光学生物传感器及COVID-19病毒检测装置的制作方法

文档序号:22576375发布日期:2020-10-20 16:44阅读:144来源:国知局
光学生物传感器及COVID-19病毒检测装置的制作方法
本发明属于生物检测
技术领域
,特别涉及一种光学生物传感器及covid-19病毒检测装置。
背景技术
:新型冠状病毒肺炎(coronavirusdisease2019,covid-19),简称“新冠肺炎”,是指2019新型冠状病毒感染导致的肺炎,是一种急性的呼吸系统感染。世界卫生组织(who)于2020年2月11日将其命名为“covid-19”。同日,国际病毒分类委员会冠状病毒研究小组按照分类学的命名规则,将此次新冠病毒命名为“sars-cov-2”。目前,新型冠状病毒covid-19的检测主要局限于医院和疾病预防控制中心,主流技术是基于核酸扩增检测的聚合酶链式反应。然而,核酸提取和扩增是一个复杂的过程,检测人员的技术、环境的洁净度和送样的及时性都会影响结果的准确性。因此,以pcr为代表的核酸扩增检测方法虽然灵敏度高,但是检出率低于50%、检测周期长,且很多条件受限地区无法完成。某些机构提出了新冠病毒covid-19快速现场检测解决方案。在核酸扩增检测法方面,提出了30分钟自动核酸提取naat、以及“帐篷式移动实验室”内的现场naat。这些方法试图在核酸提取和扩增方面尽量减少人为因素,提高可靠性,或者在检测现场营造一个相对洁净的环境以提高可靠性,但这些新的方法仍面临传递样品带来的检测周期长和样品污染的问题。除核酸扩增检测方法之外,有研究者提出采用无需核酸提取的胶体金免疫法对igg、igm抗体进行检测的方法。虽然,基于igg、igm抗体的免疫分析方法不需要核酸的提取和扩增,不容易被环境中的杂质污染,比核酸检测法更适于进行现场检测。但是,抗体法面临的问题是,很多被感染的人群体内不产生抗体,这部分人群无法用抗体法检出。而且,能够产生抗体的人群一般在感染后需要至少7天时间才会在血清中产生可检出的抗体,而在此期间这些感染者已开始传播病毒。此外,igg、igm抗体并不具有特异性,流感和其他病毒感染也会使病人体内产生igg、igm抗体,这些因素限制了抗体检测法在防控新冠疫情方面的应用。技术实现要素:本发明的目的在于针对上述现有技术的不足,提供一种光学生物传感器及covid-19病毒检测装置。为解决上述技术问题,本发明的第一方面提供一种光学生物传感器,其包括单晶硅基底及设于所述单晶硅基底上的纳米多孔硅薄膜光学器件,所述纳米多孔硅薄膜光学器件包括多孔硅单层干涉膜、多孔硅布拉格反射镜或多孔硅微谐振腔;所述纳米多孔硅薄膜光学器件的表面依次沉积有复合金属薄膜、包被有生物探针。本发明中,当纳米多孔硅薄膜光学器件的结构为多孔硅布拉格反射镜时,所述多孔硅布拉格反射镜包括交替堆叠的高折射率层和低折射率层。所述高折射率层和所述低折射率层满足:n1d1=n2d2=λ/4;其中,n1和d1分别为高折射率层的折射率和厚度;n2和d2分别为低折射率层的折射率和厚度;λ为所设计多孔硅布拉格反射镜的全反射带的中心波长(真空中波长)。为了提高布拉格反射镜的反射率,所述高折射率和低折射率的数值对比应尽可能大。优选地,所述多孔硅布拉格反射镜中的高折射率层和低折射率层的个数相等且分别为10个以上。可选地,当纳米多孔硅薄膜光学器件的结构为多孔硅微谐振腔时,所述多孔硅微谐振腔包括:第一多孔硅布拉格反射镜、第二多孔硅布拉格反射镜及设于所述第一多孔硅布拉格反射镜和第二多孔硅布拉格反射镜之间的多孔硅薄膜缺陷层;所述第一多孔硅布拉格反射镜、第二多孔硅布拉格反射镜各自独立地包括交替堆叠的高折射率层和低折射率层。所述高折射率层和低折射率层满足:n1d1=n2d2=λ/4;其中,n1和d1分别为高折射率层的折射率和厚度;n2和d2分别为低折射率层的折射率和厚度;λ为第一或第二多孔硅布拉格反射镜的全反射带的中心波长(真空中波长)。为了提高布拉格反射镜的反射率,所述高折射率和低折射率的数值对比应尽可能大。所述多孔硅薄膜缺陷层满足:n3d3=nλ/4,其中,n3和d3分别为多孔硅薄膜缺陷层的折射率和厚度,其中n>0且n≠1,n3可以是硅折射率(3.5)和空气折射率(1.0)之间的任意值,λ为第一或第二多孔硅布拉格反射镜的全反射带的中心波长(真空中波长)。优选地,所述第一多孔硅布拉格反射镜中的高折射率层和低折射率层的个数相等且分别为6个;所述第二多孔硅布拉格反射镜中的高折射率层和低折射率层的个数相等且分别为6个或6个以上,从而使得光学生物传感器在可见光波长范围内的反射率变化较大,对应的特征峰和特征谷较为尖锐,品质因数较高。品质因数越高,对于微小红移的检测能力越强,意味着传感器对于微量生物物质结合带来的反射谱变化检测能力增强,也就是传感器灵敏度越高。在本发明所提供的光学生物传感器中,所述单晶硅基底选自n型磷掺杂单晶硅、n型砷掺杂单晶硅、n型锑掺杂单晶硅或p型硼掺杂单晶硅;优选为p型硼掺杂单晶硅。相对于n型单晶硅基底,p型单晶硅基底的孔径比较小,对光的散射作用较小,采用p型单晶硅作为基底,有利于在检测过程中获得尖锐的特征峰,提高光学生物传感器的检测灵敏度。在本发明所提供的光学生物传感器中,所述多孔硅单层干涉膜、多孔硅布拉格反射镜或多孔硅微谐振腔中的多孔硅纳米孔的孔径为1~100纳米;优选20~30纳米。当多孔硅的孔径在上述优选范围内,对光的散射作用较小,有利于在检测过程中获得尖锐的特征峰,提高光学生物传感器的检测灵敏度;并且孔径在上述优选范围内的多孔硅薄膜易于加工、具有较好的可靠性。在本发明所提供的光学生物传感器中,所述纳米多孔硅薄膜光学器件的表面在沉积复合金属薄膜之前被热氧化或碳化。由于制备好的多孔硅薄膜中包含硅氢键,在空气中易于被缓慢氧化为硅氧键,本发明中在对纳米多孔硅薄膜光学器件的表面沉积复合金属薄膜、包被生物探针之前,对其进行热氧化或碳化,从而达到稳定多孔硅薄膜的效果。在本发明所提供的光学生物传感器中,所述复合金属薄膜包括设于所述纳米多孔硅薄膜光学器件表面的过渡层和设于所述过渡层表面的金膜层;所述过渡层选自镍层、铬层和钛层中的一种或几种。复合金属膜层的作用为:由于该复合金属膜层沉积在多孔硅薄膜之上,因而不会影响多孔硅薄膜的纳米孔结构。当入射光照在金膜层时,金膜的纳米孔结构使得金膜层表面会有局部等离子体共振(localizedsurfaceplasmonresonance,lspr)发生,lspr在金膜层表面会有很强的电场能量或电场强度的聚集,使生物分子在金膜层表面的结合能与电场发生强相互作用,从而使反射谱发生较大变化,因此可提高本发明的光学生物传感器的灵敏度。然而,金膜层本身具有不稳定性,易于从纳米多孔硅薄膜光学器件表面脱落,因此,本发明在纳米多孔硅薄膜光学器件与金膜层之间增设了过渡层,该过渡层选自镍层、铬层或钛层,过渡层可增强纳米多孔硅薄膜光学器件与金膜层之间的结合力,提高金膜层在纳米多孔硅薄膜光学器件表面的稳定性,提高光学生物传感器的稳定性。更重要的是,复合金属薄膜的增设还解决了大颗粒病毒(例如covid-19病毒)检测中的技术困难。一般来说,光学生物传感器的检测需要病原体进入其纳米孔中,才可保证较好的检测灵敏度。然而,大颗粒病毒(例如covid-19毒颗粒较大,直径为100~150纳米)无法进入小孔径的纳米孔内;同时,纳米孔孔径的增大亦可增强光散射作用、降低光学生物传感器的灵敏度,因而,为了使大颗粒病毒能进入纳米孔内而盲目扩大多孔硅纳米孔的孔径也是不明智的做法。本发明通过复合金属薄膜的增设,使得在金膜层表面产生局部等离子体共振(lspr),显著提高检测灵敏度。因而,大颗粒病毒不需要进入多孔硅的纳米孔内,即使在多孔硅表面的金属层附近结合也会有较高的敏感度,可显著提高covid-19病毒的检测灵敏度。进一步地,在本发明所提供的光学生物传感器中,所述复合金属薄膜中的过渡层的厚度为3~8纳米,优选5纳米;金膜层的厚度为10~20纳米,优选15纳米。复合金属薄膜中,过渡层和金膜层的厚度影响作用如下:首先,过渡层太薄不能稳定有效地将金膜附着在多孔硅薄膜之上,过渡层太厚则会削弱其下布拉格反射镜反射回来的光(因金属会吸收电磁波的能量,光也是一种电磁波),该反射回来的光能量本来可以进一步增强金膜表面激发的lspr,因此太厚会影响传感器的灵敏度。其次,金膜太薄难以有效激发lspr,也难以有效支撑生物探针以共价键方式固化在传感器表面;金膜太厚会削弱其下布拉格反射镜反射回来的光(因金属会吸收电磁波的能量,光也是一种电磁波),该反射回来的光能量本来可以进一步增强金膜表面激发的lspr,因此太厚会影响传感器的灵敏度。当过渡层和金膜层的厚度在本发明所提供的范围内时,传感器表面的金膜和金膜之上固化的生物探针都比较稳定,不会因检测操作中的移动或表面冲洗等造成金膜或者生物探针连同金膜一起脱落,同时金膜表面的激发的lspr模式的电场强度最强,传感器的灵敏度最高。在本发明所提供的光学生物传感器中,所述生物探针包括抗体、结合蛋白或核酸适配体;优选地,所述生物探针为covid-19病毒抗体。本发明还提供一种covid-19病毒检测装置,其包括本发明第一方面所提供的光学生物传感器。相对于现有技术,本发明提供了一种基于纳米材料-多孔硅的光学生物传感器,该传感器元件的光学反射谱具有特征峰和特征谷。当病原体在传感器表面结合后,改变传感器表面附近的光学折射率(折射率增大),使传感器的反射谱特征峰和谷向长波长方向移动(红移),该红移的量可以用来对病原体进行定量。为保证生物传感器的特异性,在传感器表面包被抗体、适配体或者ace2结合蛋白,即可特异性捕获特定的病原体(如covid-19病毒),而不会结合其他生物物质;该捕获事件反应出来的生物传感器的光学信号变化即可特异性的指向特定的病原体。此外,本发明还通过对纳米多孔硅薄膜光学器件具体结构的设计、以及在纳米多孔硅薄膜光学器件表面沉积复合金属薄膜,从而使得本发明的光学生物传感器具有极高的检测灵敏度。当使用本发明的光学生物传感器对covid-19病毒进行检测时,虽然新冠病毒颗粒较大(100~150纳米直径),难以进入多孔硅的纳米孔内部,仍然可以通过在多孔硅表面的金属层附近结合获得较高的检测敏感度。附图说明图1为根据本发明具体实施方式的器件1检测covid-19病毒的检测光谱图;图2为根据本发明具体实施方式的器件2检测covid-19病毒的检测光谱图;图3为根据本发明具体实施方式的器件7检测covid-19病毒的检测光谱图。具体实施方式为了能够更清楚理解本发明的目的、特点和优势,下面结合附图对本发明的实施方式进行详细描述。所用材料未注明生产厂商者,均为可以通过市售购买获得的常规产品。对示例性实施方式的描述仅仅是出于示范目的,而非对本发明及其应用的限制。一、光学生物传感器的制备本发明的第一方面涉及光学生物传感器的制备。(1)制备纳米多孔硅薄膜光学器件使用阳极氧化法(按照本领域的常规步骤)在单晶硅片表面制备纳米多孔硅薄膜光学器件。所述纳米多孔硅薄膜光学器件有三种结构:多孔硅单层干涉膜、多孔硅布拉格反射镜或多孔硅微谐振腔。纳米多孔硅薄膜光学器件中的纳米多孔硅薄膜的制备,可以采用本领域内的常规方法进行。本实施例中以阳极氧化法为例,简述步骤如下:使用p型硼掺杂(或者n型磷/砷/锑掺杂)、0.01欧姆厘米电阻率、<100>晶向的硅片,在15%氢氟酸(n型用5.5%)中进行阳极氧化法电化学腐蚀,整个腐蚀槽由聚四氟乙烯(特氟龙)制作,以容纳氢氟酸溶液。硅片浸泡在氢氟酸中,硅片背面为阳极,可与铂或铝片接触;另用铂金电极作为阴极也浸泡在氢氟酸中,但不与硅片正面接触。通过恒定电流源,可在阳极和阴极之间施加恒定的电流,即可在硅片上腐蚀生成多孔硅。多孔硅的多孔率,也就是折射率,可由单位硅面积上施加的电流密度来控制;多孔硅的厚度可由腐蚀时间来控制。多孔硅的多层结构,包含每一层对应的厚度和折射率,可通过切换每一层所需要的电流密度和腐蚀时间连续腐蚀形成多层多孔硅中的每一层。(2)对纳米多孔硅薄膜光学器件进行热氧化或者热碳化:热氧化方法如下:在700~800℃下氧化10~30分钟,即可在多孔硅的孔内表面形成一层1~2纳米厚的二氧化硅覆盖层。碳化方法如下:采用低压化学气相沉积法对纳米多孔硅薄膜光学器件表面进行碳化。首先,将制备好的多孔硅样品放入2.5%的hf溶液中浸泡90s,用乙醇溶液对浸泡好的多孔硅样品进行多次冲洗,用n2吹干清洗干净的多孔硅样品。然后,将吹干的多孔硅样品立即放入管式炉的石英管中,多孔硅样品位于管式炉加热中心处。接着,将石英管内的气压抽至真空,并将炉温升至650℃,期间通入20sccm的h2和1sccm的ar对多孔硅片进行退火处理,温度到达650℃时通入1sccm的c2h2并将温度缓慢升至750℃,保温10分钟,再将温度缓慢升至850℃,保温10分钟后关闭c2h2,保持h2和ar流量不变,开始降温,待炉温冷却至室温后将多孔硅样品从炉中取出,得到表面被碳化的多孔硅。(3)在纳米多孔硅薄膜光学器件上沉积复合金属薄膜:在纳米多孔硅薄膜光学器件上采用物理气相沉积(pvd)法或磁控溅射法依次沉积过渡层和金膜层。以物理气相沉积法为例,可采用电阻式真空热蒸镀设备(例如:购自沈阳科诚真空技术有限公司的zd-400单室高真空电阻式蒸镀设备)进行膜层沉积,沉积步骤按照设备使用说明书进行。(4)在纳米多孔硅薄膜光学器件表面固化生物探针:在纳米多孔硅薄膜光学器件表面固化生物探针,这些生物探针包括抗体、结合蛋白、适配体等。例如,在传感器表面通过共价键、静电吸附、物理吸附等方法固化冠状病毒抗体、适配体或者ace2结合蛋白,则使生物传感器具备针对冠状病毒的特异性。以在金的表面固化抗体为例,在纳米多孔硅薄膜光学器件表面固化生物探针的步骤如下:首先羧基(-cooh)化金表面,后使用edc/nhs激活羧基表面形成氨基(-nh2),形成的氨基与单克隆抗体fc端的羧基(-cooh)高特异性结合,从而固定抗体于传感器表面。添加牛血清白蛋白(bsa)等覆盖未结合探针的表面,防止非特异性吸附的发生。同理,获得抗体固定的多孔硅传感器,优化后,期待可于室温环境保存一个月,用于现场新冠病毒的快速检测。以在金表面固化核酸适配体为例,在纳米多孔硅薄膜光学器件表面固化生物探针的步骤如下:核酸适配体的5’端修饰的巯基(sh-)可以与金表面直接结合。固定适配体前,添加还原剂tcep(三(2-羧乙基)膦盐酸盐)使巯基处于活性状态,而不相互交联形成双硫键(s-s)。巯基与金形成au-s键而固定适配体至传感器表面,后添加6-巯基-1-己醇等覆盖未结合探针的表面,防止非特异性吸附的发生。获得适配体固定的多孔硅生物传感器,优化后,期待可于室温环境保存一个月,用于现场新冠病毒的快速检测。二、光学生物传感器器件器件1(p型单晶硅基底+多孔硅单层干涉膜+复合金属膜+生物探针)器件1包括p型硼掺杂单晶硅及设于所述p型硼掺杂单晶硅上的纳米多孔硅薄膜光学器件,所述纳米多孔硅薄膜光学器件为多孔硅单层干涉膜。所述多孔硅单层干涉膜的厚度为1微米,纳米孔的孔径为20-30纳米。所述纳米多孔硅薄膜光学器件的表面经热氧化,并依次沉积有复合金属薄膜、包被有生物探针。所述复合金属薄膜包括5纳米镍膜层和15纳米金膜层,所述生物探针为covid-19抗体(购自义翘神州)。器件2(p型单晶硅基底+多孔硅布拉格反射镜+复合金属膜+生物探针)器件2包括p型硼掺杂单晶硅及设于所述p型硼掺杂单晶硅上的纳米多孔硅薄膜光学器件,所述纳米多孔硅薄膜光学器件为多孔硅布拉格反射镜。所述纳米多孔硅薄膜光学器的表面经热氧化,并依次沉积有复合金属薄膜、包被有生物探针。所述复合金属薄膜包括5纳米镍膜层和15纳米金膜层,所述生物探针为covid-19抗体(购自义翘神州)。其中,所述多孔硅布拉格反射镜包括交替堆叠的高折射率层和低折射率层。其中,所述高折射率层和低折射率层满足:n1d1=n2d2=λ/4;其中,n1和d1分别为高折射率层的折射率和厚度;n2和d2分别为低折射率层的折射率和厚度;λ为多孔硅布拉格反射镜的全反射带的中心波长(真空中波长)。在本器件示例中,多孔硅布拉格反射镜中的高折射率层和低折射率层的个数均为10个。n1=2.08;d1=100纳米;n2=1.38;d2=150纳米;λ=830纳米。器件3~10(p型单晶硅基底+多孔硅微谐振腔+复合金属膜+生物探针)器件3~10包括p型硼掺杂单晶硅及设于所述p型硼掺杂单晶硅上的纳米多孔硅薄膜光学器件,所述纳米多孔硅薄膜光学器件为多孔硅微谐振腔。所述纳米多孔硅薄膜光学器的表面经热氧化,并依次沉积有复合金属薄膜、包被有生物探针,所述生物探针为covid-19抗体(购自义翘神州)。其中,所述多孔硅微谐振腔包括:第一多孔硅布拉格反射镜、第二多孔硅布拉格反射镜及设于所述第一多孔硅布拉格反射镜和第二多孔硅布拉格反射镜之间的多孔硅薄膜缺陷层;所述第一多孔硅布拉格反射镜、第二多孔硅布拉格反射镜各自独立地包括交替堆叠的高折射率层和低折射率层。所述高折射率层和低折射率层满足:n1d1=n2d2=λ/4;其中,n1和d1分别为高折射率层的折射率和厚度;n2和d2分别为低折射率层的折射率和厚度;λ为第一或第二多孔硅布拉格反射镜的全反射带的中心波长(真空中波长)。所述多孔硅薄膜缺陷层满足:n3d3=nλ/4,其中,n3和d3分别为多孔硅薄膜缺陷层的折射率和厚度,其中n>0且n≠1,n3可以是硅折射率(3.5)和空气折射率(1.0)之间的任意值,λ为第一或第二多孔硅布拉格反射镜的全反射带的中心波长(真空中波长)。器件3~10中,多孔硅薄膜层的参数如下:n1=2.08;d1=100纳米;n2=1.38;d2=150纳米;n3=n2,d3=300纳米;λ=830纳米。此外,器件3~10中,第一多孔硅布拉格反射镜中的高折射率层和低折射率层的个数(表1中以“第一层数”表示)、第二多孔硅布拉格反射镜中的高折射率层和低折射率层的个数(表1中以“第二层数”表示)、复合金属膜层中的过渡层的厚度、复合金属膜层中的金膜层的厚度,如表1所示。表1第一层数第二层数过渡层厚度金膜层厚度器件3555纳米15纳米器件45105纳米15纳米器件57105纳米15纳米器件6755纳米15纳米器件7(最优实施例)6105纳米15纳米器件86105纳米5纳米器件96105纳米25纳米器件1061210纳米15纳米对比器件1对比器件1的结构与器件1基本相同,不同之处仅在于,对比器件1的表面未沉积复合金属薄膜。对比器件2对比器件2的结构与器件2基本相同,不同之处仅在于,对比器件2的表面未沉积复合金属薄膜。对比器件3对比器件3的结构与器件7基本相同,不同之处在于,对比器件3的表面未沉积复合金属薄膜。三、光学生物传感器对covid-19病毒的检测分别使用器件1~器件10、对比器件1~对比器件3进行covid-19病毒检测,检测方法如下:(1)检测生物传感器的光学反射谱:通过便携式光纤光谱仪能够在现场检测生物传感器在可见光范围内的反射光谱,将该光谱记作光谱a。(2)将临床样本在生物传感器表面加载:针对冠状病毒,可以将待测者的唾液、痰液、支气管肺泡灌洗液等临床样本滴在生物传感器表面,放置5分钟进行反应,之后用缓冲液将样本洗净。(3)再次检测生物传感器的光学反射谱:再次通过便携式光纤光谱仪检测生物传感器在可见光范围内的反射光谱,将该光谱记作光谱b。(4)比较光学反射谱a和b,从反射谱的变化中判断样品中是否有病原体:如反射谱的特征峰或特征谷在波长位置上无移动,则说明临床样本中无冠状病毒,结果为阴性。否则,结果为阳性。进一步的,根据位移的多少及其在事先建立的标准曲线中的位置,可得出临床样本中病原体的数量信息。四、covid-19病毒检测结果:s-ecd蛋白是covid-19病毒表面的s蛋白,包含s1、s2蛋白,是病毒攻击与结合人体细胞的ace2结合蛋白的特异性功能区。以下所示为本发明的器件1~器件10、对比器件1~对比器件3检测covid-19病毒表面的s-ecd蛋白的检测效果。(1)器件1、对比器件1的检测效果:器件1可对浓度为1nm(1nm=10-9mol/l)的s-ecd蛋白有效检测:1nm浓度的s-ecd蛋白在传感器表面与抗体的结合会带来6纳米左右的特征峰或特征谷的红移(检测光谱图如附图1所示)。但是,当s-ecd蛋白浓度低于1pm时(1pm=10-12mol/l),特征峰或特征谷的红移不明显,可出现假阴性结果。对比器件1无法对浓度为1nm的s-ecd蛋白进行有效检测,特征峰或特征谷的红移不明显。(2)器件2、对比器件2的检测效果:器件2可对浓度为0.5nm的s-ecd蛋白有效检测:0.5nm浓度的s-ecd蛋白在传感器表面与抗体的结合会带来5纳米左右的特征峰或特征谷的红移(检测光谱图如附图2所示)。但是,当s-ecd蛋白浓度低于10fm(1fm=10-15mol/l)时,特征峰或特征谷的红移不明显,可出现假阴性结果。(注:图2中,在s-ecd蛋白结合前的特征谷位置是615纳米,而不是dbr设计全反射带中心波长(真空中波长)的830纳米,这是由于多孔硅布拉格反射镜经过热氧化后,很多硅材料转变为二氧化硅,折射率大幅下降(从硅折射率3.5左右变为二氧化硅折射率1.5左右),使得多孔硅布拉格反射镜的全反射带整体发生很大的蓝移。并且在布拉格反射镜器件表面镀复合金属膜后,布拉格反射镜的全反射带(从565纳米至615纳米)转变为一个特征峰(565纳米)和一个特征谷(615纳米)。)对比器件2无法对浓度为0.5nm的s-ecd蛋白进行有效检测,特征峰或特征谷的红移不明显。(3)器件3~10、对比器件3的检测效果:器件3~10可对浓度为1fm~1nm范围内的低浓度s-ecd蛋白有效检测。对比器件3无法对浓度1fm~1nm范围内的低浓度s-ecd蛋白进行有效检测,特征峰或特征谷的红移不明显。其中,器件7表现出极高检测灵敏度,0.5nm浓度的s-ecd蛋白在器件7表面与抗体的结合会带来10纳米左右的特征峰或特征谷的红移(检测光谱图如附图3所示)。这是因为,器件7通过在多孔硅微谐振腔的基础上,通过复合金属膜层的设置,在金膜层表面产生局部等离子体共振、提高光学生物传感器的稳定性,使得颗粒较大的covid-19病毒不需要进入多孔硅的纳米孔内,在复合金属膜层附近与抗体结合也有较高的检测灵敏度。将器件7和器件2的反射谱进行对比后可以发现,器件7位于635.14纳米的谐振谷的品质因数(qualityfactor,定义为谐振中心波长除以半峰宽)在100左右,而器件2的位于615纳米的特征谷的品质因数在10左右,比器件7低了一个数量级。因此,器件7在检测低含量的目标生物物质时能够辨识很小的红移,从而具有较低的检测限(limitofdetection)。从检测限对比来看,器件7检测限可达1fm,而器件2检测限为10fm。除此之外,器件7还进一步在结构上进行了优化。一方面,器件7中,第一多孔硅布拉格反射镜中的高折射率层和低折射率层的个数相等且分别为6个;第二多孔硅布拉格反射镜中的高折射率层和低折射率层的个数相等且分别为6个或6个以上(器件7中为10个)。申请人发现,上述结构设计使得传感器在检测低浓度病毒时,在可见光波长范围内的反射率变化最大,对应的特征峰和特征谷最为尖锐,品质因数最高,对于微小红移的检测能力最强,检测限较低,相应的传感器灵敏度也最高。相比之下,器件3~器件6的检测限不如器件7。其中:器件3的检测限为100fm,而器件4-6的检测限均为10fm。另一方面,器件7中,复合金属薄膜中的过渡层的厚度在3~8纳米之间;使得金膜层的厚度在10~20纳米之间,进一步减小检测过程中发生的光被金属吸收的作用,有利于提高金表面lspr场强,并在检测过程中获得尖锐的特征峰,提高光学生物传感器的检测灵敏度。相比之下,器件8~10的检测灵敏度低于器件7。其中:器件8-10的检测限均为10fm。上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1