基于脉冲涡流与电磁超声的金属材料缺陷检测传感器的制作方法

文档序号:15922781发布日期:2018-11-14 00:47阅读:167来源:国知局

本发明涉及一种金属材料缺陷检测传感器,属于金属材料缺陷无损检测领域。

背景技术

电磁超声检测法和脉冲涡流检测法是两种常用的金属材料无损检测方法,这两种检测方法各有利弊。

电磁超声检测法基于电磁感应原理,在金属材料内部激发超声波,用以对金属材料的内部缺陷进行识别,也可以对壁厚减薄型缺陷进行定量化描述。然而,由于电磁超声检测存在近表面盲区,无法对近表面盲区内的缺陷进行识别。因此,电磁超声检测法只能识别金属材料的内部缺陷,无法识别金属材料近表面盲区内的缺陷。

脉冲涡流检测法虽然能够对金属材料的近表面缺陷进行有效识别,但是受趋肤效应的影响,这种检测法无法对金属材料的内部缺陷进行检测。

由此,有学者提出采用将电磁超声检测与脉冲涡流检测相结合的方式来获得金属材料的全方位的缺陷信息。申请公布号为cn105181791a的发明专利申请提供了一种基于脉冲涡流和电磁超声复合的体缺陷检测方法,用以实现金属材料的全方位缺陷检测。然而,这种体缺陷检测方法主要存在以下问题:

一、该体缺陷检测方法采用永磁体来提供检测所需的静磁场,使得相应传感器的体积与重量均较大,进而给缺陷检测工作带来了不便。除此之外,永磁体在高温环境下会发生退磁现象,进而导致该体缺陷检测方法不适用于高温场合。

二、该体缺陷检测方法利用电磁超声检测过程中金属材料近表面激发的涡流进行涡流检测。因此,激励信号必须兼顾电磁超声检测和脉冲涡流检测所需的检测频率,进而导致该体缺陷检测方法很难同时获得两种检测方法的最优检测效果。



技术实现要素:

本发明为解决现有基于电磁超声与脉冲涡流复合的金属材料缺陷检测方式导致相应传感器的体积、重量过大,不适用于高温场合以及缺陷检测效果差的问题,提出了一种基于脉冲涡流与电磁超声的金属材料缺陷检测传感器。

本发明所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器包括空心螺线管1和平板线圈2;

空心螺线管1通以脉冲信号,平板线圈2通以射频脉冲信号;

空心螺线管1用于使待测金属材料3发生涡流效应,发生涡流效应后,空心螺线管1两端之间的自感电压信号为所述金属材料缺陷检测传感器的第一传感信号;

空心螺线管1、平板线圈2与待测金属材料3构成电磁超声换能器,待测金属材料3内激发出超声波向平板线圈2传播,平板线圈2接收激发超声波并向待测金属材料3发射超声波,进入待测金属材料3内的超声波的回波信号为所述金属材料缺陷检测传感器的第二传感信号。

作为优选的是,空心螺线管1的第一端与待测金属材料3相对设置,平板线圈2设置在空心螺线管1与待测金属材料3之间;

当沿空心螺线管1的轴向对空心螺线管1和平板线圈2进行投影时,空心螺线管1的投影覆盖平板线圈2的投影。

作为优选的是,空心螺线管1与平板线圈2同轴设置。

作为优选的是,平板线圈2为收发一体的单个线圈,或者,平板线圈2包括发射线圈和接收线圈,发射线圈与接收线圈同轴且贴合设置。

作为优选的是,单个线圈为螺旋线圈或者蝶形线圈。

作为优选的是,单个线圈采用漆包线绕制而成或者采用印刷电路板实现。

作为优选的是,发射线圈和接收线圈均为螺旋线圈或者蝶形线圈。

作为优选的是,发射线圈和接收线圈均采用漆包线绕制而成或者采用印刷电路板实现。

作为优选的是,空心螺线管1通以正半周的正弦信号。

本发明所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器,采用将脉冲涡流检测与电磁超声检测相结合的方式,来获得待测金属材料的全方位缺陷信息。所述金属材料缺陷检测传感器采用对空心螺线管进行脉冲激励的方式来提供缺陷检测所需的静磁场,使得所述金属材料缺陷检测传感器的体积与重量均大幅度减小,进而解决了现有基于电磁超声与脉冲涡流复合的金属材料缺陷检测方式导致相应传感器的体积、重量过大的问题。相应地,所述金属材料缺陷检测传感器还解决了现有基于电磁超声与脉冲涡流复合的金属材料缺陷检测方式不适用于高温场合的问题。

另一方面,在采用所述金属材料缺陷检测传感器对金属材料进行全方位的缺陷检测时,分别采用脉冲信号和大功率射频脉冲信号对空心螺线管和平板线圈进行激励,通过调试脉冲信号和大功率射频脉冲信号的频率与幅值,能够同时获得两种检测方法的最优检测效果,进而解决了现有基于电磁超声与脉冲涡流复合的金属材料缺陷检测方式的缺陷检测效果差的问题。

附图说明

在下文中将基于实施例并参考附图来对本发明所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器进行更详细的描述,其中:

图1为实施例所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器的结构示意图;

图2为实施例提及的螺旋线圈的结构示意图;

图3为实施例提及的蝶形线圈的结构示意图;

图4为实施例提及的正半周正弦信号的波形图;

图5为实施例提及的待测金属材料表面无裂纹缺陷情形下的脉冲涡流检测原理图;

图6为实施例提及的待测金属材料表面存在裂纹缺陷情形下的脉冲涡流检测原理图。

具体实施方式

下面将结合附图对本发明所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器进一步说明。

实施例:下面结合图1~图6详细地说明本实施例。

参照图1,本实施例所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器包括空心螺线管1和平板线圈2;

空心螺线管1通以脉冲信号,平板线圈2通以tone-burst信号;

空心螺线管1用于使待测金属材料3发生涡流效应,发生涡流效应后,空心螺线管1两端之间的自感电压信号为所述金属材料缺陷检测传感器的第一传感信号;

空心螺线管1、平板线圈2与待测金属材料3构成电磁超声换能器,待测金属材料3内激发出超声波向平板线圈2传播,平板线圈2接收激发超声波并向待测金属材料3发射超声波,进入待测金属材料3内的超声波的回波信号为所述金属材料缺陷检测传感器的第二传感信号。

在本实施例中,空心螺线管1的第一端与待测金属材料3相对设置,平板线圈2设置在空心螺线管1与待测金属材料3之间;

当沿空心螺线管1的轴向对空心螺线管1和平板线圈2进行投影时,空心螺线管1的投影覆盖平板线圈2的投影。

在本实施例中,空心螺线管1与平板线圈2同轴设置。

在本实施例中,平板线圈2为收发一体的单个线圈,或者,平板线圈2包括发射线圈和接收线圈,发射线圈与接收线圈同轴且贴合设置。

在本实施例中,单个线圈为螺旋线圈或者蝶形线圈,或者,发射线圈和接收线圈均为螺旋线圈或者蝶形线圈。螺旋线圈和蝶形线圈的具体结构分别如图2和图3所示。

在本实施例中,单个线圈采用漆包线绕制而成或者采用印刷电路板实现,或者,发射线圈和接收线圈均采用漆包线绕制而成或者采用印刷电路板实现。

本实施例的空心螺线管1采用漆包线绕制而成。

在本实施例中,空心螺线管1通以正半周的正弦信号,该正弦信号的波形如图4所示。

下面详细地说明本实施例所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器的检测原理:

脉冲涡流检测:当空心螺线管1通以脉冲信号后,空心螺线管1上的突变电流感生出突变磁场,突变磁场基于电磁耦合原理,在待测金属材料3中激发出涡流,所激发的涡流集中在待测金属材料3的表面与近表面。空心螺线管1的两端之间因涡流而产生的自感电压信号为所述金属材料缺陷检测传感器的第一传感信号。当待测金属材料3的表面或近表面存在缺陷时,涡流的强度和分布会受到影响,从而使得空心螺线管1两端之间的自感电压信号不同于无缺陷下的该信号。通过对空心螺线管1两端之间的自感电压信号进行采集和处理,即可实现对待测金属材料3表面或近表面的缺陷进行识别。在对金属材料进行脉冲涡流检测时,需要预先检测金属材料表面无裂纹缺陷情形下的空心螺线管1两端之间的自感电压信号的峰值,用以标定。当金属材料的表面存在裂纹缺陷时,空心螺线管1两端之间的自感电压信号的峰值会发生改变,进而得出待测金属材料3的表面存在裂纹缺陷的结论。待测金属材料表面无裂纹缺陷和待测金属材料表面存在裂纹缺陷情形下的脉冲涡流检测原理分别如图5和图6所示。

电磁超声检测:在脉冲信号的作用下,空心螺线管1的中心位置短时间内建立起静磁场。为满足电磁超声检测的需求,静磁场的强度应不小于0.3t。与此同时,平板线圈2通以大功率射频脉冲信号。在空心螺线管1和平板线圈2的共同作用下,待测金属材料3内部激发出超声波,并垂直入射至平板线圈2。平板线圈2接收激发超声波并向待测金属材料3发射超声波,进入待测金属材料3内的超声波的回波信号为所述金属材料缺陷检测传感器的第二传感信号。当待测金属材料3的内部无缺陷时,进入待测金属材料3内超声波被待测金属材料3的底面所反射,形成回波信号。通过计算该回波信号到达平板线圈2的时间,即可计算出待测金属材料3的厚度,进而实现对金属材料的大面积腐蚀型缺陷的定量化描述。当待测金属材料3存在内部缺陷时,平板线圈2会提前接收到一次回波信号,通过对该回波信号进行分析和处理,即可获得待测金属材料3的内部缺陷的深度与位置信息。

在实际检测中,本实施例所述的基于脉冲涡流与电磁超声的金属材料缺陷检测传感器需要与信号处理器配合工作。空心螺线管1和平板线圈2分别采集涡流信号和电磁超声信号。由于电磁超声信号换能效率较低,初始信号十分微弱,需要采用信号处理器对平板线圈2接收到的回波信号进行滤波和低噪声放大,以提高信噪比。相反的是,脉冲涡流的缺陷特征信号强度较大,需要通过信号处理器对空心螺线管1两端之间的自感电压信号进行衰减。

虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1