用于电子控制系统的控制装置及自诊断方法

文档序号:6290286阅读:285来源:国知局
专利名称:用于电子控制系统的控制装置及自诊断方法
本文公开的内容涉及包含在2001年11月21日申请的日本专利申请号JP2001-356136中的主题,其内容在本文中全部参考引用。
为了利用

图11所示的电子控制系统进行高度可靠地控制,可设置一种自诊断功能,用于判断在每台电源装置1、2、3实际上驱动和控制执行器之前是否发生了失常操作或者在正常控制时序中是否发生了失常操作。例如,在这种安装在汽车上并进行各种控制的电子控制系统10中,通过串行通信把自诊断结果从每台电源装置1、2、3传送到控制装置11,并利用控制装置11执行电子控制系统10的所有自诊断或操作监视。通过从汽车上的电源系统接收电源可操作车载电子控制系统10。当供电电压非正常下降时,就不能实现可靠操作了。对此采取了如下措施,即设置一低压检测电路,并在检测到电池15提供的电源电压非正常下降时,执行预定的故障保险操作。
图12所示,当在时间t0时电源电压下降到失常状态、而且低于或等于设定在低压检测电路14中的低压检测值时,低压检测电路14就向CPU 12发出一低压检测信号,该信号表示电源电压下降到了失常状态。此时,如果控制装置11通过通信线13从第二电源装置接收到有关自诊断结果的数据,就会顺序地从第三电源装置接收数据并从第一电源装置接收数据。由于在低压检测信号表示失常状态时从第二电源装置接收数据,因此有可能发生自诊断功能误检测的情况。因此,要清除来自于第二电源装置的数据。当电源电压在时间t1时恢复到低压检测值或者更高时,低压检测信号就发生变化,表示状态正常。
JP-A-9-282028公开了一种关于电子控制系统的自诊断方法。这种现有技术公开了一种理念,通过改变电源进行自诊断,从而判断出诸如传感器之类的输入装置是否出现了故障。
在图11所示的结构中,产生非正常现象时,即便在发生失常时检测到电源电压非正常下降而且采用串行通信方式接收的、表示自诊断结果的数据是无效数据时,由于发送的延迟,也要花费时间完成数据的传输,这可能包括受电源电压失常影响的错误检测结果和从所有电源装置1、2、3进行发送。因此,即便低压检测信号到时刻t1从失常状态恢复到正常状态时,也有可能在控制装置11中接收非正常数据,从而有害于电子控制系统10的自诊断结果。
根据本发明的一个方面,提供了一种控制装置,可通过一通信线将该控制装置与多个电子装置连接起来,并利用串行通信方式接收从每台电子装置发送的数据,该控制装置包括条件设定装置,用于设定与利用串行通信方式从该电子装置接收数据所需的期间相对应的条件;干扰检测装置,用于检测假设在至少其中一个电子装置中引起非正常操作的干扰因素;以及一数据处理装置,用于在干扰检测装置检测到干扰因素的时间周期内忽略来自于电子装置中的数据直到到条件设定装置中设定的条件满足时为止忽略。
根据本发明,一种控制装置利用串行通信接收来自多个电子装置发送的数据,这些电子装置通过通信线连接,该控制装置包括条件设定装置、干扰检测装置和数据处理装置。把与利用串行通信方式从多个电子装置接收数据所需的期间相对应的条件设定在条件设定装置中。干扰检测装置检测干扰因素,可假设这些干扰因素在至少其中一个电子装置中会引起非正常操作。如果干扰检测装置检测到干扰因素,数据处理装置就在某一期间内忽略来自于多个电子装置的数据,在此期间内可满足设定在条件设定装置中的条件。设定一与利用串行通信从多个电子装置接收数据所需的期间相对应的期间,当产生干扰因素时,由于利用串行通信从电子装置发送的数据都不可靠,因此在设定的该期间内忽略这些数据,从而适当地忽略有可能导致非正常操作的数据,并只是使用可靠性很高的数据。利用控制装置的干扰检测装置检测干扰因素,从而在相同的每台电子装置中采用该检测方法,而且可简化由控制装置和多个电子装置组成的一种电子控制系统的结构,降低成本。
根据本发明的其它方面,在条件设定装置中设定完成预定数量串行通信的条件,该预定数量与通过通信线连接的电子装置的数量相对应。
根据本发明,即便在利用串行通信从所有电子装置接收数据、这些数据有可能受到干扰因素的影响的情况下,也可以忽略所接收的数据,从而安全地消除了低可靠性的数据。
根据本发明的另一方面,把与通过通信线连接的所有电子装置串行通信所需的一段时间设定为条件设定装置中的条件。
根据本发明,忽略串行通信的数据,直到与所有电子装置串行通信的所需时间过去为止,从而通过简单地判断时间是否过去,而进行用于忽略低可靠性数据的操作。
根据本发明的另一方面,条件设定装置根据由干扰检测装置检测到的干扰因素的增加而延长时间。
根据本发明,随着干扰因素的增加,也会延长忽略进行串行通信的数据的期间,从而根据干扰的程度适当地设定忽略数据的期间。
进一步地,提供一种用于电子控制系统的自诊断方法,该电子控制系统包括一控制装置和多个通过通信线与该控制装置连接的电子装置、并采用串行通信方式向该控制装置发送表示自诊断结果的数据,该方法包括检测电源电压的下降;并在一预置时间期间内忽略表示自诊断结果的数据,该时间期间与从电子装置向控制装置串行通信所需的时间相对应。
根据本发明,有多个电子装置连接到控制装置,组成一电子控制系统。表示自诊断结果的数据采用串行通信方式从每台电子装置输送到控制装置。在控制装置接收到数据的情况下,如果检测到电源电压下降,就在与串行通信所需的期间相对应的设定期间内忽略数据,从而删除可能包括非正常数据的自诊断结果,并只使用可靠性很高的自诊断结果数据。
通过通信线23在控制装置21和多个电子装置之间进行串行通信、电子装置例如为第一至第三这三个电源装置31、32、33。计数器26根据接收数据的数量进行计数,这些接收的数据表示由每台电源装置31、32、33的自诊断结果。
如图2所示,在此实施例中,顺序接收由电源装置31、32、33的自诊断结果的数据作为串行信号。在预定的时间执行这种自诊断操作,例如在整个电子控制系统20启动时或者在操作期间执行这种自诊断操作。例如,CPU 22向每台电源装置31、32、33顺序发送预定电源装置的ID码和控制值,而且每台电源装置31、32、33接收这些ID码和控制值,并向CPU返回自诊断结果。由每台电源装置31、32、33顺序发送自诊断结果的数据,并整个地重复多次。在这种自诊断期间,当电源电压非正常下降并变成低压检测值甚至更低时,低压检测电路24就向CPU 22发出表示失常情况的低压检测信号。把电源电压变成低压检测值甚至更低的时刻设定为t10。此时,CPU 22锁定低压检测信号,并在时间t10’之后设置锁定,再上移低压锁定信号。在此实施例中,即便在电源电压在时间t11恢复到低压检测值甚至更高,并进而使低压检测电路24将其低压检测信号返回到正常状态时,计数器26也会对与电源装置31、32、33的串行通信进行计数。在时刻t12之后的时刻t12’释放锁定,在t12时至少完成一次与所有电源装置31、32、33的串行通信,并忽略数据直到低压锁定信号下移。例如,可把锁定信号设置在CPU 22的一寄存器内或者诸如CPU 22的一RAM(未示出)式的工作存储器内。
图3表示在此实施例中,为了自诊断而进行串行通信期间监视电压下降的操作过程。从步骤a0开始进行操作,并在步骤a1解除锁定。在步骤a2中,等待低压检测电路24检测低压。如果检测到低压存在,就在步骤a3设置锁定。当设定锁定时,在步骤a4等待计数器26对串行通信进行计数直到电源装置31、32、33的数量值n。如果n次通信结束,就在步骤a5解除锁定,并在步骤a6结束操作过程。顺便说一下,设定锁定过程与图2所示低压锁定信号的上移相对应,锁定的解除过程与下移相对应。
图4表示判断是否利用图3所示的锁定采用从每台电源装置31、32、33接收的自诊断数据的程序。例如,由接收通过串行通信的数据进行中断,从步骤b0开始这一程序。在步骤b1中,判断是否设置锁定。当判断没有设置锁定时利用在步骤b2中接收的自诊断数据进行处理。如果判断出在步骤b1中设置了锁定时,就忽略所接收的自诊断数据。如果步骤b2结束或者在步骤b1中忽略了自诊断数据,就在步骤b3中结束该过程。所执行的这种程序和下面说明的其它实施例相同。
图5表示根据本发明的第二实施例所述电子控制系统40的示意电路结构。在此实施例中,与图1所示实施例相对应的部件采用相同的参考标记,并省略了重复部分的说明。在该实施例所述的电子控制系统40中,控制装置41的CPU 42根据预置程序进行操作。所设置的计时器45代替图1所示的计数器26。当在低压检测电路24中检测到电源电压下降时,就在计时器45中设定固定时间,而且在该时间期间忽略采用串行通信获得的自诊断数据。
如图6所示,在与图1所示实施例相似的方式,顺序接收由三个电源装置31、32、33产生的自诊断结果,作为一串行信号。在此自诊断期间,如果电源电压非正常下降,并变成低压检测值甚至更低,则低压检测电路24就向CPU 42发出表示失常情况的低压检测信号。把电源电压变成低压检测值甚至更低的时刻设定为t10。此时,CPU 42锁定低压检测信号,和在时刻t10’之后设定锁定,并上移低压锁定信号。在此实施例中,在计时器45中设置一固定时间。即便电源电压在时刻tll恢复到低压检测值甚至更高,并进而使低压检测电路24将低压检测信号返回到正常状态,也忽略数据,直到时刻t13为止,在时刻t13计时器45计数了固定时间。设定设于计时器45中的固定时间,从而在时刻t12经过了该时间,在时刻t12或者此后与所有电源装置31、32、33的串行通信完成一次。
在此实施例中,把固定时间设置在计时器45中,并等待经过该固定时间。在一固定周期内实现电子控制系统40通信的情况下,可把固定周期设置为固定时间,从而简化了用于控制装置的软件。
图7表示在此实施例中,在为自诊断而进行串行通信期间,用于监视电压下降的操作过程。从步骤c0开始操作,并在步骤c1解除锁定。在步骤c2中,等待低压检测电路24检测低压。如果检测到低压存在,就在步骤c3设置锁定。如果设置了锁定,在步骤c4,把时间设定在计时器45中,该时间长于或等于与所有电源装置31、32、33完成一次串行通信所需的时间,并且等待经过该时间。如果经过了设置在计时器45中的时间,就在步骤c5解除锁定,并在步骤c6结束操作。
图8表示根据本发明的第三实施例所述电子控制系统50的示意电路结构。在此实施例中,与图1或图5所示实施例相对应的部件采用相同的参考标记,并忽略了重复部分的说明。在该实施例所述的电子控制系统50中,控制装置51的CPU 52根据预置程序进行操作。设置两个低压检测电路54、55代替图1和图5所示的低压检测电路24。这样的结构可把不同的低压检测值设定在两个低压检测电路54、55中,并在每个检测电路检测到电源电压下降时,在计时器45中设定不同的固定时间。
如图9所示,以与图1和图5所示实施例相似的方式,顺序接收表示由三个电源装置31、32、33产生的自诊断结果的数据,作为一串行信号。在此自诊断期间,如实线所示,如果电源电压非正常下降,并变成第一个低压检测值Vth1甚至更低,则低压检测电路54就向CPU 52发出表示失常情况的第一低压检测信号。如虚线所示,如果电源电压进一步下降并变得低于或等于本身低于第一低压检测值Vth1的第二低压检测值Vth2,则低压检测电路55就向CPU52发出表示失常情况的第二低压检测信号。顺便说一下,当低压检测电路55产生第二低压检测信号时,也从低压检测电路54产生第一低压检测信号。
如图实线所示,电源电压开始从时刻t20下降,并在时刻t21变成第一低压检测值Vth1甚至更低。此时,第一低压检测信号从正常状态变成失常状态。在时刻t21a之后的时刻tala’设定低压锁定信号。把与所有电源装置31、32、33串行通信一遍所需的时间设定在计时器45中。当电源电压在时刻t24a恢复到第一低压检测值Vth1甚至更高时,第一低压检测信号就从失常状态恢复到正常状态。电源电压就在例如时刻t25a之后恢复到正常电压。低压锁定信号在时刻t26a被解除,在时刻t26a时,设定在计时器45中的时间已经过。忽略由于串行通信而产生的自诊断数据,同时设定低压锁定信号。
如图虚线所示,电源电压开始从时刻t20下降,并在时刻t21b变成第一低压检测值Vth1甚至更低,而且第一低压检测信号从正常状态变成失常状态,再进一步在时刻t22b变成第二低压检测值Vth2或更低,而且第二低压检测信号也从正常状态变成失常状态。当电源电压在时刻t23b恢复到第二低压检测信号Vth2甚至更高时,第二低压检测信号就从失常状态恢复到正常状态。当电源电压在时刻t24b恢复到第一低压检测值Vth1甚至更高时,第一低压检测信号就从失常状态恢复到正常状态。电源电压就在时刻t25b之后恢复到正常电压。
在时刻t21b之后的时刻t21b’,首先设定低压锁定信号,把与所有电源装置31、32、33串行通信一遍所需的时间设定在计时器45中。时刻t22b之后,把更长的时间设定到计时器中。所设定的这一时间是与所有电源装置31、32、33串行通信一遍所需时间的两倍甚至更多的时间。也就是说,是两遍或更多遍串行通信所需的时间。结果是,如图虚线所示,从串行通信两遍或更多遍之后,在时刻t26b解除低压锁定信号。根据电源电压下降的程度,延长忽略自诊断数据的时间。
图10表示在本实施例中,在用于自诊断的串行通信期间,用于监视电压下降的操作过程。从步骤d0开始操作,并在步骤d1解除锁定。在步骤d2中,等待低压检测电路54检测到第一低压检测值Vth1甚至更低的低压。如果检测到低压,就在步骤d3设定锁定。如果设定了锁定,就在步骤d4中,把长于或等于与所有电源装置31、32、33串行通信一遍所需时间的第一时间设定在计时器45中,并等待经过第一时间。在设定在计时器45中的第一时间过去之前,如果在步骤d5中,低压检测电路55检测到第二检测值Vth2或甚至更少的电压,就在步骤d6中,把长于第一时间的第二时间设定在计时器45中,并等待第二时间经过。如果低压检测电路55没有在步骤d5中检测到第二检测值Vth2甚至更少的电压,操作过程就返回到步骤d4,并等待第一时间经过。如果在步骤d4中判断出第一时间已经经过,或者在步骤d6中判断出第二时间已经经过,就在步骤d7中解除锁定,并在步骤d8中结束操作过程。
尽管在本实施例中,这样组成的结构可提供第一低压检测值Vth1和第二低压检测值Vth2这两种参考值,并在两个阶段中改变设定的锁定时间,仍然还可以这样组成结构,即,在进一步的多个阶段中改变时间或者连续地改变时间。还有,可根据下降的速度而不是电源电压的值改变设定锁定的时间。
尽管在上述实施例中,是通过通信线13把多个电源装置31、32、33连接到控制装置21、41、51,从而组成电子控制装置20、40、50,然而,本发明同样地可应用到连接其它电子装置的情况中,以组成电子控制装置。为了提高数据的可靠性,本发明还可应用到下列电子控制装置中,即用于顺序发送由传感器检测到的各种数据以及自诊断结果数据,作为利用串行通信方式从每台电子装置发送的数据。
尽管由低压检测电路24、54、55检测到电源电压非正常下降,把这种非正常下降作为忽略数据的一种因素,其中低压检测电路24、54、55是干扰检测装置中的之一,但是,在雷声起伏的情况下也有可能发送非正常的数据,电源电压也会产生失常,或者混入超常的脉冲噪音,要提供一种用于检测这种情况的检测电路,并利用这种检测电路在预定的期间内忽略数据。从而可提高可靠性。作为一种使数据失常的干扰因素,即机械振动、温度或者湿度的突然变化以及电源电压的变化,根据电子控制系统所放置的环境,都可能成为检测的目标。尽管在电源电压下降时设置计数器26或计数器45,但也可以这样组成,以使在从非正常状态恢复的时间点上进行设定。在非正常状态连续很长时间的情况下可采用这种结构。
如上所述,根据本发明,当检测到干扰因素时,在与利用串行通信从多个电子装置接收的数据所需要的期间相对应的设定期间内,适当地忽略有可能发生非正常操作的数据,并高可靠地使用数据。和每一电子装置一样检测干扰因素。
还有,根据本发明,安全地进行忽略低可靠性数据的操作。
还有,根据本发明,通过简单地判断时间是否已经经过来进行忽略低可靠性数据的操作。
还有,根据本发明,依据干扰程度,适当地设定忽略数据的期间。
进一步地,根据本发明,当检测到电压下降时,在与串行通信所需的期间相对应的设定期间内,忽略由多个电子装置产生的自诊断结果数据,从而只使用可靠性很高的自诊断结果数据。
权利要求
1.一种控制装置,可通过一通信线将该控制装置与多个电子装置连接起来,并利用串行通信方式接收从每台电子装置发送的数据,包括条件设定装置,用于预先设定与利用串行通信方式从该电子装置接收数据所需的期间相对应的条件;干扰检测装置,用于检测假设在至少其中一个电子装置中引起非正常操作的干扰因素;以及一数据处理装置,用于在干扰检测装置检测到干扰因素时直到条件设定装置中设定的条件满足时的期间内,忽略来自于电子装置中的数据。
2.如权利要求1所述的控制装置,其特征在于在条件设定装置中设定完成预定数量串行通信的条件,该预定数量与通过通信线连接的电子装置的数量相对应。
3.如权利要求1所述的控制装置,其特征在于把与通过通信线连接的所有电子装置串行通信所需的经过时间设定为条件设定装置中的条件。
4.如权利要求3所述的控制装置,其特征在于条件设定装置根据由干扰检测装置检测到的干扰因素的增加而延长时间。
5.一种用于一电子控制系统的自诊断方法,该电子控制系统包括一控制装置和多个通过通信线与该控制装置连接的电子装置、并采用串行通信方式向该控制装置发送表示自诊断结果的数据,该方法包括检测电源电压的下降情况;并在预定时间期间内忽略表示自诊断结果的数据,该预定时间期间与从电子装置向控制装置串行通信所需的时间相对应。
全文摘要
一种通过一通信线与多个电源装置连接的控制装置。该电源装置通过通信线采用串行通信方式向该控制装置发送表示自诊断结果的数据。当低压检测电路检测到电源电压非正常下降时,一CPU就忽略串行通信数据。将忽略数据的期间设置为这样的时间,通过利用一计数器对通信数量进行计数在该时间确定与所有电源装置串行通信的完成。即便在由于通信的延迟而恢复电源电压之后仍然存在电源电压下降影响的情况下,也可以忽略包括非正常特性的数据,并只能使用可靠性很高的自诊断数据。
文档编号G05B23/02GK1420398SQ0215226
公开日2003年5月28日 申请日期2002年11月21日 优先权日2001年11月21日
发明者小宫基树 申请人:富士通天株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1