GDI喷雾撞壁附壁油膜厚度和质量的测量系统及方法与流程

文档序号:14607397发布日期:2018-06-05 20:03阅读:351来源:国知局
GDI喷雾撞壁附壁油膜厚度和质量的测量系统及方法与流程

本发明涉及汽油发动机的GDI喷油器,进一步涉及GDI喷雾撞壁附壁油膜厚度和质量的测量系统及方法。



背景技术:

缸内直喷汽油机(gasoline direct injection,GDI)由于具有经济性好、动力性强、变工况响应快等优点,因此得到了越来越广泛的应用。然而,这种将燃油直接喷入缸内的混合气制备方式同时带来了一些问题。与进气道喷射汽油机相比,直喷汽油机喷油压力较高,燃油极易撞击发动机内壁并形成油膜,液态油膜在燃烧过程中难以完全燃烧,使得直喷汽油机颗粒物排放较高。此外,撞击在缸壁上的燃油与机油相混合,经汽油稀释后的机油润滑性能下降,使得运动件之间的摩擦增加。更为严重的是,进入燃烧室空间的机油因燃点低而易自燃,形成早燃现象,并极易导致超级爆震,破坏发动机关键零部件。可见,直喷汽油机中的燃油撞壁现象是微粒排放、机油稀释和超级爆震的主要诱因,并将随着未来喷油系统压力的逐步提升而日益严重,目前已经成为进一步提高发动机效率和减少颗粒物排放的关键制约因素。

研究表明,喷雾撞壁形成的附壁油膜在燃烧过程中产生了池火(pool fires)现象,是直喷发动机碳烟排放的主要来源。

因此需要一种测量不同壁面温度下GDI喷雾撞壁附壁油膜厚度和质量的方法及系统,以确定不同壁面温度下喷雾撞壁后附壁油膜的厚度和质量。



技术实现要素:

本发明是提供了一种可以模拟发动机环境下的GDI喷雾撞壁附壁油膜厚度和质量的测量系统及方法。具体技术方案如下:

GDI喷雾撞壁附壁油膜厚度和质量的测量系统,包括:位于正上方且垂直向下喷射的GDI喷油器,位于喷油器正下方的第一石英玻璃平板,YAG激光器,位于YAG激光器与第一石英玻璃平板下方之间的第一反射镜和匀光片,CCD相机,位于CCD相机与第一石英玻璃平板下方之间的滤波片、第二反射镜,加热系统;所述加热系统将第一石英玻璃平板加热至157摄氏度。

在上述测量系统上实现的GDI喷雾撞壁附壁油膜厚度和质量的测量方法,包括如下过程:

(一)燃料选择:异辛烷和3-戊酮的混合物,其中,3-戊酮的体积百分比为12%;

(二)固定厚度油膜的标定:

将上石英玻璃平板、下石英玻璃平板用特定厚度的垫圈隔开,称之为第二石英玻璃平板,中部空腔充入燃料,形成固定厚度的油膜L

将第二石英玻璃平板替代第一石英玻璃平板,用266nm激光照射已知厚度的油膜,拍摄记录此时的荧光信号F;记D=F/L

(三)油膜厚度测量:

步骤一:连接系统,加热系统将第一石英玻璃平板壁面加热至试验所需温度;

步骤二:GDI喷油器将燃料喷射在一定温度的第一石英玻璃平板上,YAG激光器发射激光束,含有波长为266nm的激光和少量波长为532nm的激光,经过第一反射镜,透射波长为532nm的激光,反射波长为266nm的激光,将少量532nm激光过滤掉,其次经过匀光片,使激光能量在截面上均匀分布,同时将激光束变大,照亮喷射在不同温度第一石英玻璃平板上的整个喷雾区域,3-戊酮在266nm激光照射下,产生峰值波长420nm的荧光信号,第二反射镜将该荧光信号反射到CCD相机中,CCD相机将该荧光信号F拍摄记录下来传输并保存至电脑;为了得到更好的试验效果,在第二反射镜和CCD相机之间的滤波片为允许波长410nm-430nm信号通过的带通滤波片,进一步过滤干扰信号;

步骤三:根据L=F/D,得到油膜的厚度L;

步骤四:利用MATLAB程序计算得到附壁油膜的体积,并在已知燃料密度的情况下计算得到附壁油膜质量。

本发明相对于现有技术的优点是:

(一)该测量方法及系统所用的技术是激光诱导荧光法(laser-induced fluorescence,LIF)。其基本原理是:3-戊酮在266nm激光的照射下,会发出峰值波长为420nm的荧光信号,荧光信号的强度F与油膜厚度L存在对应关系,用CCD相机将该荧光信号拍摄记录下来,根据标定试验得到的油膜厚度与荧光强度的关系,利用MATLAB程序将荧光强度信号转化为油膜厚度信息,并利用MATLAB程序计算得到附壁油膜的质量。

(二)第一反射镜透射波长为532nm的激光,反射波长为266nm的激光,正好可将少量532nm激光过滤掉。

(三)波长410nm-430nm信号通过的带通滤波片,正好可以保证波长为420nm的荧光信号被CCD相机捕捉到。

附图说明:

图1是本发明系统结构示意图。

图2是实施例中加热系统的结构示意图。

图3是第二石英玻璃平板剖面结构示意图。

具体实施方式:

实施例:

GDI喷雾撞壁附壁油膜厚度和质量的测量系统,包括:位于正上方且垂直向下喷射的GDI喷油器,位于喷油器正下方的第一石英玻璃平板,YAG激光器,位于YAG激光器与第一石英玻璃平板下方之间的第一反射镜和匀光片,CCD相机,位于CCD相机与第一石英玻璃平板下方之间的滤波片、第二反射镜,加热系统;所述加热系统将第一石英玻璃平板加热至157摄氏度;所述加热系统包括:欧米伽热电偶温度传感器、PID温控表、上金属托盘、下金属托盘、放置在上金属托盘和下金属托盘之间的加热丝、变压器、空气开关、固态继电器;所述上金属托盘上面放置第一石英玻璃平板;所述变压器的输入端连接220V交流电源,输出端一路连接在固态继电器的交流端,最后接入加热丝的其中一个电极,输出端一路通过空气开关最后接入加热丝的另一个电极;所述固态继电器的直流端连接温控表;所述加热丝通过传递热量给上金属托盘,然后将石英玻璃平板加热到设定的温度。

在上述测量系统上实现的GDI喷雾撞壁附壁油膜厚度和质量的测量方法,包括如下过程:

(一)燃料选择:异辛烷和3-戊酮的混合物,其中,3-戊酮的体积百分比为12%;

(二)固定厚度油膜的标定:

根据Lambert-Beer定律,荧光信号F与荧光剂浓度C(体积分数)以及油膜厚度L的关系为:

F=kI0(1-e-2.303εLC)

其中I0为入射光强;ε为吸收系数;k为常数。当LC乘积较小时,可简化为:

F=KLC

其中K为常数,当具体试验中荧光剂浓度C确定后,则荧光信号的强度F与油膜厚度L成正比例关系,即:

L=F/D

其中F、L分别为标定试验中荧光信号强度与油膜厚度;F为试验中得到的荧光信号的强度;L为对应的油膜厚度;

将上石英玻璃平板、下石英玻璃平板用特定厚度的垫圈隔开,称之为第二石英玻璃平板,中部空腔充入燃料,形成固定厚度的油膜L

将第二石英玻璃平板替代第一石英玻璃平板,用266nm激光照射已知厚度的油膜,拍摄记录此时的荧光信号F;记D=F/L

(三)油膜厚度测量:

步骤一:连接系统,热电偶温度传感器测得的第一石英玻璃平板的表面温度低于PID温控表的设定值时,加热丝开始对第一石英玻璃平板进行加热;当热电偶温度传感器测得的第一石英玻璃平板的表面温度达到PID温控表的设定值后,加热丝停止对石英玻璃平板的加热过程;待石英玻璃平板表面温度降至PID温控表设定值之下后,加热丝继续对石英玻璃平板加热至设定值;加热系统反复进行上述过程,使得石英玻璃平板表面温度稳定在设定值,达到温度控制的目的;

步骤二:GDI喷油器将燃料喷射在一定温度的第一石英玻璃平板上,YAG激光器发射激光束,含有波长为266nm的激光和少量波长为532nm的激光,经过第一反射镜,透射波长为532nm的激光,反射波长为266nm的激光,将少量532nm激光过滤掉,其次经过匀光片,使激光能量在截面上均匀分布,同时将激光束变大,照亮喷射在不同温度第一石英玻璃平板上的整个喷雾区域,3-戊酮在266nm激光照射下,产生峰值波长420nm的荧光信号,第二反射镜将该荧光信号反射到CCD相机中,CCD相机将该荧光信号F拍摄记录下来传输并保存至电脑;为了得到更好的试验效果,在第二反射镜和CCD相机之间的滤波片为允许波长410nm-430nm信号通过的带通滤波片,进一步过滤干扰信号;

步骤三:根据L=F/D,得到油膜的厚度L;

步骤四:利用MATLAB程序计算得到附壁油膜的体积,并在已知燃料密度的情况下计算得到附壁油膜质量。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1