酸分子的实际序列。另外,重复序列读数转化成共有序列数据能够识别和消除重复序列读数中多个读数之间单个读数的一些或全部差异。如此,转化提供了核酸模板实际核苷酸序列的代表,从其产生的重复序列读数比基于单个读数的代表更精确。本文提供的软件和算法实施方式优选是机器实施的方法,例如在包括计算机可读介质,配置成进行本文所述的多个方面的机器上进行。例如,计算机可读介质优选包含以下至少一种或多种a)用户界面;b)用于储存重复序列读数的内存;c)用于储存软件实施的指令,以进行算法,用于将重复序列读数转化成共有序列数据的内存;d)执行指令的处理器;e)用于将转化结果记录入内存的软件;和f)用于记录和储存得到的共有序列读数的内存。在优选例中,实施者用用户界面管理机器的各个方面,例如指导机器执行将重复序列读数转化成共有序列数据的各个步骤,记录转化的结果,和管理储存在内存中的共有序列数据。如此,在优选例中,方法还包括通过记录重复序列读数和/或方法产生的共有序列数据转化计算机可读介质。另外,计算机可读介质可以包括软件,以提供重复序列读数和 /或共有序列数据的图示,以及可以用软拷贝(例如在电子显示屏上)和/或硬拷贝(例如在印刷物上)的形式提供图示。本发明提供了包含计算机可读介质的计算机程序产品,其包含计算机可读程序编码,计算机可读程序编码适合实施本文所述的一种或多种方法,可任选的还提供了对本发明方法的结果的储存。在一些实施例中,计算机程序产品包含上述计算机可读介质。在另一个方面,本发明提供了将来自一个或多个测序反应的序列读数转化成代表一个或多个测序反应中分析的一条或多条模板核酸的实际序列的共有序列数据的数据处理系统。这些数据处理系统通常包括用于根据本文所述的步骤和方法处理序列读数的计算机处理器,以及用于储存最初序列读数和/或转化的一个或多个步骤的结果(例如共有序列数据)的计算机可用介质,例如上述计算机可读介质。如图9所示,系统900包括基材902,其包括多个不同的发色团发射信号的来源,例如零模式波导904的阵列。在系统中安装有激发光源,例如激光906,其将激发辐射定向到各个信号来源。这通常是通过将激发辐射定向到或通过合适的光学组件,例如二向色镜108和物镜910,它们将激发辐射定向到基材902上,特别是信号来源904上。然后用过光学组件,例如物镜910收集来源904发射的信号,使其通过额外的光学元件,例如二向色镜908、 棱镜912和透镜914,直到定向和撞击在一光学检测系统上,例如检测器阵列916。然后用检测器阵列916检测信号,将来自该检测的信号传递到合适的数据处理系统,例如计算机918 中,其中对数据进行翻译、分析,最终以用户接受的形式显示在例如,显示器920上,或用打印机924打印输出922。应理解,可以对这些系统进行各种改变,包括例如使用多通路组件来将多个不同光束定向到基材上的不同位置,使用空间滤波器元件,例如共焦遮光膜,以过滤出聚焦组件和光束成形元件,以改变入射到基材上的点的形状等(见例如出版的美国专利申请号2007/0036511和2007/095119,以及美国专利申请号11/901,273,其全部公开内容在此以所有目的完整引入以供参考)。VI 示例性的实施 本发明的方法和组合物用于广泛的分析反应中,其中检测方法的一个或多个方面对分析反应的一个或多个方面,例如速率、持续时间、可靠性、延伸能力等有害。在这样的情况下,间歇检测至少部分减轻了有害效果,而能够在先前不可检测的分析反应阶段中实现数据收集。如上所述,光照反应是获益于本文所述的组合物和方法的分析反应的一个例子, 特别是那些使用发光或荧光试剂的反应,特别是其中一种或多种易受到光诱导损伤的反应成分以低水平存在的反应。本文所述的方法和组合物的一个示范性应用是单分子分析反应,其中在分析中观察到一个分子的反应(或非常有限数量的分子),例如观察一个酶分子的作用。在另一个方面,本发明涉及单分子分析的光照反应,包括观察基于模板定向聚合酶合成的过程中核苷酸在新生核酸序列中的掺入对核酸测序。这种方法一般称作“掺入测序” 或“合成测序”,涉及对模板依赖方式的核苷酸或核苷酸类似物加入的观察,以确定模板链的序列。参见例如,美国专利号6,780,591,7,037,687,7,344,865,7,302,146。进行该检测的方法包括在受限观察区内使用荧光标记的核苷酸类似物,例如在纳米规格的孔和/或直接或间接连接在表面上。通过使用激发光照(即合适波长的光照,以激发荧光标记并诱导可检测信号),在荧光标记的碱基掺入新生链时,可对其进行检测,从而鉴定出掺入碱基的种类,从而检测模板链中的互补碱基。在特定方面,当分析依赖于一小群试剂分子时,对该群的任何显著部分的损伤将对要进行的分析产生显著的影响。例如,对有限的一群试剂,例如荧光类似物或酶进行延长的调查,可导致各种试剂光诱导损伤,导致对酶活性或功能性的显著影响。已显示,延长对与荧光核苷酸类似物合成有关的DNA聚合酶的光照会导致酶合成DNA的活性剧烈下降,通常以延伸能力下降表现。不受任何操作理论的限制,据信在一些情况下,光诱导损伤事件会影响酶的催化区,从而影响酶与模板复合的能力,或继续合成的能力。一般说,本发明的方法、装置和系统可通过对反应进行间歇光照提高性能,和/或选择性监测光照反应的一个或多个阶段。本发明的一个特别优选的方面是通过在光学限制元件,例如零模式波导中掺入核酸,结合测序。该反应涉及观察一个极小的反应体积,其中仅存在一个或数个聚合酶及其荧光底物。零模式波导及其在测序中的应用如美国专利号6,917,和7,033,764所述,掺入测序的优选方法一般如出版的美国专利申请号2003-0044781所述,其全部公开内容在此以所有目的完整引入以供参考,特别是其关于测序应用和方法的内容。.简单说,根据本发明配置的零模式波导(ZMW)阵列可用作单分子DNA序列测定的光学限制元件。特别是如上所述,这些ZMW在透明基材表面上或附近提供了极小的观察体积,该基材也称作ZMW的“基座”。固定在ZMW基座上的核酸合成复合物,例如模板序列、聚合酶和引物可以在合成过程中特别观察,以监测核苷酸以模板依赖方式的掺入,从而提供模板链中核苷酸的种类和序列。 该鉴定通常是通过在核苷酸上提供可检测标记基团,例如荧光标记分子实现的。在一些例子中,标记的核苷酸终止引物延伸,从而能够“一次一碱基”地调查复合物。如果在接触给定的标记碱基后掺入碱基,可在ZMW的基座上检测其代表性荧光信号。如果没有检测到信号,则该碱基没有掺入,接着用其它碱基中的每一种调查复合物。一旦掺入碱基,除去标记基团,例如通过使用光可切割的连接基团;当标记不是终止性基团时,可在随后的调查之前先除去在掺入核苷酸3’末端的终止子。在其它更多的优选例中,标记的核苷酸的掺入并不终止引物延伸,可通过检测一系列位于ZMW基座处的荧光信号实施监测多个标记核苷酸的持续掺入。在一些这样的实施例中,在标记的核苷酸被聚合酶掺入后自然释放标记,从而不需要用其它手段,例如光切割事件释放。如此,持续测序反应可包括聚合酶将多个核苷酸或核苷酸类似物重复掺入,只要在反应混合物内这些对于聚合酶是可得的,例如,不在模板核酸上停下。(这样的持续聚合反应可通过掺入核苷酸或核苷酸类似物阻止,这些核苷酸或核苷酸类似物含有封闭额外掺入事件的基团,例如某些标记基团或其它化学修饰物。)根据本发明,可仅仅通过调查反应混合物,例如在光诱导损伤发生前检测一个或多个光照期的荧光发射来进行测序反应。一般说,本文所述的方法是以足够提供有益影响的方式实施的,例如减少光诱导损伤和/或延长光诱导损伤阈值期,而不以干涉感兴趣反应,例如测序反应的方式实施。本发明还考虑了用于减轻光诱导损伤对反应的影响的其它方法和组合物,如上所述,和如2008年11月19日提交的例如U. S. S. N. 61/116,048所述。 这些另选方法和化合物可与本文所述的组合物和方法联合使用,以进一步减少可在光照反应过程中产生的物质的影响。另一种减轻光诱导损伤对给定反应的结果造成的影响的方法提供了用除了上述光诱导损伤减轻剂以外的手段消除可能的伤害性氧物质。在一个例子中,通过在不同气体条件下提供反应系统,例如使水相反应接触中性气体条件,例如氩气、氮气、氦气、氙气等, 溶解 氧物质可能从水相系统中冲出,以防止在反应混合物中溶解过量的氧。通过减少系统的起始氧负荷,观察到光诱导损伤作用显著减少,例如在聚合酶介导DNA合成中。在特定优选方面,系统接触氙气氛。特别是,由于可引入氙气形成偶极,其作为三重态淬灭剂操作,并用于在水相系统中代替氧。(见例如Vierstra和Poff,植物生理学,1981年5月;67 (5) 996-998)。如此,氙气还可被归到淬灭剂中,如上所述。虽然描述了零模式波导,应理解可使用各种选择性光照策略来随着时间调查固相载体上的不同区域,例如对于在基材上一些所选区域内损伤分子,而在基材上的其它所选区域内的分子不损害。在一些实施例中,这样的方法涉及使用定向光源(例如激光) 来对仅选定的区域进行光照;改变光源光照角度;或重新对光源定焦,例如通过使光照通过改变固相载体上入射光形状的光学系统。这些和其它可与本文所述的本发明的方法和系统联用的减轻光诱导损伤的方法的例子如2005年8月11日提交的美国专利出版号 200700365116,881,312,2008 年 11 月 19 日提交的 U. S. S. N. 61/116,048,2006 年 12 月 1 日提交的美国专利出版号20070161017,其全部公开内容在此以所有目的完整引入以供参考,特别是与这些减轻光诱导损伤有关的公开内容。如上所述,使用能够在一个反应中重复测序的模板(例如环形模板,SMRTbell 模板等)可增加核酸模板上核苷酸序列数据产生和/或对于模板中一个或多个感兴趣区域的序列读数倍数覆盖率增加,因此提供更多用于进一步分析,例如构建序列骨架和/或核酸模板共有序列的更多完整数据。例如,在一些优选例中,用本文所述的方法被测序的模板是包含双链片段的模板,例如75%以上,或甚至90%以上的目标片段是双链或内部互补的。这些模板可能例如,包含双链部分,其是由两条互补序列和两条单链连接部分(例如寡核苷酸或“发夹”)组成的,其在双链区域的每条链的3’末端与另一条链的5’端相互连接 (有时称为“SMRTbell ”模板)。在某些实施例中,用于这些模板的双链部分是经PCR扩增的。可任选的,限 制性位点掺入PCR引物内,从而使得用合适的限制性酶消化扩增产物,在每一端产生含有已知黏性突出端序列的双链部分,然后将其与发夹接头连接,该接头含有互补的黏性突出端,产生SMRTbell 模板。这些模板分子特别有用,因为从其产生的核苷酸序列数据同时包含双链部分的有义和反义核苷酸序列,而模板的环状构型能够重复测序(例如使用聚合酶能进行链置换), 提供两份或重复的序列信息。再次声明,测序过程可以围绕着完全连续的序列重复进行,从互补序列的每一个区段获得序列数据,以及通过对该区段进行重复测序,获得每个区段中的序列数据。重复光照在这些测序应用中是有用的,例如能将核苷酸序列数据的收集集中到对最感兴趣的反应测序的阶段,例如其中从(先前)的双链部分的一条链产生核苷酸序列数据的阶段。重复光照也被称作额外“轮”的模板测序,从而如本文他处所述减少对反应成分的光诱导损伤,而提供了对于未来分析(例如序列骨架构建和/或共有序列测定)提供更完整和可靠的核苷酸序列。另外,如上所述,可以根据间隔的非光照期的时间长度和反应过程中掺入的已知速率和/或在光照期内测定的掺入速率来估算光照期内产生的分隔序列读数的碱基位置的数目。掺入的已知速率可基于各种因素,包括但不限于由于模板核酸的核苷酸序列造成的核酸背景效应,所用的聚合酶的动力学,缓冲液效应(盐浓度,PH 等),和甚至是从持续的反应中收集的数据。可用这些因素根据实施者的实验目的来确定光照和非光照期的时间选择,不论是要尽可能扩大在给定模板核酸上序列覆盖的长度和深度,或优化来自特定感兴趣区域的序列数据,例如来自SMRTbell 模板的双链部分末端的那些数据。除了在可在一个整合过程中进行测序的一个模板分子中提供有义和反义数据,单链连接部分的存在还提供了一个机会,能提供允许鉴定一个区段(例如有义链)完成测序和另一个(例如反义链)开始的对准序列。这些对准序列提供了比对来自同一模板(例如同一分子或模板群中的相同分子)的序列的多个序列读数的序列数据基础。例如用于分子重复测序的对准序列的其它方面和用途进一步如美国专利出版物号20090029385中所述, 其全部公开内容在此以所有目的完整引入以供参考。在一些实施例中,在连接部分之一弓I发模板核酸,并使聚合酶沿着模板双链部分, 在当双链部分解链或变性时,在引发的连接部分直接下游移动而开始测序过程。测序过程进行到第二连接部分附近,并沿着模板(现在先前)双链部分的互补链进行。由于模板是环形的,该过程可继续进行,以提供来自一个模板的多个重复序列读数。因此,序列重复性来自测定互补序列(双链部分的有义和反义链)以及对每个环形模板进行重复测序。进行中的测序反应经历多个光照期和非光照期,每次绕模板通过一次产生至少两个或多个序列读数。光照期优选定时为能够产生模板所选区域的核苷酸序列数据。例如,有益的是仅产生双链部分或其区段的互补链的核苷酸序列数据。应理解,在重复测序环形模板中,如本文他处讨论的链置换聚合酶是特别优选的,因为它们将在每一次环绕模板的周期中置换新生链,从而能够连续测序。其它方法也应类似地允许这样的重复测序,包括例如,使用在反应混合物中具有5’ -3’外切酶活性,能够在合成后消化新生链的酶。能够可 任选地使用各种控制测序反应开始和/或继续的手段,这些手段可包括在模板核酸中加入特定序列或其它部分,例如引物或蛋白质的结合位点。本文他处讨论了在分析反应中例如通过在模板中整合终止或暂停点掺入控制元件的各种方法,进一步描述于 2009年3月27日提交的相关申请美国申请号12/413,258,其全部公开内容在此以所有目的完整引入以供参考。在一些实施例中,可以在例如不在引发中使用的连接部分上在模板序列中引入反应终止或暂停点,例如在模板上的一个位置处的可逆结合封闭基团。例如,在原始引发位置开始最初测序,例如从引发合成中使用的单链连接区通过有义链(例如3’端)的第一部分,可以关闭数据采集,让聚合酶环绕模板运行,例如,通过有义链的剩余部分到其它连接部分。掺入与该连接部分连接的合成封闭基团将能控制反义链3’末端聚合酶活性的重新引发。因此可获得整个(先前)双链区段上的配对末端序列数据,其中一端的序列数据来自有义链,另一端的序列数据来自反义链。该模板构建和测序方法对于长双链区段的情况特别有用,特别是在一些测序技术产生短读数长度的时候。可使用各种合成控制基团,包括例如与单链部分中的一个或多个碱基的核碱基部分偶联的大型光易降解基团,其能够抑制聚合酶介导的复制,链结合基团,其能够阻止持续合成,包括在引物和/或模板内的非天然核苷酸等。链结合基团的使用包括但不限于特定蛋白质对为此掺入模板(或与其结合的引物)中的识别序列的可逆性特异性结合。在一些实施例中,这种控制序列可包括用于转录因子的结合位点,例如在连接部分中提供的阻抑物。例如,Iac阻抑物序列与Iac阻抑蛋白结合,该结合显示能封闭复制,这种封闭是可逆的,能通过加入合适的引发剂,例如异丙基-硫代半乳糖苷(IPTG)或异乳糖酶逆转。在一些实施例中,可提供引物识别序列和/或其它控制序列,以控制聚合的引发和/或继续,例如通过杂交探针或可逆修饰的核苷酸等。(参见例如美国专利号 2008-0009007,其全部公开内容在此以所有目的完整引入以供参考)。这样的探针包括但不限于聚合酶在其处引发聚合的探针,含有不同类型的可检测标记的探针,分子信标, TaqMan 探针,Invader 探针(第三浪潮技术有限公司)等,可用于各种目的,例如提供合成开始和/或继续的指示。工程改造的暂停点可包括一个或多个非天然碱基(也称作第五碱基),其不与任何四种天然多磷酸核苷的任何一种在合成反应(例如在模板和/或寡核苷酸探针中)配对。遇到这样的碱基后,聚合酶会暂停,直到在反应混合物中加入非天然碱基的互补物。类似的,工程改造的暂停点可包括“损坏的”碱基,其导致复制停止,直至在混合物中加入修复酶。例如,具有嘧啶二聚体的模板会导致复制复合物暂停,加入光裂解酶DNA修复酶将修复该问题位置并允许复制和测序继续。在另一个实施例中,可使用修饰酶的组合以工程改造模板上的一组修饰的碱基,例如糖基化酶、甲基化酶、核酸酶等的组合。
在 其它实施例中,用脱碱基位点作为暂停点,直至加入非天然“碱基”,例如芘,其显示与脱碱基位点在DNA合成中“碱基配对”。(见例如Matray等(1999)自然,399(6737) 704-8,其全部公开内容在此以所有目的完整引入以供参考)。DNA糖基化酶产生与天然编码碱基A、T、G和C大不相同的脱碱基位点。存在各种各样的对许多常见DNA加合物具有特异性的DNA糖基化酶,包括5-甲基胞嘧啶。例如,在拟南芥(Arabidopsis thaliana)的胞嘧啶脱甲基植物途径中鉴定出四种酶。另外,其它识别5-甲基胞嘧啶,并除去甲基化碱基产生脱碱基位点的酶也是已知的。另外,已知各种以序列特异性形式甲基化胞嘧啶的酶。 如此,可用胞嘧啶甲基化酶和从甲基化胞嘧啶核苷产生脱碱基位点的酶的组合在模板核酸中产生一个或多个脱碱基位点。甲基化酶的识别位点的大小以及模板碱基组成决定了甲基化发生的频繁度,因此,在给定模板核酸中产生的脱碱基位点的数量能够让一般技术人员选择甲基化酶,其具有在修饰核苷酸之间产生所需间隔的识别位点。例如,如果识别位点长 3个碱基,则预期每64个碱基平均有一个脱碱基位点;如果识别位点长4个碱基,则预期每 256个碱基平均有一个脱碱基位点;如果识别位点长6个碱基,则预期每4096个碱基平均有一个识别位点,依此类推。当然,具有更高GC含量的模板可能预期具有更高频率的脱碱基位点形成,而具有较低GC含量的模板预期具有较少频率的脱碱基位点形成。在一些优选例中,修饰和碱基切割是在将模板核酸引至反应位点,例如零模式波导前进行的。如上所述,甲基化酶识别位点的选择视技术人员需要合成起始点在模板上相隔多远而定。例如,在模板依赖性测序反应开始后,监视新生链中掺入的核苷酸序列,获得所需序列读数,其可从起始点延伸到暂停点,或在聚合酶到达暂停点前就终止。在一些优选例中,如本文他处所述,监测通过改变或除去光源,例如通过移动光源或包含反应位点的基座延缓。新生链的合成将继续进行,直到到达暂停点,不论反应是否被有效监视。当要重新开始反应时,可加入允许绕过的反应成分,例如芘、聚合酶等,这些然后可以被除去(例如通过缓冲液交换),在模板上的其它暂停位点进一步暂停。在一些使用焦磷酸测序技术(例如454生命科学公司开发的)的实施例中,可在一组扩增出的核酸中引入脱碱基位点,并开始合成。由于该组中所有模板都是相同的,将在同一位置上包含相同数目的脱碱基位点。在合成反应的过程中,监测新生链中核苷酸的同步掺入,直到到达脱碱基位点(在该点处合成暂停),或直到掺入变得不同步(其提高了背景噪声,降低了序列读数的可靠性)。在后一种情况下,实施人员可选择加速反应,例如通过一次加入所有核苷酸,以使得所有新生链延伸到模板中的第一个脱碱基位点。当反应被重新引发时,加入能够绕过脱碱基位点的反应成分,例如一种或多种芘。可进行洗涤步骤,以在加入前从反应位点除去核苷酸和/或聚合酶。另外,在一些情况下,可用与合成测序反应中所用的不同聚合酶掺入芘。在一些优选例中,含有绕过脱碱基位点的芘的反应混合物能够读过脱碱基位点,但在模板上不能再继续。随后加入测序反应混合物能够让合成测序反应重新开始,在新生链中掺入要监测的核苷酸。另外或额外地,实施人员不需要等到到达脱碱基位点以暂停检测,可任选的,加速反应以将所有新生链带到给定的脱碱基位点,而是可以选择在反应变得不同步前做这个,例如在模板核酸的具体感兴趣区域内收集到所需序列数据后。在使用基于连接的技术(例如生命技术公司开发的SOLID 系统)的实施例中,可用不参与连接反应的寡核苷酸工程改造暂停位点,其与相同模板核酸组(例如珠上)中所需位点互补。当系列连接反应到达该多核苷酸识别的位点时,反应不能继续,变得不同步的任何反应将“赶上”。用户接着可以打开寡聚物(例如使用化学处理或光切割),并重新引发测序反应。在一些情况下,需要在模板核酸中提供内切核酸酶识别位点。例如,在环形模板中包括这些位点能允许一种机制,以将模板从合成反应中释放出来,即通过使其线性化,并使得聚合酶从线性模板上去除,和/或使模板接触外切核酸酶作用,因此通过除去模板终止合成。这样的位点还可用作控制序列,以提供经工程改造缺乏切割活性,但保留序列特异性合成的内切核酸酶的特异性结合位点,因此能用于封闭模板核酸上聚合酶的运行。在一些实施例中,缺口位点,例如被缺口内切核酸酶识别的,可包括在模板分子的一部分内,更具体的,在模板的双链部分内,例如在SMRT bell 的双链部分,或在外源发夹结构的茎部。这种缺口位点提供了双链序列的一条链中的一个或多个中断,因此能够提供链置换聚合酶等的一个或多个引发位点。各种缺口酶及其识别序列是本领域已知的,这种酶也是市售的,例如来自新英格兰生物实验室。在一些实施例中,本文所述的间歇检测法用于“配对末端”测序应用,其中从模板核酸的两个末端产生信息,而不对模板间隔部分的至少一个部分产生信息。通常,配对末端测序应用提供了仅来自核酸模板两个末端的序列数据,但是本发明也还能产生额外的序列读数,其与来自模板末端的序列读数不连续。在一些优选例中,双链片段(例如基因组片段)与单链连接子连接,其连接有义链的3’端和反义链的5’端,或连接有义链的5’端和反义链的3’端。不管朝向如何,双链片段的两条链的分离得到单链线性模板核酸,其在有义和反义链之间含有连接子。随后的测序可涉及间歇检测,其仅对于感兴趣的有义和反义链的部分,例如末端之一或两者产生序列读数、在一些实施例中,可在两端对有义链和反义链测序,在序列数据中产生重复。识别出的来自模板连接子部分的序列读数(例如基于已知连接子序列或其中编码的特定对准序列)可用于模板有义和反义部分得到的序列读数比对取向,提供测定双链片段末端序列和随后序列骨架构建和/或作图的环境。在一些实施例中,可在连接子中掺入暂停或停止点,以控制聚合酶沿模板进行,从而能用于同步检测期,以确保从模板特定区域产生序列读数。另外,可包括额外的检测期,其间能从末端区域不连续的有义和/或反义链的部分提供序列读数。在相关实施例中,用具有在两端连接双链片段有义和反义链的连接子的核酸模板实现配对末端测序,这样双链片段中链分离提供了在原始双链片段的有义和反义链每一端之间具有连接子的单链环形模板。这样的模板分子能使链置换聚合酶绕着模板运行多次, 从而可能产生来自原始双链片段两条链的两个末端的重复序列数据。如本文他处所述,这种重复性可用于测定序列骨架的共有序列和/或构建。随着聚合酶沿着模板运行,可对检测期定时(例如根据聚合酶沿着模板运行的速率的了解,其不仅依赖于聚合酶还依赖于模板本身的序列),以产生对应于有义和反义链一端或两端的模板区域的核苷酸序列读数,还可包括检测期,从其它双链片段的不连续区域产生额外的读数。虽然这种定时可以用于确定检测期的合适周期,在反应较后的阶段(例如聚合酶已经重复绕模板运行),重新引发序列读数产生的确切位置会变得越来越接近。可通过在一个或两个连接子中掺入暂停或停止点,以调节聚合酶在模板上的运行来同步检测期,而不受聚合酶绕着模板移动的总距离限制。该策略更可靠地确保了所选模板区域序列(例如有义和反义部分末端)读数的产生,可任选的,期间间隔的区域和与末端区域不连续的区域读数的产生,而不受聚合酶绕着模板核酸运行次数的影响,尤其是在反应的较后阶段。另外,可用一个或两个连接子的已知序列对有义和反义部分的序列读数进行取向,以确定共有序列和/或对其作图。有趣的是,使用上述有义/反义核酸模板可代表一种模板的未定向处理,以提供配对末端序列数据,这与更传统的线性模板分子的双向处理正相反。另外,与传统方法不同,这些配对末端测序方法涉及用化学或其它方式处理不仅末端的区域,也处理末端之间的区域,在一些情况下包括处理整条模板。例如,聚合酶将核苷酸掺入模板上的每一个位点,形成新生链(从而“处理”模板的每个位置),而产生的测序数据限于对于实施人员特别感兴趣的模板的特定区域,例如末端区域。在一些实施例中,本文所述的间歇检测方法在使用纳米孔的分析系统中是有用的。纳米孔是电绝缘膜中的一个小孔,可用于单分子检测。一般说,纳米孔作为更小颗粒的库尔特计数器,可采用各种形式,例如脂双层中的蛋白质通道,或固态膜中的孔。检测原理基于监测当跨膜施加电压时,电解溶液通过纳米孔的离子流。例如,多核苷酸分子(例如 DNA、RNA等)通过纳米孔,导致通过纳米孔的电流强度发生改变,其中每个核苷酸在不同的特征性程度上改变纳米孔。如此,可监测当多核苷酸被拉过纳米孔时通过纳米孔的电流中的变化,并分析测定多核苷酸的核苷酸序列。可通过各种手段,例如通过电泳,或用酶侣伴蛋白引导多核苷酸通过纳米孔,将多核苷酸拉过纳米孔。对于制造和使用纳米孔的方法的其它讨论,见例如美国专利号 5,795,782 ;Kasianowicz,J. J 等(1996) Proc Natl Acad Sci USA 93(24) :13770-3 ;Ashkenas, N.,等(2005)Angew Chem Int Ed Engl 44(9) :1401-4; Winters-Hilt, S.等(2003)生物物理 J 84 :967-76 ;Astier, Y.等(2006) J Am Chem Soc 128(5) :1705-10 ;Fologea, D.等(2005)纳米通信 5 (10) :1905-9 ;Deamer, D. W.等(2000) 生物技术趋势18(4) =147-51 ;和Church, G. Μ. (2006)科学美国294(1) :52,其全部公开内容在此以所有目的完整引入以供参考。在一些实施例中,可通过改变多核苷酸通过纳米孔的过程,从而使得在非检测期内该过程加速,而在检测期内过程变慢,以在检测期内实现序列测定,实现核酸序列数据的间歇检测。可用各种方法改变多核苷酸通过纳米孔的速率,包括但不限于提高携带多核苷酸的电泳场(例如提高电压,改变反应混合物的电导率等),或改变各种条件,以改变蛋白质侣伴蛋白携带多核苷酸的速度。另外,在利用持续性外切核酸酶将单个碱基喂入纳米孔的实施例中,可根据外切核酸酶的已知生物化学特征改变外切核酸酶的动力学。在诊断测序应用中,可能仅需要提供DNA小片段的序列数据,但是测序过程要极度精确。对于这种应用,可使用较短的目标区段,从而能通过绕着较小的环形模板测序多次产生高水平的重复,其中这种重复提供了所需的准确性。因此,在一些情况下,双链目标区段可以更短,例如长10-200,20-100或20-50或20-75个碱基。出于前述目的,目标区段以碱基算的长度表示双链区段一条链的长度。在这种应用中,可用各种本文所述的间歇检测方法分析模板序列,从而将序列数据指向诊断学家特别感兴趣的模板的部分,和/或提高反应性能的各个方面,例如通过降低对一种或多种反应成分的光诱导损伤。应理解上述描述是说明性的,而不是限制性的。本领域技术人员应当已经明白,可对本申请公开的发明进行各种实施和改变,包括但不限于本发明的各个方面的组合,只要不违背本发明的范围和精神。因此,本发明的范围不应参照以上的说明决定,而应参照所附权利要求及其等同方案的全部范围决定。所有本文提到的出版物是出于描述和公开对于本发明使用的试剂、方法和概念。本文中没有应被认为是承认这些文献是本文所述的发明的现有技术。在公开内容中,引用了各种专利、专利申请和出版物。除非另外说明,每篇都完整引入出于全部目的以供参考。虽然为了说明详细进行了描述,应理解本领域技术人员知道或了解的许多变化也可以在本发明范围内实施。除非另外在上下文中清楚说明或表达,本文提供的任何浓度值通常是混合物值或百分比,不包括在加入特定混合物组分时,或之后发生的任何转换。如果没有在本文中纳入,在本公开内容中提到的所有出版的参考文献和专利文献也在此完整出于全部目的引入以供参考。提供下面的非限制性实施例来进一步阐述本发明。VI 单分子合成测序反应的间歇光照的例子实施例1提供了核酸模板,其包含双链区和在其两端的两个单链接头部分。第一个接头部分将有义链的3’端与反义链的5’端连接,而第二个接头部分将反义链的3’端与有义链的 5’端连接。该模板设计成当双链区域打开(例如通过热变性、螺旋酶活性等)时形成约500 个碱基的单链环,有时被称作SMRTbeir模板。多个这种核酸模板与聚合酶、引物和其它反应成分一起孵育,从而形成聚合酶模板复合物。(见例如K0rlach,J.等,(2008)核苷,核苷酸和核酸,27 =1072-1083 ;和Eid,J (2009),科学,323 133-138)。该复合物被固定在含有所有需要的缓冲液和核苷酸类似物成分的反应混合物(除了同工起始碱基和金属二阳离子) 中的零模式波导内,以进行合成测序反应。用Smith-Waterman算法进行模板已知序列与反应产生的序列之间的比对,图8中标出了序列读数的位置。图8中数据的采集是如下进行的使用激光激发(532nm和641nm激光线)在t =-5秒对零模式波导的阵列开始光照,在t = 0秒时加入缺少的同工起始碱基和金属二阳离子(锰金属),以同时引发所有零模式波导中的合成测序反应。光照下监测反应120秒, 除去光照,在反应阶段产生的测序数据如图8A所示,表示成每个读数作图的模板位置的函数。295秒处,光照重新开始,在300秒时重新开始采集数据,维持另120秒的间隔;该第二个光照期内的测序读数如图8B所示。595秒处,光照重新开始,在600秒时重新开始采集数据,维持另120秒的间隔;该第三个光照期内的测序读数如图8C所示。如预期的,在序列数据收集前时间越长(即光照期越晚),模板中比对漂移就越远,该漂移是从反应开始的时间的一个粗略函数。另外,在每个随后的光照期内产生的序列读数的分布比先前的光照期要更分散。另外,由于模板环状的性质,图8C清楚显示了一些聚合酶完全在底物周围通过,而且开始环绕模板第二轮开始产生序列读数,从而对于一个模板核酸产生了重复序列信息。实施例II如实施例I,使用了 SMRTbell 模板。对于确定序列的模板,用标准PCR方法,通过PCR在SMRTbell 模板的双链区域内产生3或61Λ的DNA插入物。对于基因组和其它生物样品,用DNA片段化方案产生分布为3或61Λ左右的DNA片段。产生这些范围内的片段是用HydroShear (基因组溶液 )装置,根据厂商推荐的设置进行的。酶消化随机基因组DNA片段,产生钝端。PCR产物和随机产生的DNA片段都被磷酸化,立刻置于具有钝端发夹接头的连接反应中。用减小体积的AMPure 磁珠(Agencourt )通过两个尺寸选择步骤纯化产物,除去发夹二聚体和其它短产物。(SMRTbell 模板的制备在本文他处进一步描述。)用于间歇检测的多核苷酸测序的系统成分与恒定光照下的单分子测序应用相当, 其在Eid等Q009)科学,323 :133-138中所述。具体说,固定化和测序缓冲液组合物、核酸类似物种类和浓度、聚合酶、ZMW、表面处理和装置与标准方法是相同的。对SMRTbell DNA 以及聚合酶结合和固定化、数据采集方案的改变如下。制备结合溶液,将3或eicbSMRTbell DNA模板与10倍过量的DNA聚合酶(分别为 IO-IOOnM)在 IOmM MOPS(pH7. 5) UOmM KOAc、lOOmMDTT&O. 05% Tween-20 中 30°C保温 2 小时,然后37°C保温1小时,然后在用于在ZMW上固定化前储藏在4°C下。就在固定化之前, 结合溶液稀释在标准固定化液(50mM MOPS (pH7. 5)、75mM K0Ac、5mM DTT、0. 05% Tween-20) 中至所需终浓度,通常是0. 1-lnM,在22°C下保温30-60分钟。固定化后的芯片制备和测序起始与标准方法相同。数据采集方案与对收集计时和ZMW定位配合修改的标准应用类似。在标准采集程序中,对每个ZMW进行一个长采集(约10分钟)。在间歇光照获得程序中,对于每个ZMW (在 “检测期”间)序列读数(也被称作“选通读数”)的多次短采集(约3分钟),每次采集期之间具有间隔,期间不进行序列读数的采集(“非检测期”)。每次采集序列读数之间间隔的时间基于每条序列(或选通)读数之间所需距离(即核苷酸位置的数目),聚合酶的聚合速率,以及SMRTbell 模板插入大小而定。如上所述,对一种f粘粒克隆AC223433 (含有人染色体15上的大约401Λ的区域) 产生SMRTbell 模板。用于对测序反应中产生的序列读数作图的参比序列是公众可得的人染色体15的序歹Ij (Hg 18 ;NCBI构型36. 1)和f粘粒AC223433 (NCBI GenBank登录号)。表 1显示了几种间歇光照测序反应的统计学上显著的映射的序列读数。可作图的“样子”的数量相当于单个核酸分子的检测期间产生的可作图序列读数。例如,“定位的1-样读数”表示,对于一个模板分子,只有一个检测期产生了一个能够定位到参比序列上的序列读数。表1 测序结果总结
权利要求
1.一种进行分析反应的方法,其特征在于,包括a)准备含有分析反应的成分的反应混合物,其中至少一种成分是可检测成分;b)引发反应混合物中的分析反应,使分析反应进行;和c)维持分析反应进行的条件,同时在分析反应进行的过程中使反应混合物经历至少一个检测期和至少一个非检测期,其中可检测成分在所述检测期和所述非检测期中都存在, 从而进行分析反应。
2.如权利要求1所述的方法,其中所述检测期是光照期,所述非检测期是非光照期,其特征在于,还包括在光照期内收集光照数据,在非光照期内收集非光照数据,其中还使用光学系统来收集光照数据,但不用其收集非光照数据。
3.如权利要求1所述的方法,其特征在于,所述分析反应包括一种酶,选自聚合酶、连接酶、核糖体、核酸酶和激酶。
4.如权利要求56所述的方法,其特征在于,所述酶是聚合酶,所述方法还包括暂停或停止点,以在分析反应中控制聚合酶活性。
5.如权利要求1所述的方法,其特征在于,所述反应混合物在分析反应进行过程中经历至少一个检测期和至少一个非检测期导致分析反应的一个或多个方面发生变化,所述方面选自延伸能力,可靠性,速率和持续时间。
6.如权利要求1所述的方法,其特征在于,所述分析反应是测序反应,包括单核苷酸模板,其中测序反应在检测期内通过检测可检测成分产生序列读数,而在非检测期内,由于暂停检测可检测成分而不产生序列读数。
7.如权利要求59所述的方法,其特征在于,所述序列反应包含至少两个检测期,从单核苷酸模板产生多个不连续序列读数。
8.如权利要求60所述的方法,其特征在于,所述多个包括至少三个不连续序列读数。
9.如权利要求59所述的方法,其特征在于,所述单核苷酸模板包含多个重复序列。
10.如权利要求59所述的方法,其特征在于,所述测序方法包含单核苷酸模板通过纳米孔。
11.如权利要求59所述的方法,其特征在于,所述测序反应包括聚合酶引物延伸,所述可检测成分是核苷酸或核苷类似物。
12.如权利要求1所述的方法,其特征在于,所述分析反应是持续反应。
13.如权利要求70所述的方法,其特征在于,还包括在检测期内实时收集检测数据,在非检测期内实时收集非检测数据,和合并检测数据和非检测数据以对分析反应定性。
14.如权利要求1所述的方法,其特征在于,所述可检测成分具有可检测标记。
15.如权利要求14所述的方法,其特征在于,所述可检测标记是发光、荧光、或发荧光标记。
16.如权利要求1所述的方法,其特征在于,所述可检测成分是经标记的核苷酸或核苷酸类似物,且其中在反应混合物中经标记的核苷酸或核苷酸类似物的浓度大于任何在分析反应进行的过程中存在于反应混合物内的任何未标记核苷酸或核苷酸类似物的浓度。
17.如权利要求1所述的方法,其特征在于,所述检测期和非检测期的建立并不在分析反应进行的过程中替换任何分析反应物中的成分。
18.如权利要求1所述的方法,其特征在于,对多个分析反应进行定性,而且其中多个分析反应位于固相载体上。
19.一种在光照反应中减轻光诱导损伤的方法,其特征在于,包括a)准备含有第一反应物和第二反应物的反应混合物,其中第一反应物与第二反应物在激发光照下相互作用,导致对第一反应物一定量的光诱导损伤;和b)对经光照的反应间歇激发光照,其中间歇激发光照与持续激发光照下的光照反应相比,减少在光照反应期间对第一反应物的光诱导损伤,因此减弱对第一反应物的光诱导损伤。
20.如权利要求74所述的方法,其特征在于,所述光照反应是引物延伸反应。
21.如权利要求74所述的方法,其特征在于,所述第一反应物是聚合酶。
22.如权利要求74所述的方法,其特征在于,所述第二反应物包含荧光或发荧光分子。
23.如权利要求74所述的方法,其特征在于,经光照反应中受到激发光照的时间长度短于光诱导损伤阈值时间。
24.一种从单个核酸模板分子产生多个不连续序列读数的方法,其特征在于,包括步骤a)准备含有单模板核酸分子、聚合酶和一组经标记的核苷酸或核苷酸类似物的反应混合物,其中所述组包含至少一类对于天然核酸碱基A、G、T和C的经标记的核苷酸或核苷酸类似物,且其中所述组内各类经标记的核苷酸或核苷酸类似物包含将其与所述组内的每一个其它类型区别开的可检测标记;b)引发聚合反应,以开始第一次在与单模板核酸分子互补的新生核酸链中持续掺入多个经标记的核苷酸或核苷酸类似物;c)用光学手段检测第一次持续掺入,从而从该单模板核酸分子产生多个不连续序列读数之一;d)进行缓冲液交换,从而用未标记的核苷酸或核苷酸类似物替换经标记的核苷酸或核苷酸类似物;e)让聚合反应开始第二次持续掺入未标记的核苷酸或核苷酸类似物,不检测未标记核苷酸或核苷酸类似物的第二次持续掺入;f)进行缓冲液交换,从而用经标记的核苷酸或核苷酸类似物替换未标记的核苷酸或核苷酸类似物;g)在聚合反应中引发第三次持续掺入多个经标记的核苷酸或核苷酸类似物;h)用光学手段检测第三次持续掺入,从而从该单模板核酸分子产生多个不连续序列读数的第二个。
25.如权利要求对所述的方法,其特征在于,还包括重复步骤d-g,其中重复步骤d-gη 次,以产生(n+幻个不连续序列读数。
26.一种装置,其特征在于,包括a)具有观察区的基底;b)固定在观察区内的第一反应物;c)位于观察区内的第二反应物;和d)一种对观察区进行至少一段时间光照和至少一段时间不光照的部件。
27.如权利要求沈所述的装置,其特征在于,第一反应物是酶。
28.如权利要求27所述的装置,其特征在于,所述酶是聚合酶。
29.如权利要求沈所述的装置,其特征在于,所述第二反应物是可检测标记。
30.如权利要求四所述的装置,其特征在于,所述可检测标记是发光、荧光、或发荧光标记。
31.如权利要求四所述的装置,其特征在于,所述第二反应物是核苷酸或核苷酸类似物。
32.如权利要求沈所述的装置,其特征在于,所述观察区在零模式波导内。
33.如权利要求沈所述的装置,其特征在于,所述对观察区进行至少一个光照期和至少一个非光照期的部件包括一种或多种选自以下的部件激光、激光二极管、发光二极管 (LED)、紫外光灯泡、散射光源、白光源、遮光膜、衍射光栅、成阵列的波导光栅、光纤、光学开关、镜子、透镜、平行光管、光衰减器、滤光器、棱镜、平面波导、波片、延迟器、与基材整合的可移动支架、和可移动的光源。
34.如权利要求沈所述的装置,其特征在于,还包含在至少一个光照期内收集数据的部件。
35.如权利要求34所述的装置,其特征在于,所述在至少一个光照期内收集数据的部件包括与包含机器可读介质的机器可操纵性整合的光学系统。
36.如权利要求沈所述的装置,其特征在于,激发光照下第一和第二反应物之间的相互作用导致对第一反应物的光诱导损伤。
37.一种对分析反应进行间歇检测的系统,其特征在于,包括a)在其上具有分析反应的反应试剂的固相载体;b)用于接受固相载体的支承台;c)位于能与固相载体的至少一部分进行光通讯的光学系统,用于检测其上产生的信号;d)一种使固相载体的所述部分经历至少一个检测期和至少一个非检测期的部件;e)可操纵性整合在支承台或光学系统上的平移系统,用于使光学系统和固相载体之一相对于对方移动;和f)与光学系统可操纵性整合的数据处理系统。
38.如权利要求37所述的系统,其中所述分析反应是经光照的反应,至少一个检测期是至少一个光照期,且至少一个非检测期是至少一个非光照期。
39.如权利要求37所述的系统,其特征在于,所述光学系统的位置还能对固相载体的部分进行光照。
40.如权利要求38所述的方法,其特征在于,当光照时间长于光诱导损伤阈值时间时, 所述光照反应易于受到光诱导损伤,所述至少一个光照期是多个光照期,且当光照反应的持续时间长于光诱导损伤阈值期时,其中所述多个光照期的总和短于光诱导损伤阈值期。
41.如权利要求37所述的系统,其特征在于,所述分析反应是测序反应。
42.如权利要求37所述的系统,其特征在于,所述固相载体包括至少一个零模式波导。
43.一种机器执行方法,用于将核苷酸序列读数数据转化成共有序列数据,当对模板核酸的目标区域进行多次测序时,所述核苷酸序列读数代表了被检测的碱基序列,且共有序列数据代表了模板核酸最可能的真实序列,所述机器执行方法包括a)用局部比对方法将核苷酸序列数据对目标序列进行作图,所述比对方法产生一组局部比对值,包含最佳局部比对和次优局部比对;b)对局部比对组进行计数;c)构建权重定向图,其中局部比对组中的每个局部比对都表示成一个结点,从而在权重定向图中产生一组结点;d)如果配对代表模板核酸的可能重建,在权重定向图中的结点对之间画框;e)对步骤d中画出的框指定权重,其中给定框的给定权重代表给定的框连接的给定结点对确实是模板核酸的重建的对数可能值;f)为权重定向图中每一个结点寻找最短路径,从而为权重定向图产生一组最短路径;g)对最短路径进行分级,以确定最佳比对;和h)将步骤a_g的结果储存在机器可读介质上。
44.如权利要求43所述的方法,其特征在于,所述步骤a_h是通过机器执行的用户界面进行的,该机器包括储存在机器可读介质中的指令和执行指令的处理器。
45.一种计算机程序产品,其特征在于,包括计算机可用介质,其具有a)体现于其中的计算机可读程序编码,所述计算机可读程序编码能够被执行,以实现权利要求43所述的方法;b)计算机可读介质,在其上储存步骤a_g的结果。
46.一种进行分析反应的方法,其特征在于,包括a)准备含有分析反应成分的反应混合物,其中至少第一种成分是可检测成分,其在分析反应中的一个或多个检测期内可被检测,和其中至少第二种成分是计时成分,其在分析反应中的一个或多个非检测期内可被检测;b)引发反应混合物中的分析反应,使分析反应进行;和c)维持分析反应进行的条件,同时在分析反应进行的过程中使反应混合物经历至少一个检测期和至少一个非检测期,其中可检测成分和计时成分在所述检测期和所述非检测期中都存在,从而进行分析反应。
47.如权利要求46所述的方法,其特征在于,在检测期间,所述可检测成分响应激发光照发射可检测信号,且在非检测期间,所述可检测成分不发射可检测信号,但是计时成分发出计时信号,还包括在检测期间收集可检测信号,在非检测期间收集计时信号,且其中用光学系统收集可检测信号和计时信号。
48.如权利要求46所述的方法,其特征在于,所述可检测成分和计时成分与分析反应中的不同分子连接。
49.如权利要求48所述的方法,其特征在于,所述可检测成分与分析反应中的第一亚组核苷酸类似物连接,而所述计时成分与分析反应中的第二亚组核苷酸类似物连接。
50.如权利要求46所述的方法,其特征在于,所述分析反应中的单个分子同时含有可检测成分和计时成分。
51.如权利要求50所述的方法,其特征在于,所述可检测成分和计时成分与分析反应中的单个核苷酸类似物连接。
52.如权利要求46所述的方法,其特征在于,所述可检测成分包含第一可检测标记,所述计时成分包含第二可检测标记。
53.如权利要求52所述的方法,其特征在于,所述第一和第二可检测标记是发光、荧光、或发荧光标记。
54.如权利要求53所述的方法,其特征在于,所述第一可检测标记是具有第一吸收峰的第一荧光团,所述第二可检测标记是具有第二吸收峰的第二荧光团,其中第一吸收峰和第二吸收峰彼此不同。
55.如权利要求53所述的方法,其特征在于,所述第二可检测标记包含量子点。
56.如权利要求46所述的方法,其特征在于,所述分析反应包括一种酶,选自聚合酶、 连接酶、核糖体、核酸酶和激酶。
57.如权利要求56所述的方法,其特征在于,所述酶是聚合酶,所述方法还包括暂停或停止点,以在分析反应中控制聚合酶活性。
58.如权利要求46所述的方法,其特征在于,所述反应混合物在分析反应进行过程中经历至少一个检测期和至少一个非检测期导致分析反应的一个或多个方面发生变化,所述方面选自延伸能力,可靠性,速率和持续时间。
59.如权利要求46所述的方法,其特征在于,所述分析反应是测序反应,包括单核苷酸模板,其中测序反应在检测期内通过检测可检测成分产生序列读数,而在非检测期内,由于暂停检测可检测成分而不产生序列读数。
60.如权利要求59所述的方法,其特征在于,所述序列反应包含至少两个检测期,从单核苷酸模板产生多个不连续序列读数。
61.如权利要求60所述的方法,其特征在于,所述多个包括至少三个不连续序列读数。
62.如权利要求59所述的方法,其特征在于,所述单核苷酸模板包含多个重复或互补序列。
63.如权利要求59所述的方法,其特征在于,所述测序方法包含单核苷酸模板通过纳米孔。
64.如权利要求59所述的方法,其特征在于,所述测序反应包括聚合酶引物延伸,所述可检测成分与核苷酸或核苷类似物连接。
65.如权利要求64所述的方法,其特征在于,所述计时成分与核苷酸或核苷酸类似物连接。
66.如权利要求64所述的方法,其特征在于,所述计时成分与聚合酶连接。
67.如权利要求66所述的方法,其特征在于,所述计时成分是多成分标记。
68.如权利要求67所述的方法,其特征在于,所述计时成分是FRET对。
69.如权利要求46所述的方法,其特征在于,所述可检测成分仅在检测期内发射可检测信号,所述计时成分在检测期和非检测期内都发射计时信号,其中该方法还包括在检测期内收集可检测信号,在检测期和非检测期内都收集计时信号。
70.如权利要求46所述的方法,其特征在于,所述分析反应是持续反应。
71.如权利要求70所述的方法,其特征在于,还包括在检测期内实时收集检测数据,在非检测期内实时收集非检测数据,和合并检测数据和非检测数据以对分析反应定性。
72.如权利要求46所述的方法,其特征在于,所述检测期和非检测期的建立并不在分析反应进行的过程中替换任何分析反应物中的成分。
73.如权利要求46所述的方法,其特征在于,对多个分析反应进行定性,而且其中多个分析反应位于固相载体上。
74.一种在光照反应中减轻光诱导损伤的方法,其特征在于,包括a)准备含有第一反应物和第二反应物的反应混合物,其中第一反应物与第二反应物在恒定最大激发光照下相互作用,导致对第一反应物一定量的光诱导损伤;和b)对经光照的反应进行间歇激发光照,其特征为最大激发光照期后是改变但并非不存在的激发光照期,其中与恒定最大激发光照下的光照反应相比,间歇激发光照在光照反应中减少对第一反应物的光诱导损伤,从而减弱了对第一反应物的光诱导损伤。
75.如权利要求74所述的方法,其特征在于,所述光照反应是引物延伸反应。
76.如权利要求74所述的方法,其特征在于,所述第一反应物是聚合酶。
77.如权利要求74所述的方法,其特征在于,所述第二反应物包含荧光或发荧光分子。
78.如权利要求74所述的方法,其特征在于,所述改变的激发光照是比最大激发光照的强度低的激发光照。
79.如权利要求74所述的方法,其特征在于,用一组光源作为最大激发光照,用最大激发光照使用的光源的亚组作为改变的激发光照。
80.一种对模板核酸测序的方法,其特征在于,包括a)使模板核酸甲基化,产生至少一个甲基化碱基;b)切下甲基化碱基,在模板核酸中产生至少一个脱碱基位点;c)让引物退火连接到模板核酸上;d)使模板核酸接触聚合酶,促使引物以模板依赖方式延伸;e)实时监测引物延伸,产生与模板核酸互补的核苷酸序列;f)使引物延伸,直到聚合酶遇到脱碱基位点,此时聚合酶在模板核酸上停下;g)通过使聚合酶绕过脱碱基位点重新引发引物延伸;h)重复步骤e_h,直到产生和收集所需数量的核苷酸序列读数;和i)分析所需数量的核苷酸序列读数,以确定模板核酸序列,从而对模板核酸测序。
81.如权利要求80所述的方法,其特征在于,所述重新引发包括对聚合酶引入芘,所述聚合酶利用芘作为核苷酸类似物与模板核酸中的脱碱基位点碱基配对。
82.如权利要求80所述的方法,其特征在于,所述模板核酸是环状核酸,聚合酶在引物延伸过程中的脱碱基位点暂停多次。
83.如权利要求80所述的方法,其特征在于,还包括当收集到所需长度的核苷酸序列读数时,结束监测,从而使所需长度的核苷酸序列读数小于模板核酸读数,而在步骤g中的重新引发引物延伸后再次重新引发引物延伸的监测。
84.—种进行光照反应的方法,其特征在于,包括a)准备反应混合物,其包含多个光学可检测成分,其能基于各自发射的信号彼此区分;b)引发反应混合物中的光照反应,开始进行光照反应;和c)维持光照反应进行的条件,同时使反应混合物在光照反应持续期间经历至少一次最大光照期和至少一次改变的光照期,其中可光学检测的成分的至少一部分在最大光照期和改变的光照期间都可检测。
85.如权利要求84所述的方法,其特征在于,最大光照期的特征是第一激发辐射强度,而改变的光照期的特征是第二激发辐射强度,第一激发辐射强度比第二激发辐射强度高。
86.如权利要求85所述的方法,其特征在于,所有光学可检测的成分在最大光照期和改变的光照期内都可检测,在最大光照期内彼此能区分,而在改变的光照期内彼此不能区分。
87.如权利要求84所述的方法,其特征在于,所述最大光照期包括使反应混合物接触一组激发辐射波长,所述改变的光照期包括使反应混合物接触所述激发辐射波长组的亚组。
88.如权利要求87所述的方法,其特征在于,所述全部光学可检测的组分都在最大光照期间可被检测和被区分,但仅所述光学可检测的组分的一亚组可在改变的光照期内被检测。
89.如权利要求87所述的方法,其特征在于,进行多次光照反应,每次都在最大光照期间接触一组激发辐射波长,但在改变的光照期间接触所述激发辐射波长组的不同亚组, 从而对于多次光照反应中的每一次,光学可检测成分的不同亚组可在改变的光照期内被检测。
90.如权利要求87所述的方法,其特征在于,在所述改变的光照期间引发光照反应,然后经历最大光照期,其中在改变的光照期中收集的数据被用于最大光照期间收集的数据的统计分析。
91.如权利要求90所述的方法,其特征在于,所述光照反应是多核苷酸测序反应,改变的光照期内收集的序列读数用于产生序列骨架,以装配最大光照期间收集的序列读数。
92.如权利要求84所述的方法,其特征在于,所述光照反应是针对模板的测序反应,所述在改变的光照期间收集的序列读数被用于确定改变的光照期间聚合酶移位的速率。
全文摘要
提供了在分析反应过程中进行间歇检测的方法、装置和系统。这样的方法能够在不同反应时间收集反应数据。另外,这样的方法可用于减少给定反应时间点被光照的分析反应中一种或多种反应物的光诱导损伤。在优选例中,反应混合物经过至少一个光照期和非光照期,使反应进行,其中反应混合物被光照的时间短于光诱导损伤的阈值期。
文档编号G01N21/00GK102224408SQ200980147770
公开日2011年10月19日 申请日期2009年9月16日 优先权日2008年9月24日
发明者B·弗卢斯贝格, D·格雷, J·索伦森, J·艾德, K·M·马克斯哈姆, K·特拉弗斯, M·谢松, P·马克斯, R·埃米希 申请人:加利福尼亚太平洋生物科学股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1