一种基于气致变色功能的氢气传感器的制造方法_4

文档序号:9928814阅读:来源:国知局
电阻值,分别为R(M)2)和R(air),定义气敏灵敏度为:S = R(N02)/R(air),响应时间定义为通入测试气体后电阻变化至IJ最大变化电阻的80%所需要的时间。测试发现,该氧化钨气敏薄膜在Sppm浓度的NO2气体中灵敏度为30;最小响应时间为15s;经过100次疲劳测试,电阻响应值下降到原来的86%。WO3气敏薄膜表现出良好的灵敏度、响应时间和重复性。
[0061]B面中,采用分光光度计对不同浓度出气氛中WO3气致变色层进行透光率测试,定义T0为未通H2时样品的透光率,T为通入一定浓度出时样品的透光率,相对透光率:,在通入H2浓度为5000ppm时,相对透光率随波长变化,最小为6%,最大为56.7%,并且经过约1min,相对透光率趋于稳定,可见随被测气体通入,氧化钨气致变色层透光率下降,表现为薄膜颜色由原来的透明变为蓝色,响应时间短,表现良好的气致变色性能。
[0062]测试发现,该氢气传感器利用气致变色原理可以实现对氢气的可视化检测,并且响应时间短,灵敏度高,变色范围较大,实现了意想不到的效果,具有一定的实际应用价值。
[0063]实施例4:
[0064]提供一种基于气致变色功能的氢气传感器,所述氢气传感器基于WO3气敏材料和W03气致变色材料;所述氢气传感器包括敏感单元、加热单元和数据读取单元;所述加热单元和数据读取单元与敏感单元的氧化妈气敏薄膜连接;所述加热单元作为氧化妈气敏薄膜工作时的加热源;数据读取单元处理氧化钨气敏薄膜的电导率变化信号以显示目标气体的浓度值。
[0065]图1是本发明采用的气致变色气体传感器中敏感单元的示意图。参照图1,该敏感单元为中空结构的双层结构,形成双层结构的A面结构和B面结构相对放置,距离500μπι,Α面结构和B面结构交接的周边采用胶体密封;所述A面包括石英玻璃基底、叉指电极层和WO3气敏薄膜层,WO3气敏薄膜层为掺杂SnO2的WO3薄膜,可以实现对NO2气体的检测,所述B面包括石英玻璃基底和WO3气致变色层,WO3气致变色层为WO3纳米线薄膜掺杂ΖηΤΡΡ-2-Ν02,利用气致变色原理可以实现对氢气的可视化检测;所述B面结构上还设置有2个用于目标气体透入的透气孔。A面中,所述Sn02的颗粒度小于50nm,所述W03气敏薄膜层厚度为700nm;B面中,所述W03纳米线长度约Iym,直径约10nm ;
[0066]图2是根据一示例性实施例示出的制备敏感单元的流程图,如图2所示,包括以下步骤:
[0067]S1、制备A面结构,包括以下实施步骤:(I)取一定尺寸(4cm X 4cm)的石英玻璃基底,依次经过丙酮、乙醇、去离子水超声清洗20min; (2)在石英玻璃基底上旋涂一层光刻胶,厚度lwii,在叉指电极掩模版覆盖下曝光6s,然后经过显影50s后用去离子水清洗,采用磁控溅射方法镀一层300nm厚的Cr膜作为叉指电极层,然后去除光刻胶;(3)将石英玻璃基底放入磁控派射仪中,抽真空至5X 10—4Pa以下,通入Ar和02的混合气体,调节Ar:02比例为5:1,工作压强为2.4Pa,在靶材为纯度99.96%的金属W靶磁控溅射28min,靶材为纯度98%的金属锡靶磁控溅射2min,得到掺杂SnO2的WO3薄膜,即WO3气敏薄膜层;
[0068]S2、制备B面结构,包括以下实施步骤:(1)取相同尺寸(4cmX4cm)的石英玻璃基底,依次经过丙酮、乙醇、去离子水、NaOH水溶液、去离子水超声清洗,时间均为20min; (2)取20g钨酸钠溶于200ml水中,加入过量的浓盐酸得到活性钨酸沉淀,将其过滤,再用去离子水清洗直至检测不到氯离子,然后将活性钨酸沉淀溶于过氧化氢中,制得溶胶,旋涂于石英玻璃基底上,350°C处理Ih获得种子层,厚度为20nm;(3)取钨酸钠粉末4.12g溶于60ml去离子水,用3M HCl溶液调节其pH为2.0,然后加入2.lg(0.3M)硫酸铵作为控制剂,将石英玻璃基底平放在去离子水中,搅拌I小时后,倒入不锈钢水热反应釜中,在烘箱中加热至150°C保持10h,然后取出石英玻璃基底用去离子水清洗;(4)选用三氯甲烷为溶剂,取3.8g ZnTPP-2-NO2配制成5.0mg/ml的溶液,超声处理20min,使溶液均匀,通过滴胶方式将所制溶液滴涂在石英玻璃基底表面,设定旋涂速度为3400rpm,旋涂时间为70s,最后将石英玻璃基底在真空干燥箱中60°C下干燥12h,得到掺杂ZnTPP-2-N02的WO3纳米线薄膜,即WO3气致变色层;
[0069]S3、组装:将制作完成的A面、B面结构相对放置,距离500μπι,Α面结构和B面结构交接的周边采用胶体密封,即得所述气致变色气体传感器的敏感单元。
[0070]关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
[0071]数据测试:
[0072]A面中,气敏测试在气敏元件测试系统上完成,将制作好的器件放入石英管中,加热单元加热使敏感单元的工作温度为120°C,待稳定后,通入由空气和一定浓度NO2配置的混合气体,保持30min,再次通入纯空气,记录WO3气敏薄膜层的电阻值,分别为R(M)2)和R(air),定义气敏灵敏度为:S = R(N02)/R(air),响应时间定义为通入测试气体后电阻变化至IJ最大变化电阻的80%所需要的时间。测试发现,该氧化钨气敏薄膜在Sppm浓度的NO2气体中灵敏度为35;最小响应时间为15s;经过100次疲劳测试,电阻响应值下降到原来的73%。WO3气敏薄膜表现出良好的灵敏度、响应时间和重复性。
[0073]B面中,采用分光光度计对不同浓度出气氛中WO3气致变色层进行透光率测试,定义T0为未通H2时样品的透光率,T为通入一定浓度出时样品的透光率,相对透光率:,在通入H2浓度为5000ppm时,相对透光率随波长变化,最小为4 %,最大为59.7%,并且经过约1min,相对透光率趋于稳定,可见随被测气体通入,氧化钨气致变色层透光率下降,表现为薄膜颜色由原来的透明变为蓝色,响应时间短,表现良好的气致变色性能。
[0074]测试发现,该氢气传感器利用气致变色原理可以实现对氢气的可视化检测,并且响应时间短,灵敏度高,变色范围较大,实现了意想不到的效果,具有一定的实际应用价值。
[0075]实施例5:
[0076]提供一种基于气致变色功能的氢气传感器,所述氢气传感器基于WO3气敏材料和W03气致变色材料;所述氢气传感器包括敏感单元、加热单元和数据读取单元;所述加热单元和数据读取单元与敏感单元的氧化妈气敏薄膜连接;所述加热单元作为氧化妈气敏薄膜工作时的加热源;数据读取单元处理氧化钨气敏薄膜的电导率变化信号以显示目标气体的浓度值。
[0077]图1是本发明采用的气致变色气体传感器中敏感单元的示意图。参照图1,该敏感单元为中空结构的双层结构,形成双层结构的A面结构和B面结构相对放置,距离500μπι,Α面结构和B面结构交接的周边采用胶体密封;所述A面包括石英玻璃基底、叉指电极层和WO3气敏薄膜层,WO3气敏薄膜层为掺杂SnO2的WO3薄膜,可以实现对NO2气体的检测,所述B面包括石英玻璃基底和WO3气致变色层,WO3气致变色层为WO3纳米线薄膜掺杂ΖηΤΡΡ-2-Ν02,利用气致变色原理可以实现对氢气的可视化检测;所述B面结构上还设置有2个用于目标气体透入的透气孔。A面中,所述Sn02的颗粒度小于lOOnm,所述W03气敏薄膜层厚度为400nm;B面中,所述W03纳米线长度约Iym,直径约30nm ;
[0078]图2是根据一示例性实施例示出的制备敏感单元的流程图,如图2所示,包括以下步骤:
[0079]S1、制备A面结构,包括以下实施步骤:(I)取一定尺寸(4cmX4cm)的石英玻璃基底,依次经过丙酮、乙醇、去离子水超声清洗20min; (2)在石英玻璃基底上旋涂一层光刻胶,厚度lwii,在叉指电极掩模版覆盖下曝光6s,然后经过显影50s后用去离子水清洗,采用磁控溅射方法镀一层300nm厚的Cr膜作为叉指电极层,然后去除光刻胶;(3)将石英玻璃基底放入磁控派射仪中,抽真空至5X 10—4Pa以下,通入Ar和02的混合气体,
当前第4页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1