半导体安装用粘结剂以及半导体传感器的制作方法

文档序号:14648225发布日期:2018-06-08 21:19阅读:147来源:国知局

本发明涉及一种用于安装半导体的半导体安装用粘结剂。本发明还涉及使用了上述粘结剂的半导体传感器。



背景技术:

近年来,为了达到高输出化等,要求使半导体装置与基板粘合的粘结剂具有耐热性,并提出了使用硅树脂的粘结剂。另外,在半导体装置中,就压力传感器而言,不仅要求耐热性,而且还要求将传感器芯片水平地粘结在基板上的能力,所以在使用了硅树脂的粘结剂中使用了间隔物。例如,专利文献1公开了使用了这种粘结剂的传感器装置。

专利文献1公开了一种传感器装置,该传感器装置具有由硅树脂形成并且使封装件和电路芯片之间保持一定距离的第1粘结剂和由硅树脂形成并且用于将封装和电路芯片粘结的第2粘结剂。所述第1粘结剂起着隔离物的作用。

现有技术文献

专利文献

专利文献1:日本特开2011-174803号公报



技术实现要素:

发明所要解决的技术问题

在专利文献1所述的粘结剂中,由于由硅树脂形成的第1粘结剂(间隔物)是柔软的,因此无法将芯片水平地粘合在基板上,有时可能无法获得足够的间隙控制效果。另外,专利文献1中记载的粘结剂有时耐热性低。

本发明的目的是提供一种半导体安装用粘结剂,其能够在安装半导体时高精度地控制间隙并且能够提高耐热性。另外,本发明的另一个目的是提供一种使用了上述粘结剂的半导体传感器。

用于解决技术问题的技术方案

根据本发明的广泛方面,本发明提供了一种半导体安装用粘结剂(以下有时称为粘结剂),所述粘结剂用于半导体的安装,所述粘结剂包含硅树脂和间隔物,所述间隔物在所述粘结剂100%重量中的含量为0.1重量%以上、5重量%以下,所述间隔物的10%压缩弹性模量为5000N/mm2以上、15000N/mm2以下,所述间隔物的平均粒径为10μm以上、200μm以下。

在本发明所涉及的粘结剂的某一特定方面中,将所述间隔物在150℃下加热1000小时时,加热后所述间隔物的10%压缩弹性模量与加热前所述间隔物的10%压缩弹性模量之比为0.95以上,1.05以下。

在本发明所涉及的粘结剂的某一特定方面中,在所述粘结剂中所含的所述间隔物中,不存在平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物,或者,

在所述间隔物的总个数100%中,存在个数为0.1%以下的平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物的比重为1.05以上且小于1.30。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物的压缩恢复率为50%以上。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物是含有二乙烯基苯的聚合成分的共聚物。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物为含有(甲基)丙烯酸类化合物的聚合成分的共聚物,所述(甲基)丙烯酸类化合物含有具有4个以上(甲基)丙烯酰基的(甲基)丙烯酸类化合物。

在本发明所涉及的粘结剂的某一特定方面中,所述间隔物为聚合成分的聚合物,所述间隔物的聚合性基团的残存率小于1%。

在本发明所涉及的粘结剂的某一特定方面中,所述半导体安装用粘结剂是用于安装半导体传感器芯片的半导体传感器芯片安装用粘结剂。

根据本发明的广泛方面,本发明提供一种半导体传感器,其具备:第1部件、第2部件即半导体以及将所述第1部件和所述第2部件粘结起来的粘结层,所述粘结层是所述半导体安装用粘结剂的固化物。

本发明的效果

本发明涉及的半导体安装用粘结剂包含硅树脂和间隔物,所述间隔物在所述粘结剂100%重量中的含量为0.1重量%以上、5重量%以下,所述间隔物的10%压缩弹性模量为5000N/mm2以上、15000N/mm2以下,所述间隔物的平均粒径为10μm以上、200μm以下,所以能够在安装半导体时高精度地控制间隙并且能够提高耐热性。

附图的简单说明

图1是示出本发明所涉及的使用半导体安装用粘结剂的半导体传感器的一个例子的截面图。

具体实施方式

以下,对本发明的实施方式进行说明。

[半导体安装用粘结剂]

本发明所涉及的半导体安装用粘结剂(以下有时称为粘结剂)为用于安装半导体的粘结剂。本发明的粘结剂包含硅树脂和间隔物。

本发明所述的粘结剂中所含有的间隔物在所述粘结剂100%重量中的含量为0.1重量%以上、且5重量%以下。

所述间隔物的10%压缩弹性模量为5000N/mm2以上、15000N/mm2以下。所述间隔物的平均粒径为10μm以上、200μm以下。

本发明中由于具有上述结构,所以可以在半导体安装中高精度地控制间隙,并且能够提高耐热性。比如,可以将半导体芯片进一步水平粘结。另外,就耐热性而言,可以提高高温下的粘合强度。

从充分提高间隙控制效果的观点来看,所述间隔物在粘结剂100重量%中的含量为0.1重量%以上且5重量%以下。从进一步提高间隙控制效果的观点来看,所述间隔物在所述粘结剂100重量%中的含量优选为0.5重量%以上,更优选为1重量%以上,且优选为4重量%以下,更优选为3重量%以下。

所述10%压缩弹性模量是将间隔物压缩10%时的压缩弹性模量。从充分提高间隙控制效果的观点来看,所述间隔物的10%压缩弹性模量为5000N/mm2以上、15000N/mm2以下。从进一步提高间隙控制效果的观点来看,所述间隔物的10%压缩弹性模量优选5500N/mm2以上,更优选6000N/mm2,且优选10000N/mm2以下,更优选8000N/mm2以下。

所述间隔物的10%压缩弹性模量可以按照如下进行测量。

利用微小压缩试验机,在圆柱体(50μm直径,由金刚石制成)的平滑的压头端面上,在25℃,经60秒施加最大试验载荷20mN的条件下压缩间隔物。测量此时的载荷值(N)和压缩位移(mm)。根据所获得的测定值,可以通过以下公式求出上述压缩弹性模量。所述微小压缩试验机可以使用例如由Fischer公司制造的“Fischer Scope H-100”等。

10%压缩弹性模量(N/mm2)=(3/21/2)·F·S-3/2·R-1/2

F:间隔物压缩变形10%时的负载值(N)

S:间隔物压缩变形10%时的压缩位移(mm)

R:间隔物半径(mm)

所述间隔物的平均粒径为10μm以上且200μm以下。从进一步提高间隙控制效果的观点来看,所述间隔物的平均粒子径优选为20μm以上,更优选为30μm以上,且优选为150μm以下,更优选为110μm以下,进一步优选为100μm以下。

所述平均粒径是通过用扫描型电子显微镜观察间隔物,并对观察到的图像中任意选择出的50个间隔物的最大直径进行算数平均而获得的。

从进一步提高耐热性以及进一步抑制经时热劣化的观点来看,对所述间隔物在150℃加热1000小时时,加热后的间隔物的10%压缩弹性模量与加热前的间隔物的10%压缩弹性模量之比(加热后间隔物的10%压缩弹性模量/加热前的间隔物的10%压缩弹性模量)优选为0.95以上,更优选为0.98以上,且优选为1.05以下,更优选为1.02以下。

从进一步提高间隙控制效果的观点来看,在粘结剂中所含的间隔物中,优选不存在平均粒径为相对于所述间隔物的平均粒径为1.5倍以上的间隔物。当存在平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物的情况下,从进一步提高间隙控制效果的观点来看,在所述粘结剂中所含的间隔物中,优选在所述间隔物的总个数100%中,存在个数为0.1%以下的平均粒径相对于所述间隔物的平均粒径为1.5倍以上的间隔物,更优选个数为0.05%以下。

从进一步提高间隙控制效果以及进一步提高分散性的观点来看,所述间隔物的比重优选为1.05以上,更优选为1.10以上,优选为小于1.30,更优选为小于1.25。从进一步提高间隙控制效果以及进一步提高分散性的观点来看,除去间隔物以外的所述粘结剂在固化后的比重与所述间隔物的比重之差优选为0.5以下。

从进一步提高间隙控制效果的观点来看,所述间隔物的压缩恢复率优选为50%以上,更优选为60%以上。所述间隔物的压缩恢复率的上限没有被特别限制。所述间隔物的压缩恢复率可以是100%以下。

所述间隔物的压缩恢复率可以按照如下进行测定。

将间隔物散布在样品台上。对于散布后的一个间隔物,利用微小压缩试验机,在间隔物的中心方向上施加负载(反转负载值),直到间隔物被压缩并变形30%。之后,除去负载至原点用负载值(0.40mN)。测定该期间内的负载-压缩位移,由下述式求出压缩恢复率。需要说明的是,负载速度设置为0.33mN/秒。所述微小压缩试验机可以使用例如由Fischer公司制造的“Fischer Scope H-100”等。

压缩恢复率(%)=[(L1-L2)/L1]×100

L1:从施加负载时的原点用负载值起直到反转负载值的压缩位移

L2:从释放负载时的反转负载值起直到原点用负载值的解除负载位移

从进一步提高间隙控制效果,以及进一步提高耐热性的观点来看,所述间隔物优选为聚合成分的聚合物。

所述聚合成分为可聚合的成分。作为上述聚合成分优选含有具有烯属不饱和基团的可聚合单体。

作为上述具有烯属不饱和基团的可聚合单体,可列举不可交联的单体和可交联的单体。

作为上述不可交联的单体,可以列举以下单体。例如,作为乙烯基化合物,可以列举:苯乙烯、α-甲基苯乙烯、氯苯乙烯等苯乙烯单体;甲基乙烯基醚、乙基乙烯基醚、丙基乙烯基醚、1,4-丁二醇二乙烯基醚、环己烷二甲醇二乙烯基醚、二甘醇二乙烯基醚等乙烯基醚化合物;醋酸乙烯酯、丁酸乙烯酯、月桂酸乙烯酯、硬脂酸乙烯酯等酸乙烯基酯化合物;氯乙烯、氟乙烯等含卤素单体。作为(甲基)丙烯酸化合物,可以列举:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸十六烷基酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸环己酯,(甲基)丙烯酸异冰片酯等(甲基)丙烯酸烷基酯化合物;(甲基)丙烯酸2-羟基乙酯、甘油(甲基)丙烯酸酯、聚氧乙烯(甲基)丙烯酸酯、(甲基)丙烯酸缩水甘油酯等含有氧原子(甲基)丙烯酸酯化合物;(甲基)丙烯腈等含腈单体;(甲基)丙烯酸三氟甲酯,(甲基)丙烯酸五氟乙酯等含卤(甲基)丙烯酸酯化合物。作为α-烯烃化合物,可列举如:二异丁烯、异丁烯、亚麻油、乙烯、丙烯等烯烃化合物。作为共轭二烯化合物,可以列举异戊二烯、丁二烯等。

作为可交联的单体,可以列举以下单体。例如,作为乙烯基化合物,可以列举:二乙烯基苯、1,4-二乙烯基丁烷、二乙烯基砜等乙烯基单体。作为(甲基)丙烯酸化合物,可以列举:四羟甲基甲烷四(甲基)丙烯酸酯、四羟甲基甲烷三(甲基)丙烯酸酯、四羟甲基甲烷二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、甘油三(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯、(聚)四亚甲基二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯等多官能(甲基)丙烯酸酯化合物。作为烯丙基化合物,可以列举,三烯丙基(异)氰脲酸酯、三烯丙基偏苯三酸酯、邻苯二甲酸二烯丙酯、二烯丙基丙烯酰胺、二烯丙基醚。作为聚硅氧烷化合物,可以列举:四甲氧基硅烷、四乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、异丙基三甲氧基硅烷、异丁基三甲氧基硅烷、环己基三甲氧基硅烷、正己基三甲氧基硅烷、正辛基三乙氧基硅烷、正癸基三甲氧基硅烷、苯基三甲氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基、二异丙二甲氧基硅烷、三甲氧基甲硅烷基苯乙烯、γ-(甲基)丙烯酰氧基丙基三甲氧基硅烷、1,3-二乙烯基甲基硅氧烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷等烷氧基硅烷化合物;乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、二甲氧基甲基乙烯基硅烷、二甲氧基乙基乙烯基硅烷、二乙氧基甲基乙烯基硅烷、二乙氧基乙基乙烯基硅烷、乙基甲基二乙烯基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二甲氧基硅烷、甲基乙烯基二乙氧基硅烷、乙基乙烯基二乙氧基硅烷、对-苯乙烯基甲氧基硅烷、3-甲基丙烯酰氧基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基三乙氧基硅烷、3-丙烯酰氧基丙基三甲氧基硅烷等含有聚合性双键的烷氧基硅烷;十甲基环戊硅氧烷等环状硅氧烷;单末端改性硅油、两末端硅油、侧链型硅油等改性(反应性)硅油;(甲基)丙烯酸、马来酸、马来酸酐等含羧基的单体。

“(甲基)丙烯酸酯”这一用语指的是丙烯酸酯和甲基丙烯酸甲酯。“甲基丙烯酸”这一用语指的是丙烯酸和甲基丙烯酸。“(甲基)丙烯酰基”这一用语指的是丙烯酰基和甲基丙烯酰基。

从进一步提高间隙控制效果,以及进一步提高耐热性的观点来看,所述聚合成分优选含有乙烯基化合物或(甲基)丙烯酸类化合物。

从进一步提高间隙控制效果,以及进一步提高耐热性的观点来看,所述间隔物优选为包含二乙烯基苯的聚合成分的共聚物。从进一步提高间隙控制效果,以及进一步提高耐热性的观点来看,所述间隔物是含有(甲基)丙烯酸化合物的聚合成分的共聚物,该(甲基)丙烯酸化合物优选含有具有4个以上(甲基)丙烯酰基的(甲基)丙烯酸化合物。

作为具有4个以上(甲基)丙烯酰基的(甲基)丙烯酸化合物可以列举以下化合物,例如:二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、二(三羟甲基丙烷)四(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯等。

从进一步提高耐热性的观点来看,所述间隔物的可聚合基团的残存率优选小于1%,更优选小于0.5%。

所述间隔物的可聚合基团的残存率可以按照如下测量。

使用核磁共振装置,在用于固体的8mm转子中填充间隔物0.4g之后,用单脉冲(Single Pulse)(DD/MAS)法(测定条件:MAS转速7kHz,扫描次数1000次)进行13C的测定。由归属于得到的DD/MAS光谱的乙烯基的峰值计算出可聚合基团的残存率。例如可以使用JEOL RESONANCE公司制造的“JNM-ECX400”等作为上述核磁共振装置。

所述粘结剂含有所述间隔物和硅树脂。所述间隔物优选分散在硅树脂中并用作粘结剂。在半导体传感器中,由于粘结剂需要具有高的间隙性和高耐热性,所以所述粘结剂适合用于半导体传感器芯片的安装。在半导体传感器中,由于粘结剂需要具有高的间隙性和高耐热性,所以粘结剂优选是用于安装半导体传感器芯片的粘结剂。所述硅树脂优选具有流动性。所述硅树脂优选为糊状。所述糊状中包括液态。

所述粘结剂可以是主剂以及固化剂等预先混合而成的单组分型,也可以是主剂和固化剂分离的双组分型。所述粘结剂可以是缩合固化型也可是加成固化型。所述粘结剂可以通过使用诸如铂等催化剂来进行固化,也可以通过加热或湿气来进行固化。

上述硅树脂没有被特别限制。所述硅树脂可以是有机聚硅氧烷化合物,并且该有机聚硅氧烷可以在末端具有羟基,也可以在末端具有乙烯基。所述硅树脂可以是具有甲基二甲氧基甲硅烷基的聚环氧丙烷。

所述粘结剂除了上述硅树脂和间隔物之外,还可以包含乙烯基树脂、热塑性树脂、固化性树脂、热塑性嵌段共聚物、弹性体以及溶剂等。这些成分可以单独使用,也可以两种以上组合使用。

作为上述乙烯基树脂,可以列举例如,乙酸乙烯酯树脂、丙烯酸树脂以及苯乙烯树脂等。作为上述热塑性树脂,可以列举例如,聚烯烃树脂、乙烯-乙酸乙烯酯共聚物以及聚酰胺树脂等。作为上述固化性树脂,可以列举例如,环氧树脂、聚氨酯树脂、聚酰亚胺树脂和不饱和聚酯树脂等。需要说明的是,上述固化性树脂可以是常温固化型树脂、热固化型树脂、光固化型树脂或湿固化型树脂。上述固化性树脂可以与固化剂组合使用。作为热塑性嵌段共聚物,可以列举例如,苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯嵌段共聚物的氢化物以及苯乙烯-异戊二烯-苯乙烯嵌段共聚物的氢化物等。作为上述弹性体,可以列举例如,苯乙烯-丁二烯共聚物橡胶和丙烯腈-苯乙烯嵌段共聚物橡胶等。

作为上述溶剂,可以列举例如,水以及有机溶剂等。由于可以容易地除去,因此优选有机溶剂。作为上述有机溶剂,可以列举例如,乙醇等醇化合物,丙酮、甲基乙基酮、环己酮等酮化合物,甲苯、二甲苯、四甲基苯等芳族烃化合物,溶纤剂、甲基溶纤剂、丁基溶纤剂、卡必醇、甲基卡必醇、丁基卡必醇、丙二醇单甲醚、二丙二醇单甲醚、二丙二醇二乙醚、三丙二醇单甲醚等二醇醚化合物,乙酸乙酯、乙酸丁酯、乳酸丁酯、乙酸溶纤剂、丁基溶纤剂乙酸酯、卡必醇乙酸酯、丁基卡必醇乙酸酯、丙二醇单甲醚乙酸酯、二丙二醇单甲醚乙酸酯、碳酸丙烯酯酯化合物,辛烷、癸烷等脂族烃化合物,石油醚、石脑油等石油类溶剂。

除了所述间隔物以及所述硅树脂之外,所述粘结剂可以包含例如,填料、增量剂、软化剂、增塑剂、聚合催化剂、固化催化剂、着色剂、抗氧化剂、热稳定剂、光稳定剂、紫外线吸收剂、润滑剂、抗静电剂以及阻燃剂等各种添加剂。

使所述间隔物分散在所述硅树脂中的方法,可以使用现有公知的分散方法,没有特别限定。作为使所述间隔物分散在所述硅树脂中的方法,可以列举例如,将所述间隔物添加到所述硅树脂中之后,通过行星式混合机等进行混炼分散的方法;使用均化器等将所述间隔物均匀地分散在水或有机溶剂中,然后添加到所述硅树脂中,并通过行星式混合机等进行混炼分散的方法;以及利用水或有机溶剂等将所述硅树脂进行稀释,然后添加所述间隔物,采用行星式混合机等混炼分散等方法。

从进一步缓和外部冲击以及进一步防止裂纹和剥离的观点来看,在所述粘结剂100重量%中,所述硅树脂的含量优选为70重量%以上,更优选为80重量%以上,并且,优选99重量%以下,更优选95重量%以下。

“半导体传感器”

本发明涉及的半导体传感器包括第1部件、作为第2部件的半导体以及将第1部件和第2部件粘结在一起的粘结层。在本发明的半导体传感器中,所述粘结层是由所述粘结剂的固化物形成的。第2部件即半导体优选为半导体传感器芯片。

图1是示出使用了本发明的半导体安装用粘结剂的半导体传感器的例子的截面图。

图1所示的半导体传感器1包括第1部件3、作为第2部件4的半导体传感器芯片以及将第1部件3和第2部件4粘结在一起的粘结层5。粘结层5是含有间隔物2和硅树脂的粘结剂的固化物。

在第1部件3和第2部件4之间存在间隔物2,并且第1部件3和第2部件4以一定的间隔(间隙)水平地结合。

所述半导体传感器的制造方法没有特别的限制。作为半导体传感器制造方法的一个例子,可以列举:在第1部件和第2部件之间配置所述粘结剂,得到叠层体后,对该叠层体进行加热加压的方法等。

作为所述第1部件,具体可列举:半导体芯片、电容器以及二极管等电子部件,以及印刷基板、柔性印刷基板、玻璃环氧基板和玻璃基板等电路基板等电子部件。所述第1部件优选是电子部件。所述粘结剂优选是用于粘结电子部件的粘结剂。

所述半导体优选为传感器芯片,更优选为压力传感器芯片。

所述第1部件可以在其表面上具有第一电极。所述第2部件可以在其表面上具有第二电极。作为设置在上述部件上的电极,可以列举如,金电极、镍电极、锡电极、铝电极、铜电极、银电极、钛电极、钼电极以及钨电极等金属电极。所述部件为柔性印刷基板的情况下,所述电极优选为金电极、镍电极、钛电极、锡电极或铜电极。所述部件为玻璃基板的情况下,所述电极优选为铝电极、钛电极、铜电极、钼电极或钨电极。需要说明的是,所述电极是铝电极的情况下,其既可以是仅由铝形成的电极,也可以是在金属氧化物层的表面上层压铝层而得到的电极。作为所述金属氧化物层的材料,可列举:掺杂了三价金属元素的氧化铟以及掺杂了三价金属元素的氧化锌等。作为所述三价金属元素,可以列举Sn、Al以及Ga等。

以下,举出实施例以及比较例对本发明进行具体说明。本发明不仅限于以下实施例。

(间隔物1的制备)

将500g四羟甲基甲烷、500g二乙烯基苯和20g过氧化苯甲酰混合并均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2至4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在85℃的氮气氛围下反应10小时,得到间隔物1。将所得间隔物1用热水进行数次清洗后,进行分级操作。所得的间隔物1的平均粒径为19.8μm,粒径的CV值为3.5%。

(间隔物2的制备)

将1000g二乙烯基苯和56g过氧化苯甲酰混合并使之均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2至4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在90℃的氮气氛围下反应10小时,得到间隔物2。将所得间隔物2用热水进行数次清洗后,进行分级操作。所得间隔物2的平均粒径为20.1μm,粒径的CV值为3.2%。

(间隔物3的制备)

将800g二乙烯基苯、200g丙烯腈以及20g过氧化苯甲酰混合并使之均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2至4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在140℃的氮气氛围下反应6小时,得到间隔物3。将所得间隔物3用热水进行数次清洗后,进行分级操作。所得间隔物3的平均粒径为20.5μm,粒径的CV值为2.9%。

(间隔物4的制备)

将400g甲基三甲氧基硅烷和1600g乙烯基三甲氧基硅烷混合并使之均匀溶解,得到单体混合物溶液。将上述单体混合溶液1000g加入到100g甲醇和30kg的15℃离子交换水(通过氨水调节至pH10.5)的混合溶液中,并在搅拌下同时进行反应。

在第一次加入所述单体混合物溶液48小时之后,再加入所述单体混合物溶液1000g。在第二次加入单体混合物溶液之后,进一步使其反应48小时。之后,用水以及甲醇清洗数次后,在50℃下真空干燥48小时。将干燥后的粒子在375℃的氮气氛围中烧成10小时获得间隔物。对获得的间隔物进行分级操作,得到隔离物4。所得间隔物4的平均粒径为19.0μm,粒径的CV值为4.7μm。

(间隔物A的制备)

将100g乙二醇二甲基丙烯酸酯、800g丙烯酸异冰片酯、100g甲基丙烯酸环己酯以及35g过氧化苯甲酰混合并使之均匀溶解,得到单体混合物溶液。制备1重量%聚乙烯醇水溶液5kg,并将其置于反应釜中。进一步将所述单体混合溶液加入到反应釜中,搅拌2至4小时以调整粒径,使得单体混合物溶液的液滴达到规定的粒径。之后,在90℃的氮气氛下反应9小时,得到间隔物A。将所得间隔物A用热水进行数次清洗后,进行分级操作。所得间隔物A的平均粒径为20.1μm,粒径的CV值为3.1%。

(间隔物B的制备)

聚硅氧烷粒子的制备:

将0.5重量份的2-乙基过氧己酸叔丁基酯(聚合引发剂,由日油公司制造的“PERBUTYL O”)溶解在30重量份的两末端丙烯酸硅油中以制备溶液A。另外,将离子交换水150重量份、月桂基硫酸三乙醇胺的40重量%水溶液(乳化剂)0.8重量份以及聚乙烯醇(聚合度:约2000,皂化度:86.5-89摩尔%,由日本合成化学公司制造的“Gohsenol GH-20”)5重量%的水溶液80重量份混合以制备水溶液B。将所述溶液A加入安装在温浴槽中的可拆式烧瓶中之后,加入上述水溶液B。之后,利用Shirasu Porous Glass(SPG)膜(细孔的平均细孔径约20μm)进行乳化。然后,升温至85℃,进行9小时的聚合。将聚合后的粒子的总量通过离心分离,用水清洗之后,进行分级操作得到聚硅氧烷粒子。

间隔物B的制备:

将得到的6.5重量份的聚硅氧烷粒子、0.6重量份的十六烷基三甲基溴化铵、240重量份的蒸馏水以及120重量份的甲醇加入安装在温浴槽中的500ml可拆式烧瓶中。在40℃下搅拌1小时后,加入二乙烯基苯3.0重量份、苯乙烯0.5重量份,升温至75℃,搅拌0.5小时。之后,加入0.4重量份的2,2'-偶氮双(异丁酸)二甲酯,搅拌8小时进行反应。将聚合后的粒子的总量通过离心分离用水清洗之后,得到间隔物B。得到的间隔物B的平均粒径为20.3μm,粒径的CV值为3.6%。

(实施例1)

(有机硅粘结剂的制备)

向单组分热固化型有机硅粘结剂TSE322(Momentive Performance Materials公司制造)中加入间隔物1,使得其在得到的粘结剂中的含量为1重量%,并用行星式搅拌机搅拌使之均匀分散以制备有机硅粘结剂。

(压力传感器结构体的制作)

将所述有机硅粘结剂填充到注射器中,使用分配器涂布到印刷基板上使其厚度为20μm,然后将压力传感器芯片放置在所涂布的粘结剂上,在150℃下加热10分钟使其固化粘接从而获得压力传感器结构体。

(实施例2)

除了在制备有机硅粘结剂时,使用间隔物2代替间隔物1以外,以与实施例1相同的方式获得压力传感器结构体。

(实施例3)

除了在制备有机硅粘结剂时,使用隔离物3代替隔离物1,并向有机硅粘结剂中加入间隔物3使间隔物3在得到的粘结剂中的含量为0.5重量%以外,以与实施例1相同的方式获得压力传感器结构体。

(实施例4)

除了在制备有机硅粘结剂时,使用间隔物3代替间隔物1以外,以与实施例1相同的方式获得压力传感器结构体。

(实施例5)

除了在制备有机硅粘结剂时,使用隔离物3代替隔离物1,并向有机硅粘结剂中加入间隔物3,使间隔物3在得到的粘结剂中的含量为3重量%以外,以与实施例1相同的方式获得压力传感器结构体。

(实施例6)

除了在制备有机硅粘结剂时,使用隔离物4代替隔离物1,并向有机硅粘结剂中加入间隔物4,使间隔物4在得到的粘结剂中的含量为2.5重量%以外,以与实施例1相同的方式获得压力传感器结构体。

(比较例1)

除了在制备有机硅粘结剂时,使用隔离物A代替隔离物1,并向有机硅粘结剂加入间隔物A,使间隔物A在得到的粘结剂中的含量为8重量%以外,以与实施例1相同的方式获得压力传感器结构体。

(比较例2)

除了在制备有机硅粘结剂时,使用隔离物B代替隔离物1,并向有机硅粘结剂加入间隔物B,使间隔物B在得到的粘结剂中的含量为10重量%以外,以与实施例1相同的方式获得压力传感器结构体。

(评价)

(1)10%压缩弹性模量

利用Fischer公司制造的“Fischer Scope H-100”,通过上述方法测量间隔物10%压缩弹性模量。

(2)平均粒径

通过扫描型电子显微镜(SEM)观察间隔物,从观察到的图像中任意选择50个间隔物,对该50个的各间隔物的最大粒径进行算术平均求得平均粒径。

(3)压缩恢复率

利用Fischer公司制造的“Fischer Scope H-100”,通过上述方法测定间隔物的压缩恢复率。

(4)热经时变化

利用Fischer公司制造的“Fischer Scope H-100”,测定在大气中以150℃加热间隔物1000小时之后的10%压缩弹性模量。通过以下基准判定间隔物的热经时变化。

[热经时变化的判定基准]

○:加热后的10%压缩弹性模量与加热前的10%压缩弹性模量之比为0.95以上、1.05以下。

△:加热后的10%压缩弹性模量与加热前的10%压缩弹性模量之比为0.9以上、小于0.95或者大于1.05且在1.10以下。

×:加热后的10%压缩弹性模量与加热前的10%压缩弹性模量之比为小于0.9,或者大于1.10。

(5)间隙控制性

用扫描型电子显微镜(SEM)观察得到的压力传感器结构体,评价粘结剂层的最小厚度和最大厚度。通过以下基准判定间隙控制性。

[间隙控制性的判定基准]

○○:最大厚度小于最小厚度的1.2倍

○:最大厚度为最小厚度的1.2倍以上且小于最小厚度的1.5倍

×:最大厚度为最小厚度的1.5倍以上

(6)耐热性:连接强度

测定所获得的压力传感器结构体在260℃下的抗剪强度。从抗剪强度来判定耐热性:连接强度。

[耐热性:连接强度的判定基准]

○○:抗剪强度为150N/cm2以上

○:抗剪强度为100N/cm2以上且小于150N/cm2

×:抗剪强度小于100N/cm2

结果如下表1所示。

[表1]

符号的说明

1…半导体传感器

2…间隔物

3…第1部件

4...第2部件(半导体传感器芯片)

5…粘结层

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1