页岩油主要赋存孔径范围的研究方法与流程

文档序号:14173699阅读:517来源:国知局
页岩油主要赋存孔径范围的研究方法与流程

本发明涉及石油勘探及开发技术领域,特别是涉及到一种页岩油主要赋存孔径范围的研究方法。



背景技术:

页岩油是一种重要的非常规石油资源,其全球蕴藏资源量远远大于常规油气,但由于页岩油储集层岩石致密、孔渗性较差等特点,加之人们对页岩油流动性控制因素等方面的认识不足,导致其动用程度远远低于常规油气资源。而建立页岩油主要赋存空间的研究方法,明确页岩油的主要赋存孔径范围,则有利于合理评价页岩油勘探潜力及制定相应的开发及开发方案。另外作为烃源岩的页岩内油的赋存机制,也是烃源岩生排烃理论的重要内容。因此,明确油的主要赋存孔径范围对常规油气成藏研究也有重要的帮助。

目前,对于原油在页岩内赋存相关的测试或研究方法主要包括页岩油含量、页岩孔隙定量化、页岩油与储层特征关系以及镜下观察孔隙中含油情况等,但对于页岩油有效或主要赋存的孔径范围,系统并成熟的研究方法较少。针对于此,设计了本发明的研究方法。

与页岩油赋存孔径范围相关的技术及方法检索如下:

申请号:201510177837.8,申请公开日2015-08-05,公开了一种含油有效储集空间和含油孔径下限的测定方法与测定系统。该测定方法包括:采集新鲜页岩岩心,取页岩块并制成页岩片,一个面抛光,利用fib-sem对该抛光面观测标记视域位置;将剩下的页岩岩心粉碎成页岩粉末,进行低温n2吸附测试,得到孔径分布曲线图d-o;用正己烷提取,对提取后的视域位置进行拍照;对提取后的页岩粉末开展低温n2吸附测试,得到孔径分布曲线图d-h;用氯仿提取,对提取后的视域位置进行拍照;提取后的页岩粉末进行再次开展低温n2吸附测试,得到孔径分布曲线图d-c;对比视域位置的图片得到储集空间,对比孔径分布曲线图得到含油孔径下限。

申请号:201710012951.4,申请公开日2017-05-24公开了一种致密油/页岩油的纳米级含油孔径分布的测定方法。该测定方法包括如下步骤:致密砂岩样品或页岩样品经粉碎后得到粉末样品,部分粉末样品进行有机溶剂抽提得抽提后样品,部分粉末样品作为抽提前样品;将抽提前样品和抽提后样品分别进行孔径分布测试得抽提前样品和抽提后样品的孔径分布曲线;对两条曲线分别进行拟合得抽提前样品和抽提后样品的微孔-介孔-宏孔的孔径分布,抽提后样品的比孔容与抽提前样品的比孔容之间的差值即为含油孔隙空间的比孔容,至此即得到致密油或页岩油的纳米级含油孔径分布。

经过检索页岩油、赋存、孔径范围等关键词,尽管有少数相关研究方法,没有发现同本发明同样原理及关键步骤的公开技术。为此我们发明了一种新的页岩油主要赋存孔径范围的研究方法,解决了以上技术问题。



技术实现要素:

本发明的目的是提供一种确定页岩油主要赋存孔径范围的研究方法,为页岩油勘探开发及烃源岩生排烃研究提供基础参数的页岩油主要赋存孔径范围的研究方法。

本发明的目的可通过如下技术措施来实现:页岩油主要赋存孔径范围的研究方法,该页岩油主要赋存孔径范围的研究方法包括:步骤1,选取某个研究单元的一系列含油页岩样品,将页岩样品分成3分,分别为样品1,样品2和样品3;步骤2,采用样品1测定页岩的总体密度;步骤3,采用样品2测定页岩的含油量、颗粒密度;步骤4,采用样品3计算不同孔径的孔隙所占比例;步骤5,根据实验得到的页岩总体密度、颗粒密度和含油量计算页岩孔隙度和含油饱和度;步骤6,根据页岩含油饱和度与页岩中不同孔径孔隙体积占总孔隙体积的比例关系,确定页岩油主要赋存孔径范围。

本发明的目的还可通过如下技术措施来实现:

在步骤2中,利用天平称取样品质量,然后利用流体浸泡的方法,测定页岩样品的体积,根据样品的质量和体积,计算出样品的总体密度ρ1。

步骤3包括:

步骤3a,样品粉碎至一定粒度;

步骤3b,进行甲苯deanstark抽提,去除页岩内的游离水以及页岩油内携带水;

步骤3c,进行有机溶剂索式抽提,抽提出页岩内油并计量含油量;

步骤3d,烘干去除剩余水分;

步骤3e,进行页岩颗粒体积测定。

在步骤3a中,捣碎或研磨样品,用一定目数的两个筛子筛除过细和过粗颗粒样品,保留两个目数之间的颗粒的样品。

在步骤3b中,称取一定量的粉碎样品,记录质量为m1,装入deanstark蒸馏装置,以甲苯为试剂,使得甲苯与水共沸蒸馏,观察并记录产生水量的变化,直至产水量不再增加为止。

在步骤3c中,将步骤3b所得到的页岩样品,以及分离出水的甲苯溶液放置在索式抽提仪内,以溶解能力较强的有机质溶剂抽提页岩中可溶有机质,挥发溶剂并称量重量,记为含油质量mo。

在步骤3d中,将索式抽提后的样品,放置在烘箱中,设置一定的烘干温度,烘出剩余水分,直至称量重量稳定为止。

在步骤3e中,将步骤3d所得到的干燥样品取出,测定其颗粒总体积,利用非吸附性气体及波义尔定律进行体积测定,记录体积v2。

在步骤5中,通过公式(1)计算页岩孔隙度,通过公式(2)计算页岩含油饱和度,

φ=(1-v2ρ1/m1)×100%(1)

so=mo/ρo/(m1/ρ1-v2)×100%(2)

公式(1)和(2)中,φ为页岩孔隙度,%;v2为页岩颗粒体积,cm3;ρ1为页岩总体密度,g/cm3;m1为样品质量,g;so为含油饱和度,%;mo为有机溶剂中抽提出原油质量,g;ρo为原油密度,g/cm3

步骤4包括:

步骤4a,进行有机溶剂索式抽提;

步骤4b,烘干去除剩余水分;

步骤4c,进行高压压汞分析;

步骤4d,计算各孔径所占比例。

在步骤4a中,将样品放置在索式抽提仪内,以溶解能力较强的有机质溶剂抽提页岩中可溶有机质。

在步骤4b中,将索式抽提后的样品,放置在烘箱中,设置一定的烘干温度,烘出剩余水分,直至称量重量稳定为止。

在步骤4c中,从真空状态开始按一定压力间隔逐步压入汞,直至达到420mpa左右,记录各个压力平衡点的压力和汞注入量。

在步骤4d中,根据各个压汞平衡压力点的压力数值,计算相对应的孔隙直径;根据各个压力平衡点的汞注入量和总的汞注入量,计算各个孔径间隔间的孔体积所占的比例。

在步骤6中,将同一个研究单元的一系列样品中,利用步骤5所得到的含油饱和度结果,以及步骤4所得到的各个孔径所占比例结果,建立该系列样品的含油饱和度与各个孔径所占比例关系,确定出页岩油的主要赋存孔径范围。

本发明中的页岩油主要赋存孔径范围的研究方法,通过准确测定含油饱和度、孔隙度及各孔径所占比例,并利用这些参数建立页岩含油饱和度与各孔径所占比例的相关关系,能够更客观地定量化研究页岩油的主要赋存孔径范围,为页岩油勘探开发及烃源岩生排烃研究提供基础参数。明确页岩主要赋存孔径范围的前提条件是测准页岩的含油饱和度、孔隙度及各孔径所占比例,而本发明系统方法可以精确测定上述各个参数。利用这些参数建立页岩含油饱和度与各孔径所占比例的相关关系,能够更客观地定量化研究页岩油的主要赋存孔径范围。

附图说明

图1为本发明的页岩油主要赋存孔径范围的研究方法的一具体实施例的流程图;

图2为本发明的一具体实施例中10nm以下孔隙体积占总孔隙体积比例的示意图;

图3为本发明的一具体实施例中10nm以上孔隙体积占总孔隙体积比例的示意图。

具体实施方式

为使本发明的上述和其他目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合附图所示,作详细说明如下。

如图1所示,图1为本发明的页岩油主要赋存孔径范围的研究方法的流程图。

首先,选取某个研究单元的一系列含油页岩样品,将每个页岩样品分成3分,一份样品(样品1)用于测定页岩的总体密度,进行步骤101实验;一份样品(样品2)用于测定页岩的测定页岩的含油量、颗粒密度等,依次进行步骤201、步骤202、步骤203、步骤204和步骤205准备及测试过程;一份样品(样品3)用于研究不同孔径的孔隙所占比例,进行步骤203、步骤204、步骤301和步骤302准备及测试过程。步骤206:根据实验得到的页岩总体密度、颗粒密度和含油量计算页岩孔隙度和含油饱和度;步骤303:根据页岩含油饱和度与页岩中不同孔径孔隙体积占总孔隙体积的比例关系,确定页岩油主要赋存孔径范围。

步骤101,总体密度测定:利用天平称取样品质量,然后利用流体(汞、水或盐水等)浸泡的方法,测定页岩样品的体积,根据样品的质量和体积,计算出样品的总体密度ρ1。

步骤201,粉碎样品至一定颗粒:捣碎或研磨样品,用一定目数的两个筛子筛除过细和过粗颗粒样品,保留两个目数之间的颗粒的样品。如利用40目和60目的筛子筛除粒径大于40目和粒径小于60目的样品,保留40~60目样品。

步骤202,甲苯deanstark抽提。主要用于去除页岩内的游离水以及页岩油内携带水。称取一定量的粉碎样品,记录质量为m1,装入deanstark蒸馏装置,以甲苯为试剂,使得甲苯与水共沸蒸馏,观察并记录产生水量的变化,直至产水量不再增加为止。

步骤203,有机溶剂索式抽提:主要用于抽提出页岩内油并计量含油量。将步骤202所得到的页岩样品,以及分离出水的甲苯溶液放置在索式抽提仪内,或将样品3直接放置在索式抽提仪内,以溶解能力较强的有机质溶剂抽提页岩中可溶有机质,如二氯甲烷和三氯甲烷等。对于样品2抽提出的可溶有机质,要挥发溶剂并称量重量,记为含油质量mo。有机溶剂抽提后的样品2颗粒和样品3,留作进一步测试。

步骤204,烘干去除剩余水分:主要用于进一步去除页岩内剩余水份。将索式抽提后的样品2和样品3,放置在烘箱中,设置一定的烘干温度,如105℃~110℃,烘出剩余水分。直至称量重量稳定为止。

步骤205,页岩颗粒体积测定:将步骤204所得到的干燥样品2取出,测定其颗粒总体积,利用非吸附性气体及波义尔定律进行体积测定,记录体积v2。

步骤206,计算孔隙度、含油饱和度度。通过公式(1)计算页岩孔隙度,通过公式(2)计算页岩含油饱和度。

φ=(1-v2ρ1/m1)×100%(1)

so=mo/ρo/(m1/ρ1-v2)×100%(2)

公式(1)和(2)中,φ为页岩孔隙度,%;v2为页岩颗粒体积,cm3;ρ1为页岩总体密度,g/cm3;m1为样品质量,g;so为含油饱和度,%;mo为有机溶剂中抽提出原油质量,g;ρo为原油密度,g/cm3

步骤301,高压压汞,将经过步骤203和步骤204处理过的样品3,进行高压压汞分析,所需高压压汞仪工作压力范围需包含0~420mpa区间,最小压入汞半径达到3nm,压汞体积计量精度优于1μl。从真空状态开始按一定压力间隔逐步压入汞,直至达到420mpa左右,记录各个压力平衡点的压力和汞注入量。

步骤302,计算孔径分布,根据各个压汞平衡压力点的压力数值,计算相对应的孔隙直径。根据各个压力平衡点的汞注入量和总的汞注入量,计算各个孔径间隔间的孔体积所占的比例。

步骤303,确定油主要赋存孔径。将同一个研究单元的一系列样品中,利用步骤206所得到的含油饱和度结果,以及步骤302所得到的各个孔径所占比例结果,建立该系列样品的含油饱和度与各个孔径所占比例关系,确定出页岩油的主要赋存孔径范围。

图2和图3为本发明的一具体实施例的某页岩储层的不同孔径所占比例与含油饱和度关系图。从图中可以看出,该系列页岩样品的含油饱和度与10nm以下孔径的孔隙所占比例负相关,10nm以下孔径的孔隙所占比例越高,其含油饱和度越低,当10nm以下孔径的孔隙占80%以上时,含油饱和度接近于0;大于10nm孔径的孔隙所占比例与含油饱和度呈正相关关系:大于10nm孔径的孔隙所占比例越高,含油饱和度越高,当大于10nm孔径的孔隙所占比例为20%时,其含油饱和度趋近于0。此相关关系表明:该系列样品的页岩油主要赋存在10nm以上的页岩孔隙中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1