X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法与流程

文档序号:12267990阅读:429来源:国知局
本发明涉及一种X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法,属物化检测
技术领域

背景技术
:攀钢高炉钛渣作为我国特有的钛资源,其综合利用是国家历来攻关难题之一。攀钢对高钛型高炉渣采用“高温碳化—低温选择性氯化”的工艺路线高温碳化中试线开展工业化试验,在碳化工艺生产过程中,碳化渣中碳化钛高低,是指导工艺控制的重要参数,现场急需快速、高效、准确测定工艺成分的分析技术。碳化钛渣中钛是以TiC、TinOm等形式存在,目前,碳化钛渣中碳化钛分析技术有,一是光度法分别测定总钛和低价钛后,差减法计算出碳化钛含量,二是硫酸-氢氟酸分离出碳化钛,硝酸溶解后光度法测定碳化钛,方法都是人工分析,人为因素影响大,造成结果波动大,检测周期达4hr以上,不能满足现场大工业生产过程控制的要求。本发明采用盐酸-硫酸-氢氟酸溶解使碳化钛与各种氧化钛分离,熔融制样-X射线荧光光谱法测定替代现有光度法测定碳化钛,校准曲线采用基准二氧化钛绘制,克服校准标准样品研制的难题。技术实现要素:本发明所要解决的技术问题是提供一种X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法。X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法,包括以下步骤:a、碳化钛相分离称取碳化钛渣样品,按重量体积比0.2g:50~100mL加入混合酸,加热至沸,冷却,过滤,洗涤,得到残渣;其中,所述混合酸是由盐酸、硫酸、氢氟酸按体积比为40~60:5~20:2~5配制而成,盐酸以19wt%计,硫酸以63wt%计,氢氟酸以40wt%计;b、残渣灼烧将残渣置于铂黄坩埚中,于600~700℃高温炉中灼烧15~25min,取出后再于1050~1200℃高温炉中灼烧2~6min;c、熔融制片将Li2CO3、Li2B4O7和脱模剂加入到上述步骤b的铂黄坩埚中,在1050~1200℃熔融5~15min后,取出、赶净气泡、摇匀,再在1050~1200℃熔融5~15min,取出、赶净气泡、摇匀,然后再在1050~1200℃熔融1~3min,取出,摇匀、静置冷却,制得被测样片;d、仪器测量参数用X射线荧光光谱仪对被测样片进行扫描,建立分析电流、电压、PHD基础分析条件;e、标准曲线绘制称取基准二氧化钛、Li2CO3、Li2B4O7和脱模剂加入到铂黄坩埚中,在1050~1200℃熔融5~15min后,取出,赶净气泡、摇匀,再在1050~1200℃熔融5~15min,取出、赶净气泡、摇匀,然后再在1050~1200℃熔融1~3min,取出,摇匀、静置冷却,制得校准样片,按该校准样片的制作方法制作系列校准样片,对各校准样品按基础分析条件用X射线荧光光谱仪分别进行测量,并实行干扰校正,建立标准曲线;其中,所用Li2CO3、Li2B4O7和脱模剂的用量与c步骤中Li2CO3、Li2B4O7和脱模剂的用量相同;f、被测样品分析用X射线荧光光谱仪对被测样片分析进行分析,计算机和相关软件根据前述绘制的标准曲线自动计算,得到碳化钛含量。优选的,步骤a中,碳化钛渣样品与混合酸的重量体积比为:0.2g:62~83mL,混合酸由盐酸、硫酸、氢氟酸按体积比为50~60:10~20:2~3配制而成。优选的,步骤a中,加热至沸后,保持微沸,时间为10~30min。优选的,步骤b中,残渣于600~650℃高温炉中灼烧15~20min,取出后,再于1050~1100℃高温炉中灼烧2~4min。优选的,步骤c中,脱模剂为溴化锂溶液。其中,步骤c中,按0.2g碳化钛渣样品计,加入的Li2CO3为0.5000g、Li2B4O76.0000g和300g/L的溴化锂溶液0.5mL。优选的,步骤c中,在1100℃熔融10min后,取出,赶净气泡、摇匀,再在1100℃熔融10min,取出、赶净气泡、摇匀,然后再在1100℃熔融2min。本发明的有益效果:现有技术用盐酸-氢氟酸仅分离低价氧化态,而本发明采用盐酸-硫酸-氢氟酸溶解使碳化钛与各种氧化钛分离,消除试样中高价态对碳化钛测定的影响。熔融制样-X射线荧光光谱法测定替代现有光度法测定碳化钛,更为简便快速,结果更为稳定可靠;试样分离后,硅、钙、镁、铝等组分去除,残渣基体主要为碳化钛,校准曲线采用基准二氧化钛绘制,克服校准标准样品研制的难题。三酸分离-X射线荧光光谱法测定碳化钛渣中碳化钛操作简单、速度快、精密度、准确度良好、成本低及安全环保的特点,很适用于高温碳化炉前快速分析。具体实施方式本发明所要解决的问题是提供一种X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法。本发明使用X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法,包括以下步骤:a、碳化钛相分离称取碳化钛渣样品,按重量体积比0.2g:50~100mL加入混合酸,加热至沸,冷却,过滤,洗涤,得到残渣;其中,所述混合酸是由盐酸、硫酸、氢氟酸按体积比40~60:5~20:2~5配制而成,盐酸以19wt%计,硫酸以63wt%计,氢氟酸以40wt%计;b、残渣灼烧将残渣置于铂黄坩埚中,于600~700℃高温炉中灼烧15~25min,取出后再于1050~1200℃高温炉中灼烧2~6min;c、熔融制片将Li2CO3、Li2B4O7和脱模剂加入到上述步骤b的铂黄坩埚中,在1050~1200℃熔融5~15min后,取出、赶净气泡、摇匀,再在1050~1200℃熔融5~15min,取出、赶净气泡、摇匀,然后再在1050~1200℃熔融1~3min,取出,摇匀、静置冷却,制得被测样片;d、仪器测量参数用X射线荧光光谱仪对被测样片进行扫描,建立分析电流、电压、PHD基础分析条件;e、标准曲线绘制称取基准二氧化钛、Li2CO3、Li2B4O7和脱模剂加入到铂黄坩埚中,在1050~1200℃熔融5~15min后,取出,赶净气泡、摇匀,再在1050~1200℃熔融5~15min,取出、赶净气泡、摇匀,然后再在1050~1200℃熔融1~3min,取出,摇匀、静置冷却,制得校准样片,按该校准样片的制作方法制作系列校准样片,对各校准样品按基础分析条件用X射线荧光光谱仪分别进行测量,并实行干扰校正,建立标准曲线;其中,所用Li2CO3、Li2B4O7和脱模剂的用量与c步骤中Li2CO3、Li2B4O7和脱模剂的用量相同;f、被测样品分析用X射线荧光光谱仪对被测样片分析进行分析,计算机和相关软件根据前述绘制的标准曲线自动计算,得到碳化钛含量。优选的,步骤a中,碳化钛渣样品与混合酸的重量体积比为0.2g:62~83mL,混合酸由盐酸、硫酸、氢氟酸按体积比为50~60:10~20:2~3配制而成。优选的,步骤a中,加热至沸后,保持微沸,时间为10~30min。优选的,步骤b中,残渣于600~650℃高温炉中灼烧15~20min,取出后,再于1050~1100℃高温炉中灼烧2~4min。优选的,步骤c中,脱模剂为溴化锂溶液。其中,步骤c中,按0.2g碳化钛渣样品计,加入的Li2CO3为0.5000g、Li2B4O76.0000g和300g/L的溴化锂溶液0.5mL。优选的,步骤c中,在1100℃熔融10min后,取出,赶净气泡、摇匀,再在1100℃熔融10min,取出、赶净气泡、摇匀,然后再在1100℃熔融2min。下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。实施例1X射线荧光光谱法直接测定碳化钛渣中碳化钛含量的方法(1)试样的制备(A#试样)a碳化钛相分离准确称取0.2000g碳化钛渣样品,向盛有样品的烧杯中加入19wt%盐酸50mL(19wt%盐酸是用密度为1.179g/cm3,质量分数为36%的浓盐酸与水以体积比1:1配制),63wt%硫酸10mL(63wt%硫酸是用密度为1.84g/cm3,质量分数为98%的浓硫酸与水以体积比1:1配制),40wt%浓氢氟酸3mL,低温加热至沸后,保持微沸22min。冷却,用无灰滤纸过滤于500mL的三角瓶中,洗涤残渣。b残渣灼烧将洗涤后残渣连同滤纸置于铂黄坩埚中,于650℃高温箱式电阻炉中灰化灼烧20min,取出后再于1100℃高温箱式电阻炉中灼烧2min;c熔融制片称取0.5000gLi2CO3、6.0000gLi2B4O7加入到上述铂黄坩埚中,再加0.5mL溴化锂溶液(300g/L)为脱模剂。在1100℃熔融10min,取出,露出埚底旋转赶净气泡,充分摇匀,再熔融10min,取出,露出埚底旋转赶净气泡,摇匀试样,再熔融2min,取出,快速摇匀,水平静置冷。(B#试样)a碳化钛相分离准确称取0.2000g碳化钛渣样品,向盛有样品的烧杯中加入19wt%盐酸50mL(19wt%盐酸是用密度为1.179g/cm3,质量分数为36%的浓盐酸与水以体积比1:1配制),63wt%硫酸10mL(63wt%硫酸是用密度为1.84g/cm3,质量分数为98%的浓硫酸与水以体积比1:1配制),40wt%浓氢氟酸3mL,低温加热至沸后,保持微沸25min。冷却,用无灰滤纸过滤于500mL的三角瓶中,洗涤残渣。b残渣灼烧将洗涤后残渣连同滤纸置于铂黄坩埚中,于650℃高温箱式电阻炉中灰化灼烧20min,取出后再于1050℃高温箱式电阻炉中灼烧3min;c熔融制片称取0.5000gLi2CO3、6.0000gLi2B4O7加入到上述铂黄坩埚中,再加0.5mL溴化锂溶液(300g/L)为脱模剂。在1050℃熔融15min,取出,露出埚底旋转赶净气泡,充分摇匀,再熔融10min,取出,露出埚底旋转赶净气泡,摇匀试样,再熔融2min,取出,快速摇匀,水平静置冷。(2)仪器测量参数用X射线荧光光谱仪对制备好的样品进行扫描,建立分析电流、电压、PHD等基础分析条件。具体分析条件如下表1所示表1元素谱线晶体探测器电流/mA电压/kV2θ时间/sTiKa1LiF220FPC7040149.6210TiKa1,2LiF200FPC704086.13710(3)校准样品的制备基准二氧化钛熔融制片为系列标准样品,分别称取0.0mg,10mg,20mg,30mg,40mg,50mg基准二氧化钛,加入已称好0.5000gLi2CO3、6.0000gLi2B4O7的铂黄坩埚中,加0.5mL溴化锂溶液(300g/L)为脱模剂。在1100℃熔融10min,取出,露出埚底旋转赶净气泡,充分摇匀,再在1100℃熔融10min,取出,露出埚底旋转赶净气泡,摇匀试样,再在1100℃熔融2min,取出,快速摇匀,水平静置冷。(4)标准曲线绘制对各校准样品按基础分析条件用X射线荧光光谱仪分别进行测量,并实行干扰校正,建立标准曲线。(5)被测样品分析用X射线荧光光谱仪对被测样品分析进行分析,计算机和相关软件根据前述绘制的标准曲线自动计算出元素含量。实施例2准确度试验由于目前碳化渣无标准样品,我们采用标样配制和比对的方式来检验方法的准确度。(1)称取0.1500g钒钛高炉渣标准样品(YSBC19815-2014)4份,再分别称取99%碳化钛21.1mg、25.2mg、30.2mg,对三份样品按本发明方法进行测试,试验结果如表2所示,测试值与理论值吻合。表2序号TiC加入量mg理论值%测试值%0000121.110.5510.57225.212.6012.65330.215.1015.17(2)取10个碳化钛样品,采用本方法与化学法(光度法)进行比对试验,碳化钛测试结果如表3,用成对数据t检验表明,两种方法没有显著性差异,说明两种方法分析结果准确一致。表3实施例3精密度试验为了验证本方法的精密度,对A#、B#试样分别进行了10次的测试(表4、表5)。从实验数据的精密度上考察本方法的稳定性和良好的重现性。表4、表5的相对标准偏差都在较小的范围内,说明本方法整个操作过程稳定可靠。表4表5当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1