一种致密岩石气相相对渗透率测量装置的制作方法

文档序号:11550485阅读:269来源:国知局

本实用新型涉及一种致密岩石气相相对渗透率测量装置,属于气体相对渗透率测量领域。



背景技术:

低渗致密储层的天然气资源量在我国地质资源储量中占有很大的比例。准确测定该类储层岩石的物理性质(例如气相相对渗透率)对储层气井产量的计算、动态分析、数值模拟等非常重要,然而目前很难准确测定致密岩石气/水相对渗透率。

现有的气/水相对渗透率室内实验测试都是参照GB/T 28912-2012(岩石中两相流体相对渗透率测定方法),即用稳态法和非稳态法两种方法来测定气/水相对渗透率。稳态法是将气/水按一定流量比例匀速注入岩样,直到岩样进出口两端压力和通过岩样的气/水流量达到稳定,以及岩样的含水饱和度也不再变化时,通过达西公式直接计算出有效渗透率和相对渗透率;该方法适合渗透性好的岩石(很容易达到稳定),对于致密岩石由于稳定时间太长而无效。

但是,低渗致密岩石的气/水相对渗透率的测定一般采用标准GB/T28912-2012中的非稳态法,即是先用水饱和测试样品,以一定压力或者流速注入气体驱替饱和水岩样,记录驱替压力、产水量和产气量随时间的变化关系,其中特别注意见水时间节点的观察与记录,进而用J.B.N方法计算气/水相对渗透率;该方法虽然缩短了测试时间,提高了测试效率,然而却忽略了毛细管压力的影响(致密储层中毛细管现象非常突出(详见:capillary pressure and permeability relationships in tight gas sands[Wells等,1985]),且对气/水相对渗透率的影响显著),此外见水时间节点的确定往往存在滞后,这些都使得气/水相对渗透率的有效测定不能得到保证。



技术实现要素:

针对上述问题和不足,本实用新型所要解决的技术问题是:怎样提供一种在考虑毛管压力的作用的情况下既能快速测得气体相对渗透率,又能减少传统测量装置及其测量方法由于步骤繁琐容易导致人为误差的气相相对渗透率测量装置。

本实用新型可用于测量油/气两相渗流中气相相对渗透率与气/水两相渗流中气相相对渗透率,以下由气/水两相渗流中气相相对渗透率进行说明。

为了解决上述问题,本实用新型采用了以下的技术方案。

一种致密岩石气相相对渗透率测量装置,它包括:岩心夹持器、围压泵、可变体积上游压力室、可变体积下游压力室、高压气源、控制台和核磁共振仪;所述岩心夹持器内装载有岩心,岩心夹持器上设有温度计;

所述高压气源的出气口依次通过阀门a、第一压力控制器和阀门b与可变体积上游压力室的进口相连接,所述可变体积上游压力室的出口通过阀门c与岩心夹持器的前端相连接;岩心夹持器的后端通过阀门d与可变体积下游压力室的进口相连接,所述可变体积下游压力室的出口通过阀门f与泄压口相连接;岩心夹持器的后端通过阀门e与排水口相连接;围压泵的出气口依次通过阀门g和第二压力控制器与岩心夹持器的前端相连接;

所述岩心夹持器的前端与所述可变体积下游压力室的进口之间设置有阀门h;

用于监测可变体积上游压力室压力值的上游压力传感器P1与控制台电连接;用于监测可变体积下游压力室压力值的下游压力传感器P2与控制台电连接;所述可变体积上游压力室的出口与所述可变体积下游压力室的进口之间设置有压差传感器,所述压差传感器与控制台电连接;所述温度计与控制台电连接。

进一步的,所述岩心夹持器设置在核磁共振仪的测量腔内部。

本实用新型具有如下有益效果:(1)不用花费大量的时间测量低渗透岩心的稳定流速;(2)可在短时间内得到多个饱和度下的气相渗透率;(3)实时监测与判定系统的稳定性,并帮助调整测试方案与测试过程,尽量避免系统和人为误差的存在。(4)测量过程中考虑毛管压力的作用,使得气/水相对渗透率的有效测定得到保证。

综上所述,本实用新型具有能够快速、有效地测得致密岩石的气体相对渗透率的有益效果。

附图说明

图1为本实用新型的结构示意图。

图中,1-阀门a,2-阀门b,3-阀门c,4-阀门d,5-阀门e,6-阀门f,7-阀门g,8-阀门h,9-围压泵,10-压力控制器1,11-压力控制器2,12-压差传感器,13-上游压力传感器,14-下游压力传感器,15-温度计,16-排水口,17-泄压口,18-岩心夹持器,19-核磁共振仪,20-可变体积上游压力室,21-可变体积下游压力室,22-控制台,23-高压气源。

具体实施方式

如图1所示:本实用新型是一种非稳态法测气体相对渗透率的装置,装置结构特点如下:它主要由岩心夹持器18、围压泵9、可变体积上游压力室20、可变体积下游压力室21、高压气源23、控制台22和核磁共振仪19组成;

岩心夹持器18内装载有用于测试的岩心,岩心夹持器上设有温度计。可变体积上游压力室20和可变体积下游压力室21均可调节体积大小,并且可变体积上游压力室20体积大于可变体积下游压力室21,由于上下游体积的组合不同,会使压力脉冲传播的总时间和能够产生的总压降有区别,故采用可调节的压力室,根据上下游压力室不同的体积比,结合实际情况可更准确的测得此饱和度下的气体渗透率。

高压气源23的出气口通过阀门a1与第一压力控制器10的入口相连接,第一压力控制器10的出口通过阀门b2与可变体积上游压力室20的进口相连接,可变体积上游压力室20的出口通过阀门c3与岩心夹持器18的前端相连接,岩心夹持器18的后端通过阀门d4与可变体积下游压力室21的进口相连接,可变体积下游压力室21的出口通过阀门f6与泄压口17相连接;岩心夹持器18的后端通过阀门e5与排水口16相连接;围压泵9的出气口依次通过阀门g7和第二压力控制器11与岩心夹持器18的前端相连接;所述岩心夹持器18的前端与所述可变体积下游压力室21的进口之间设置有阀门h8;

用于监测可变体积上游压力室压力值的上游压力传感器P113与控制台22电连接;用于监测可变体积下游压力室压力值的下游压力传感器P214与控制台22电连接;可变体积上游压力室20的出口与所述可变体积下游压力室21的进口之间设置有压差传感器12,压差传感器12与控制台22电连接;温度计15与控制台22电连接。

本实用新型用压力脉冲法实现测量,其测量原理如下:用压力脉冲法测定气体相对渗透率,先对岩石上游施加一定量的脉冲,使气体在岩石内部一维渗流,上游压力减小,下游压力增加,可以的到岩石上、下游的压力差与时间的关系曲线及数据。基于达西定律以及气体的连续性方程,可以得到气体的扩散方程的数值解;用扩散方程的数值解来解释瞬态脉冲法得到的实验数据,得到岩石的渗透率,即岩石的绝对渗透率。再将岩石饱和水后放入岩心夹持器内,用核磁共振装置监控氮气驱替水,此时形成β%的水饱和度,假设水在实验中不会移动,对上游施加一定量的脉冲,可得到此水饱和度下的岩石上、下游的压力差与时间的关系曲线及数据,进而可以得到此气体饱和度下的渗透率,即岩石的表观渗透率,气体相对渗透率计算公式如下:

其中:α是两次分别拟合压力差与时间关系的斜率,量纲s-1。μ是气体的粘度,量纲mPa·s。L是岩样长度,量纲cm。fz是与氮气性质相关的系数,无量纲。A是岩样的截面积,量纲cm2。pm是孔隙压力,量纲MPa。V1是岩样上游的上游水箱和管线、阀门的总体积,量纲cm3。V2是岩样下游的水箱和管线、阀门的总体积,量纲cm3。kab是绝对渗透率。kap是气相渗透率。kr是气体相对渗透率。

水饱和度的建立:测得该岩样的气水毛管压力曲线,从小到大依此选取不同的毛管压力,每个毛管压力对应一个含水饱和度β%,在实验中就测量选取的各饱和度下气体相渗透率。每个饱和度对应一个毛管压力,则在实验中脉冲的大小即△P的选取就有一个上限,由孔隙度的大小和毛管压力曲线上选取的压力来设计实验中的压差△p与上、可变体积下游压力室的体积。

岩心夹持器放置在核磁共振的仪器中,整个岩心夹持器都处于无氢的状态。

测试前确定上游总体积V1与下游总体积V2

压力脉冲测气体相对渗透率的具体方法分为以下步骤:

压力脉冲测气体相对渗透率的具体方法分为以下步骤:

S1、将烘干的岩心放入岩心夹持器,打开阀门g7,用围压泵9对岩心施加设定的围压后,将可变体积上游压力室20和可变体积下游压力室21调节为最合适的体积大小(也即是与岩样孔隙体积相匹配的值),打开阀门h8、阀门d4、阀门c3、阀门a1、阀门b2、关闭阀门e5和阀门f6,将系统内压力施加到设计值Pm,待系统稳定后(约两个小时),关闭阀门b2、阀门a1、阀门c3和阀门h8,使阀门d4保持打开的状态;

S2、打开阀门a1和阀门b2,对可变体积上游压力室20施加一个脉冲,当可变体积上游压力室压力上升并达到设定好的压力时,关闭阀门a1、阀门b2,待可变体积上游压力室压力稳定时,打开阀门c3,直到可变体积上游压力室压力和可变体积下游压力室压力均趋于稳定时,停止实验;

S3、控制台上的计算机通过数据采集卡采集得到可变体积上游压力室压力值P1、可变体积下游压力室压力值P2、上下游压力差△P和温度t,得出上下游压力差△P与时间的关系曲线,并计算出斜率α1

根据公式1计算出:饱和水之前,内压Pm下的绝对渗透率kab

其中,α1的量纲为s-1;μ是气体的粘度,量纲mPa·s;L是岩样长度,量纲cm;fz是与氮气性质相关的系数,无量纲;A是岩样的截面积,量纲cm2;Pm是孔隙压力,量纲MPa;V1是岩样上游的上游水箱和管线、阀门的总体积,量纲cm3;V2是岩样下游的水箱和管线、阀门的总体积,量纲cm3;kab是绝对渗透率;

S4、从岩心夹持器将岩心取出并饱和水(参照GB/T 28912-2012)后又放回岩心夹持器18内,开启核磁共振仪19检查岩心内含水体积是否达到饱和要求并实时观测岩心的含水饱和度,关闭阀门d4、阀门f6和阀门h8,参照该岩心气水毛管压力曲线选取对应的驱替压差,打开阀门e5、阀门c3、阀门b2和阀门a1,用氮气驱替岩心内的水,当从核磁共振仪中观察到水饱和度达到预设值β%时,关闭阀门e5,打开阀门d4、阀门f6和阀门h8,重复步骤S1-S3,得出上下游压力差△P与时间的关系曲线,并计算出斜率α2

根据公式2计算出:当岩心内水饱和度为β%时,内压Pm下的渗透率kap

其中,α2的量纲为s-1;kap是表观渗透率;

根据公式3得出气体相对渗透率kr

S5、继续用氮气驱替岩心中的水,重复S4,并根据公式1、公式2和公式3可得到不同水饱和度下的气体相渗透率。

最后说明的是,以上实施例仅用以说明本实用新型的技术方案而非限制,尽管参照较佳实施例对本实用新型进行了详细说明,本领域的普通技术人员应当理解,可以对本实用新型的技术方案进行修改或者等同替换,而不脱离本实用新型技术方案的宗旨和范围,其均应涵盖在本实用新型的权利要求范围当中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1