半导体传感器芯片安装用粘结剂以及半导体传感器的制作方法

文档序号:14648222发布日期:2018-06-08 21:19阅读:406来源:国知局

本发明涉及一种用于安装半导体传感器芯片的半导体传感器芯片安装用粘结剂。另外,本发明还涉及使用了上述粘结剂的半导体传感器。



背景技术:

近年来,为了达到高输出化等,要求使半导体装置与基板粘合的粘结剂具有耐热性,并提出了使用硅树脂的粘结剂。另外,在半导体装置中,就压力传感器而言,不仅要求耐热性,而且还要求将传感器芯片水平地粘结在基板上的能力,所以在使用了硅树脂的粘结剂中使用了间隔物。例如,专利文献1公开了使用了这种粘结剂的传感器装置。

专利文献1公开了一种传感器装置,该传感器装置具有由硅树脂形成并且使封装件和电路芯片之间保持一定距离的第1粘结剂和由硅树脂形成并且用于将封装和电路芯片粘结的第2粘结剂。所述第1粘结剂起着隔离物的作用。

专利文献2公开了在三轴加速度传感器中,将对球形间隔物进行混炼而得到的有机硅橡胶类树脂作为粘结剂来使用。所述球形间隔物为硬质塑料。

现有技术文献

专利文献

专利文献1:日本特开2011-174803号公报

专利文献2:日本特开2007-322160号公报



技术实现要素:

发明所要解决的技术问题

专利文献1中记载的粘结剂有时耐热性低。另外,专利文献1中记载的粘结剂有时由于热冲击会产生裂纹和剥离,以及有时耐冷热循环特性低。

专利文献2中记载的粘结剂由于球形间隔物为硬质塑料,所以粘结剂间的应力传导过于灵敏,有时可以感应到噪声水平的震动和压力等。

本发明的目的是提供一种用于安装半导体传感器芯片的粘结剂,该粘合剂能够降低噪声感应并提高耐热性以及耐冷热循环特性。另外,本发明的另一个目的是提供一种使用了上述粘结剂的半导体传感器。

用于解决技术问题的技术方案

根据本发明的广泛方面,本发明提供了一种半导体传感器芯片安装用粘结剂(以下有时称为粘结剂),所述粘结剂用于半导体传感器芯片的安装,其中,所述粘结剂含有硅树脂和间隔物,所述间隔物的10%压缩弹性模量为10N/mm2以上、2000N/mm2以下,所述间隔物的压缩恢复率为20%以下,所述间隔物的平均粒径为10μm以上、200μm以下。

在本发明所涉及的粘结剂的某一特定方面中,将所述间隔物在150℃下加热1000小时时,加热后的间隔物的10%压缩弹性模量与加热前的间隔物的10%压缩弹性模量之比为0.95以上、1.05以下。

在本发明所涉及的粘结剂的某一特定方面中,在所述粘结剂中所含的所述间隔物中,不存在平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物,或者,在所述间隔物的总个数100%中,存在个数为0.1%以下的平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物为有机硅间隔物。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物为具有异冰片基的(甲基)丙烯酸化合物的聚合物。

根据本发明的广泛方面,本发明提供了一种半导体传感器,其具有:

第1部件、

第2部件即半导体传感器芯片、以及

将所述第1部件和所述第2部件粘结起来的粘结层,

所述粘结层为上述半导体传感器芯片安装用粘结剂的固化物。

本发明的效果

本发明涉及的半导体传感器芯片安装用粘结剂包含硅树脂和间隔物,所述间隔物的10%压缩弹性模量为10N/mm2以上、2000N/mm2以下,所述间隔物的压缩恢复率为20%以下,所述间隔物的平均粒径为10μm以上、200μm以下,所以能够降低噪声感应并提高耐热性以及耐冷热循环特性。

附图的简单说明

图1是示出本发明所涉及的使用半导体传感器芯片安装用粘结剂的半导体传感器的一个例子的截面图。

具体实施方式

以下,对本发明的实施方式进行说明。

[半导体传感器安装用粘结剂]

本发明所涉及的半导体传感器芯片安装用粘结剂(以下有时称为粘结剂)为用于安装半导体传感器芯片的粘结剂。本发明的粘结剂包含硅树脂和间隔物。

所述间隔物的10%压缩弹性模量为10N/mm2以上、2000N/mm2以下。所述间隔物的压缩恢复率为20%以下。所述间隔物的平均粒径为10μm以上、200μm以下。

本发明中由于具有上述技术方案,所以能够降低噪声感应并提高耐热性。另外,就耐热性而言,可以提高高温下的粘合强度。另外,由于本发明具有上述技术方案,也能够提高耐冷热循环性。本发明中,不仅可以提高耐热性和耐冷热循环特性中的任何特性,而且能够同时提高以上两种特性。

所述10%压缩弹性模量是将间隔物压缩10%时的压缩弹性模量。从充分降低噪声感应的观点来看,所述间隔物的10%压缩弹性模量为10N/mm2以上、2000N/mm2以下。从进一步降低噪声感应的观点来看,所述间隔物的10%压缩弹性模量优选500N/mm2以下,更优选100N/mm2以下。

所述间隔物的10%压缩弹性模量可以按照如下进行测量。

利用微小压缩试验机,在圆柱体(50μm直径,由金刚石制成)的平滑的压头端面上,在25℃,经60秒施加最大试验载荷20mN的条件下压缩间隔物。测量此时的载荷值(N)和压缩位移(mm)。根据所获得的测定值,可以通过以下公式求出上述压缩弹性模量。所述微小压缩试验机可以使用例如由Fischer公司制造的“Fischer Scope H-100”等。

10%压缩弹性模量(N/mm2)=(3/21/2)·F·S-3/2·R-1/2

F:间隔物压缩变形10%时的负载值(N)

S:间隔物压缩变形10%时的压缩位移(mm)

R:间隔物半径(mm)

从充分提高间隙控制效果的观点来看,所述间隔物的压缩恢复率为20%以下。从进一步提高间隙控制效果的观点来看,所述间隔物的压缩恢复率优选15%以下,更优选10%以下。所述间隔物的压缩恢复率的下限没有被特别限制,通常为1%以上。

所述间隔物的压缩恢复率可以按照如下进行测量。

将间隔物散布在样品台上。对于散布后的一个间隔物,利用微小压缩试验机,在间隔物的中心方向上施加负载(反转负载值),直到间隔物被压缩并变形30%。之后,除去负载至原点用负载值(0.40mN)。测定该期间内的负载-压缩位移,由下述式求出压缩恢复率。需要说明的是,负载速度设置为0.33mN/秒。所述微小压缩试验机可以使用例如由Fischer公司制造的“Fischer Scope H-100”等。

压缩恢复率(%)=[(L1-L2)/L1]×100

L1:从施加负载时的原点用负载值起直到反转负载值的压缩位移

L2:从释放负载时的反转负载值起直到原点用负载值的解除负载位移

所述间隔物的平均粒径为10μm以上、200μm以下。从进一步提高间隙控制效果的观点来看,所述间隔物的平均粒径优选20μm以上,更优选30μm以上,且优选为150μm以下,更优选为110μm以下,进一步优选为100μm以下。

所述平均粒径是通过用扫描型电子显微镜观察间隔物,并对观察到的图像中任意选择出的50个间隔物的最大直径进行算数平均而获得的。

从进一步提高间隙控制效果的观点来看,所述间隔物在所述粘结剂100重量%中的含量优选为0.1重量%以上,更优选为1重量%以上,优选为10重量%以下,且更优选为5重量%以下。

从进一步提高耐热性以及进一步抑制经时热劣化的观点来看,对所述间隔物在150℃加热1000小时时,加热后的间隔物的10%压缩弹性模量与加热前的间隔物的10%压缩弹性模量之比(加热后间隔物的10%压缩弹性模量/加热前的间隔物的10%压缩弹性模量)优选为0.95以上,更优选为0.98以上,且优选为1.05以下,更优选为1.02以下。

从进一步提高间隙控制效果的观点来看,在粘结剂中所含的间隔物中,优选不存在平均粒径为相对于所述间隔物的平均粒径为1.5倍以上的间隔物。当存在平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物的情况下,从进一步提高间隙控制效果的观点来看,在所述粘结剂中所含的间隔物中,优选在所述间隔物的总个数100%中,存在个数为0.1%以下的平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物,更优选个数为0.05%以下。

从进一步降低噪声的感应以及进一步提高耐热性的观点来看,所述间隔物优选为硅树脂,优选为有机硅间隔物。所述间隔物优选为聚硅氧烷粒子。

所述间隔物优选不含有铂催化剂,或者含有100ppm以下的铂催化剂。在使用铂催化剂的情况下,铂催化剂含量越小越好。如果铂催化剂的含量大,则有时可靠性趋于降低。铂催化剂的含量更优选为80ppm,进一步优选为60ppm,更优选为50ppm,更进一步优选为40ppm,特别优选为30ppm,特别优选为20ppm,最优选为10ppm。

通常情况下,聚硅氧烷粒子通过使用铂催化剂使单体聚合而获得的情况比较多。在这种聚硅氧烷粒子中,即使进行清洗,铂催化剂仍会包含在内部,且铂催化剂的含量会超过100ppm。而在不使用铂催化剂获得的聚硅氧烷粒子中,通常不包含铂催化剂。

所述聚硅氧烷粒子的材料优选为有机聚硅氧烷,更优选为硅烷醇盐。有机聚硅氧烷以及硅烷醇盐各自可以单独使用,也可以两种以上一起使用。

从进一步减低噪声的感应以及使其结构进一步灵活的观点来看,所述硅烷醇盐优选包含由下式(1A)表示的硅烷醇盐A或由下式(1B)表示的硅烷醇盐B。所述硅烷醇盐可以含有下述式(1A)所示的硅烷醇盐A,也可以含有下述式(1B)所示的硅烷醇盐B。

Si(R1)n(OR2)4-n…(1A)

上述式(1A)中,R1表示氢原子、苯基或碳原子数的烷基,R2表示碳原子数的烷基,n表示的整数。当n是2时,多个R1可以相同也可以不同。多个R2可以相同也可以不同。

当上述式(1A)中的R1为具有1至30个碳原子的烷基时,作为R1的具体实例可以列举甲基、乙基、丙基、异丙基、异丁基、正己基、环己基、正辛基和正癸基等。该烷基的碳原子数优选为10以下,更优选为6以下。需要说明的是,烷基中包括环烷基。

作为R2的具体实例可以列举甲基、乙基、正丙基、异丙基、正丁基、异丁基等。

作为上述硅烷醇盐A的具体实例,可以列举四甲氧基硅烷、四乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、异丙基三甲氧基硅烷、异丁基三甲氧基硅烷、环己基三甲氧基硅烷、正己基三甲氧基硅烷、正辛基三乙氧基硅烷、正癸基三甲氧基硅烷、苯基三甲氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二异丙基二甲氧基硅烷以及二苯基二甲氧基硅烷等。还可以使用上述以外的硅烷醇盐。

Si(R1)n(OR2)4-n…(1B)

上述式(1B)中,R 1表示氢原子、苯基或碳原子数的烷基,或者具有可聚合双键并具有1至30个碳原子的有机基团。R2表示碳原子数的烷基,n表示的整数。当n是2时,多个R1可以相同也可以不同。多个R2可以相同也可以不同。多个R2可以相同也可以不同。但是,至少一个R1是具有聚合性双键的碳原子数为1~30的有机基团。至少一个R1优选为乙烯基、苯乙烯基或(甲基)丙烯酰氧基,更优选为乙烯基或(甲基)丙烯酰氧基,进一步优选为乙烯基。

当上述式(1B)中的R1为具有1至30个碳原子的烷基时,作为R1的具体实例可以列举甲基、乙基、丙基、异丙基、异丁基、正己基、环己基、正辛基和正癸基等。该烷基的碳原子数优选为10以下,更优选为6以下。需要说明的是,烷基中包括环烷基。

作为上述聚合性双键,可以列举碳-碳双键。当上述R1是具有聚合性双键的碳原子数为1~30的有机基团时,作为R1的具体实例可以列举:乙烯基、苯乙烯基、烯丙基、异丙烯基和3-(甲基)丙烯酰氧烷基等。作为上述乙烯基,可以列举:对苯乙烯基、邻苯乙烯基以及间苯乙烯基。作为上述(甲基)丙烯酰氧烷基,可以列举:(甲基)丙烯酰氧基甲基、(甲基)丙烯酰氧基乙基以及(甲基)丙烯酰氧基丙基等。所述具有聚合性双键的碳原子数的有机基团的碳原子数优选为2以上,优选为30以下,更优选为10以下。上述术语“(甲基)丙烯酰氧”是指丙烯酰氧和甲基丙烯酰氧。

作为R2的具体实例可以列举甲基、乙基、正丙基、异丙基、正丁基、以及异丁基等。

从进一步减低噪声的感应以及获得具有更加柔软的结构的间隔物观点来看,所述硅烷醇盐优选含有二烷氧基硅烷。

进一步减低噪声的感应以及使其结构进一步柔软的观点来看,上述硅烷醇盐的水解缩合物优选为在硅烷醇盐100重量%中含有0重量%(即未使用)以上、20重量%以下的单烷氧基硅烷,70重量%以上、99.9重量%以下的二烷氧基硅烷,以及总计为0.1重量%以上、30重量%以下的三烷氧基硅烷和四烷氧基硅烷的硅烷醇盐的水解缩合物,更有选的是在硅烷醇盐100重量%中,含有0重量%(即未使用)以上、15重量%以下的单烷氧基硅烷、75重量%以上、99重量%以下的二烷氧基硅烷,以及总计为1重量%以上、25重量%以下的三烷氧基硅烷和四烷氧基硅烷的硅烷醇盐的水解缩合物。

从更容易调整粒径的观点出发,所述硅烷醇盐优选含有具有聚合性官能团的硅烷醇盐,更优选含有具有聚合性双键的硅烷醇盐。作为具有可聚合双键的硅烷醇盐的具体实例可列举:乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、二甲氧基甲基乙烯基硅烷、二甲氧基乙基乙烯基硅烷、二乙氧基甲基乙烯基硅烷、二乙氧基乙基乙烯基硅烷、乙基甲基二乙烯基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二甲氧基硅烷、甲基乙烯基二乙氧基硅烷、乙基乙烯基二乙氧基硅烷、对苯乙烯基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基三乙氧基硅烷、以及3-丙烯酰氧基丙基三甲氧基硅烷等。此外,可以使用环状硅氧烷,或者也可以使用改性(反应性)硅油等。环状硅氧烷的具体实例可以列举:十甲基环五硅氧烷等。改性硅油的实例可以列举:单末端改性硅油、双末端硅油和侧链型硅油等。

作为聚硅氧烷粒子的具体制造方法,可以举出:在预先使硅烷醇盐缩合以获得低聚物之后,通过悬浮聚合法、分散聚合法、微乳液聚合法,或者乳液聚合法等进行聚合反应的方法,以制备基材粒子的方法等。

从进一步降低噪声的感应以及进一步提高耐热性的观点来看,所述间隔物优选为含有具有烯属不饱和基团的聚合性单体的聚合物。

作为上述具有烯属不饱和基团的聚合性单体,可列举:非交联性单体和交联性单体。

作为上述非交联性单体,可以列举以下单体。例如,作为乙烯基化合物,可以列举:苯乙烯、α-甲基苯乙烯、氯苯乙烯等苯乙烯单体;甲基乙烯基醚、乙基乙烯基醚、丙基乙烯基醚、1,4-丁二醇二乙烯基醚、环己烷二甲醇二乙烯基醚、二甘醇二乙烯基醚等乙烯基醚化合物;醋酸乙烯酯、丁酸乙烯酯、月桂酸乙烯酯、硬脂酸乙烯酯等酸乙烯基酯化合物;氯乙烯、氟乙烯等含卤素单体。作为(甲基)丙烯酸化合物,可以列举:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸十六烷基酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸环己酯,(甲基)丙烯酸异冰片酯等(甲基)丙烯酸烷基酯化合物;(甲基)丙烯酸2-羟基乙酯、甘油(甲基)丙烯酸酯、聚氧乙烯(甲基)丙烯酸酯、(甲基)丙烯酸缩水甘油酯等含有氧原子(甲基)丙烯酸酯化合物;(甲基)丙烯腈等含腈单体;(甲基)丙烯酸三氟甲酯,(甲基)丙烯酸五氟乙酯等含卤(甲基)丙烯酸酯化合物。作为α-烯烃化合物,可列举如:二异丁烯、异丁烯、亚麻油、乙烯、丙烯等烯烃化合物。作为共轭二烯化合物,可以列举异戊二烯、丁二烯等。

作为交联性单体,可以列举以下单体。例如,作为乙烯基化合物,可以列举:二乙烯基苯、1,4-二乙烯基丁烷、二乙烯基砜等乙烯基单体。作为(甲基)丙烯酸化合物,可以列举:四羟甲基甲烷四(甲基)丙烯酸酯、四羟甲基甲烷三(甲基)丙烯酸酯、四羟甲基甲烷二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、甘油三(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯、(聚)四亚甲基二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯等多官能(甲基)丙烯酸酯化合物。作为烯丙基化合物,可以列举,三烯丙基(异)氰脲酸酯、三烯丙基偏苯三酸酯、邻苯二甲酸二烯丙酯、二烯丙基丙烯酰胺、二烯丙基醚。作为聚硅氧烷化合物,可以列举:四甲氧基硅烷、四乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、异丙基三甲氧基硅烷、异丁基三甲氧基硅烷、环己基三甲氧基硅烷、正己基三甲氧基硅烷、正辛基三乙氧基硅烷、正癸基三甲氧基硅烷、苯基三甲氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基、二异丙二甲氧基硅烷、三甲氧基甲硅烷基苯乙烯、γ-(甲基)丙烯酰氧基丙基三甲氧基硅烷、1,3-二乙烯基甲基硅氧烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷等烷氧基硅烷化合物;乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、二甲氧基甲基乙烯基硅烷、二甲氧基乙基乙烯基硅烷、二乙氧基甲基乙烯基硅烷、二乙氧基乙基乙烯基硅烷、乙基甲基二乙烯基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二甲氧基硅烷、甲基乙烯基二乙氧基硅烷、乙基乙烯基二乙氧基硅烷、对-苯乙烯基甲氧基硅烷、3-甲基丙烯酰氧基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基三乙氧基硅烷、3-丙烯酰氧基丙基三甲氧基硅烷等含有聚合性双键的烷氧基硅烷;十甲基环戊硅氧烷等环状硅氧烷;单末端改性硅油、两末端硅油、侧链型硅油等改性(反应性)硅油;(甲基)丙烯酸、马来酸、马来酸酐等含羧基的单体。

术语“(甲基)丙烯酸酯”是指丙烯酸酯和甲基丙烯酸甲酯。术语“(甲基)丙烯酸”是指丙烯酸和甲基丙烯酸。

从进一步降低噪声的感应以及进一步提高耐热性的观点来看,所述间隔物优选为(甲基)丙烯酸类化合物的聚合物,更优选为具有异冰片基的(甲基)丙烯酸类化合物的聚合物。所述具有异冰片基的(甲基)丙烯酸类化合物的实例可以列举:例如(甲基)丙烯酸异冰片酯、异冰片基二(甲基)丙烯酸酯等。

所述粘接剂含有上述间隔物和硅树脂。所述间隔物优选分散在硅树脂中用作粘接剂。上述硅树脂优选具有流动性。所述硅树脂优选是糊状的。上述糊状态包括液态。

所述粘接剂可以是主剂以及固化剂等预先混合好的单组分型,也可以是主剂和固化剂分开的双液型。所述粘接剂可以是缩合固化型也可以是加成固化型。所述粘接剂可以通过使用诸如铂等催化剂来固化,也可以通过加热或湿气来固化。

所述硅树脂没有特别限制。所述硅树脂可以是有机聚硅氧烷化合物,并且该有机聚硅氧烷可以在末端具有羟基,也可以在末端具有乙烯基。所述硅树脂可以是具有甲基二甲氧基甲硅烷基的聚环氧丙烷。

除了所述硅树脂和所述间隔物之外,所述粘接剂还可以包含乙烯基树脂、热塑性树脂、固化性树脂、热塑性嵌段共聚物、弹性体以及溶剂等。这些组分可以单独使用,也可以两种或更多种组合使用。

所述乙烯基树脂的实例可以列举:例如,乙酸乙烯酯树脂、丙烯酸树脂、以及苯乙烯树脂等。所述热塑性树脂的实例可以列举:例如,聚烯烃树脂,乙烯-乙酸乙烯酯共聚物以及聚酰胺树脂等。所述可固化树脂的实例可以列举:例如,环氧树脂、聚氨酯树脂、聚酰亚胺树脂和不饱和聚酯树脂等。需要说明的是,所述固化性树脂可以是常温固化型树脂、热固性树脂、光固化性树脂或湿气固化型树脂。所述固化性树脂可以与固化剂组合使用。作为所述热塑性嵌段共聚物的实例,可以列举:例如,苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯嵌段共聚物的氢化物以及苯乙烯-异戊二烯-苯乙烯嵌段共聚物的氢化物等。作为所述弹性体可以列举:例如,苯乙烯-丁二烯共聚物橡胶以及丙烯腈-苯乙烯嵌段共聚物橡胶等。

作为上述溶剂,可以列举例如,水以及有机溶剂等。由于可以容易地除去,因此优选有机溶剂。作为上述有机溶剂,可以列举例如,乙醇等醇化合物,丙酮、甲基乙基酮、环己酮等酮化合物,甲苯、二甲苯、四甲基苯等芳族烃化合物,溶纤剂、甲基溶纤剂、丁基溶纤剂、卡必醇、甲基卡必醇、丁基卡必醇、丙二醇单甲醚、二丙二醇单甲醚、二丙二醇二乙醚、三丙二醇单甲醚等二醇醚化合物,乙酸乙酯、乙酸丁酯、乳酸丁酯、乙酸溶纤剂、丁基溶纤剂乙酸酯、卡必醇乙酸酯、丁基卡必醇乙酸酯、丙二醇单甲醚乙酸酯、二丙二醇单甲醚乙酸酯、碳酸丙烯酯酯化合物,辛烷、癸烷等脂族烃化合物,石油醚、石脑油等石油类溶剂。

除了所述间隔物和所述硅树脂之外,所述粘接剂还可以包含例如,填料、增量剂、软化剂、增塑剂、聚合催化剂、固化催化剂、着色剂、抗氧化剂、热稳定剂、光稳定剂、紫外线吸收剂、润滑剂、抗静电剂以及阻燃剂等各种添加剂。

使所述间隔物分散在所述硅树脂中的方法,可以使用现有公知的分散方法,没有特别限定。作为使所述间隔物分散在所述硅树脂中的方法,可以列举例如,将所述间隔物添加到所述硅树脂中之后,通过行星式混合机等进行混炼分散的方法;使用均化器等将所述间隔物均匀地分散在水或有机溶剂中,然后添加到所述硅树脂中,并通过行星式混合机等进行混炼分散的方法;以及利用水或有机溶剂等将所述硅树脂进行稀释,然后添加所述间隔物,采用行星式混合机等混炼分散等方法。

从进一步缓和外部冲击以及进一步防止裂纹和剥离的观点来看,在所述粘结剂100重量%中,所述硅树脂的含量优选为70重量%以上,更优选为80重量%以上,并且,优选99重量%以下,更优选95重量%以下。

[半导体传感器]

本发明涉及的半导体传感器包括第1部件、作为第2部件的半导体传感器芯片以及将第1部件和第2部件粘结在一起的粘结层。在本发明的半导体传感器中,所述粘结层是由所述粘结剂的固化物形成的。

图1是示出使用了本发明的半导体传感器芯片安装用粘结剂的半导体传感器的例子的截面图。

图1所示的半导体传感器1包括第1部件3、作为第2部件4的半导体传感器芯片以及将第1部件3和第2部件4粘结在一起的粘结层5。粘结层5是含有间隔物2和硅树脂的粘结剂的固化物。

在第1部件3和第2部件4之间存在间隔物2,并且第1部件3和第2部件4以一定的间隔(间隙)水平地结合。

所述半导体传感器的制造方法没有特别的限制。作为半导体传感器制造方法的一个例子,可以列举:在第1部件和第2部件之间配置所述粘结剂,得到叠层体后,对该叠层体进行加热加压的方法等。

作为所述第1部件,具体可列举:半导体芯片、电容器以及二极管等电子部件,以及印刷基板、柔性印刷基板、玻璃环氧基板和玻璃基板等电路基板等电子部件。所述第1部件优选是电子部件。所述粘结剂优选是用于粘结电子部件的粘结剂。

所述半导体传感器芯片优选为压力传感器。

所述第1部件可以在其表面上具有第一电极。所述第2部件可以在其表面上具有第二电极。作为设置在上述部件上的电极,可以列举如,金电极、镍电极、锡电极、铝电极、铜电极、银电极、钛电极、钼电极以及钨电极等金属电极。所述部件为柔性印刷基板的情况下,所述电极优选为金电极、镍电极、钛电极、锡电极或铜电极。所述部件为玻璃基板的情况下,所述电极优选为铝电极、钛电极、铜电极、钼电极或钨电极。需要说明的是,所述电极是铝电极的情况下,其既可以是仅由铝形成的电极,也可以是在金属氧化物层的表面上层压铝层而得到的电极。作为所述金属氧化物层的材料,可列举:掺杂了三价金属元素的氧化铟以及掺杂了三价金属元素的氧化锌等。作为所述三价金属元素,可以列举Sn、Al以及Ga等。

以下,举出实施例以及比较例对本发明进行具体说明。本发明不仅限于以下实施例。

(间隔物1的制备)

聚硅氧烷低聚物的制备

将1重量份的1,3-二乙烯基四甲基二硅氧烷和20重量份的0.5重量%的对甲苯磺酸水溶液放入设置在温浴槽内中的100ml可分离式烧瓶中。在40℃下搅拌1小时后,加入0.05重量份碳酸氢钠。之后,加入10重量份二甲氧基甲基苯基硅烷、49重量份二甲基二甲氧基硅烷、0.6重量份三甲基甲氧基硅烷和3.6重量份甲基三甲氧基硅烷并搅拌1小时。之后,添加1.9重量份的10重量%的氢氧化钾水溶液,升温至85℃,边用吸气器进行减压边搅拌10小时进行反应。反应结束后,恢复至常压,冷却至40℃,添加0.2重量份的醋酸,在分液漏斗中放置12小时以上。将两层分离后的下层取出并用蒸发器纯化以获得聚硅氧烷低聚物。

聚硅氧烷粒子的制备:

将0.5重量份的2-乙基过氧己酸叔丁基酯(聚合引发剂,由日油公司制造的“PERBUTYL O”)溶解在30重量份的得到的聚硅氧烷低聚物中以制备溶液A。另外,在离子交换水150重量份中混合:月桂基硫酸三乙醇胺盐的40重量%水溶液(乳化剂)0.8重量份以及聚乙烯醇(聚合度:约2000,皂化度:86.5~89摩尔%,日本合成化学株式会社制造的“Gohsenol GH-20”)5重量%的水溶液80重量份,准备了水溶液B。将所述溶液A加入到安装在温浴槽中的可拆式烧瓶中之后,加入上述水溶液B。之后,利用Shirasu Porous Glass(SPG)膜(细孔的平均细孔径约20μm)进行乳化。然后,升温至85℃,进行9小时的聚合。将聚合后的粒子的总量通过离心分离,用水清洗之后,进行分级操作得到聚硅氧烷粒子。

间隔物1的制备:

将6.5重量份得到的聚硅氧烷粒子、0.6重量份的十六烷基三甲基溴化铵、240重量份的蒸馏水以及120重量份的甲醇加入安装在温浴槽中的500ml可拆式烧瓶中。在40℃下搅拌1小时后,加入二乙烯基苯3.0重量份、苯乙烯0.5重量份,升温至75℃,搅拌0.5小时。之后,加入0.4重量份的2,2'-偶氮双(异丁酸)二甲酯,搅拌8小时进行反应。将聚合后的粒子的总量通过离心分离用水清洗之后,得到间隔物1。得到的间隔物1的平均粒径为20.5μm,粒径的CV值为3.5%。

(间隔物2的制备)

除了使用两末端丙烯酸硅油(信越化学工业株式会社制造的“X-22-2445”)代替聚硅氧烷低聚物以外,与间隔物1的制作同样操作,得到间隔物2。得到的间隔物2的平均粒径为20.3μm,粒径的CV值为3.6%。

(间隔物3的制备)

将100g乙二醇二甲基丙烯酸酯、800g丙烯酸异冰片酯、100g甲基丙烯酸环己酯以及35g过氧化苯甲酰混合并使之均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2~4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在90℃的氮气氛下反应9小时,得到间隔物3。将所得间隔物3用热水进行数次清洗后,进行分级操作。所得间隔物3的平均粒径为20.1μm,粒径的CV值为3.1%。

(间隔物A)

市售的20μm二氧化硅颗粒“Micropearl SI”(由积水化学工业株式会社制造)

(间隔物B的制备)

将500g四羟甲基甲烷、500g二乙烯基苯和20g过氧化苯甲酰混合并均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2至4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在85℃的氮气氛围下反应10小时,得到间隔物B。将所得间隔物B用热水进行数次清洗后,进行分级操作。所得的间隔物B的平均粒径为19.8μm,粒径的CV值为3.5%。

(间隔物C的制备)

将970g聚四亚甲基二醇二丙烯酸酯,30g四羟甲基甲烷四丙烯酸酯和39g过氧化苯甲酰混合并均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2至4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在85℃的氮气氛围下反应9小时,得到间隔物C。将所得间隔物C用热水进行数次清洗后,进行分级操作。所得的间隔物C的平均粒径为20.1μm,粒径的CV值为3.2%。

(实施例1)

(有机硅粘结剂的制备)

向单组分热固化型有机硅粘结剂TSE322(Momentive Performance Materials公司制造)中加入作为间隙控制粒子的间隔物1,使得其在得到的粘结剂中的含量为2重量%,并用行星式搅拌机搅拌使之均匀分散以制备有机硅粘结剂。

(压力传感器结构構造体的制作)

将所述有机硅粘结剂填充到注射器中,使用分配器涂布到印刷基板上使其厚度为20μm,然后将压力传感器芯片放置在所涂布的粘结剂上,在150℃下加热10分钟使其固化粘接从而获得压力传感器结构体。

(实施例2)

除了在制备有机硅粘结剂时,使用间隔物2代替间隔物1以外,以与实施例1相同的方式获得压力传感器结构体。

(实施例3)

除了在制备有机硅粘结剂时,使用间隔物3代替间隔物1以外,以与实施例1相同的方式获得压力传感器结构体。

(比较例1)

除了在制备有机硅粘结剂时,使用隔离物A代替隔离物1以外,以与实施例1相同的方式获得压力传感器结构体。

(比较例2)

除了在制备有机硅粘结剂时,使用隔离物B代替隔离物1以外,以与实施例1相同的方式获得压力传感器结构体。

(比较例3)

除了在制备有机硅粘结剂时,使用隔离物C代替隔离物1以外,以与实施例1相同的方式获得压力传感器结构体。

(评价)

(1)10%压缩弹性模量

利用Fischer公司制造的“Fischer Scope H-100”,通过上述方法测量间隔物10%压缩弹性模量。

(2)平均粒径

通过扫描型电子显微镜观察间隔物,从观察到的图像中任意选择50个间隔物,对该50个的各间隔物的最大粒径进行算术平均求得平均粒径。

(3)压缩恢复率

利用Fischer公司制造的“Fischer Scope H-100”,通过上述方法测定间隔物的压缩恢复率。

(4)热经时变化

利用Fischer公司制造的“Fischer Scope H-100”,测定在大气中以150℃加热间隔物1000小时之后的10%压缩弹性模量。通过以下基准判定间隔物的热经时变化。

[热经时变化的判定基准]

○:加热后的10%压缩弹性模量与加热前的10%压缩弹性模量之比为0.95以上、1.05以下。

△:加热后的10%压缩弹性模量与加热前的10%压缩弹性模量之比为0.9以上、小于0.95或者大于1.05且在1.10以下。

×:加热后的10%压缩弹性模量与加热前的10%压缩弹性模量之比为小于0.9,或者大于1.10。

(5)耐热性:连接强度

测定所获得的压力传感器结构体在260℃下的抗剪强度。从抗剪强度来判定耐热性:连接强度。

[耐热性:连接强度的判定基准]

○○:抗剪强度为150N/cm2以上

○:抗剪强度为100N/cm2以上且小于150N/cm2

×:抗剪强度小于100N/cm2

(6)耐冷热循环特性

使用得到的压力传感器结构体,使用液体浴式热冲击测试仪(ESPEC公司制造的“TSB-51”),在-40℃下保持5分钟之后,升温至120℃,在120℃下保持5分钟,然后冷却至-40℃的这一过程作为一个循环,来进行冷热循环测试。500次循环后,取出样品。

用立体显微镜(Nikon公司制造的“SMZ-10”)观察样品。观察在粘结层中是否形成裂纹或粘结层是否从基材剥离。根据以下基准判定耐冷热循环特性。

[耐冷热循环特性的判定基准]

○○:粘结层中没有产生裂纹并且粘结层未从基材剥离

○:粘结层中产生轻微的裂纹,或者粘结层从基材稍微剥离

×:粘结层中产生大的裂纹,或者粘结层从基材大部分剥离

结果显示在下表1中。

[表1]

另外需要说明的是,在实施例1至3中,由于粘结剂中包所含的间隔物的10%压缩弹性模量为2000N/m2以下并且间隔物相对较软,所以证实了在压力传感器结构体中能够降低噪声感应。

符号的说明

1…半导体传感器

2…间隔物

3…第1部件

4…第2部件(半导体传感器芯片)

5…粘结层

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1