用于在傅立叶域三维成像的方法和装置的制作方法

文档序号:6422527阅读:195来源:国知局
专利名称:用于在傅立叶域三维成像的方法和装置的制作方法
技术领域
本发明通常涉及一种三维成像系统,并且,尤其涉及高分辨率光学层析成像,其兴趣点的特征具有与用于照亮兴趣点对象的光的波长可比较的尺寸。
背景技术
本申请是申请号为09/927151,发明名称为“用于利用光层析成像在流动流中成像小型对象的方法和装置”美国专利申请的部分连续申请,上述文件在此仅供参考。
通过提供沿一组通过所述对象的射线路径测量的光或者X射线衰减,一种层析成像设备产生对象的三维重现。因此,避免了在所述对象区域内存在焦平面,即,场的深度是无限的,并且所有到达单个检测器象素元件的光子实际上沿相同的几何路径移动。对于X射线层析成像,由于此特征的尺寸典型地比所述入射辐射的波长大得多,所以在所述对象区域中不均匀散射很常见。然而,在光学层析成像中,所述波长比X射线层析成像的情况下长得多。因此,通过使得几个光射线在沿所述光源和检测器元件之间的几个不同路径移动之后,到达相同的单个检测器元件,在所述对象区域中的特征散射会将噪声引入到系统中。本发明利用此散射效应来获取关于三维对象区域的信息,并且通过将所述空间频域(k空间)映射到实空间从而重新安排信息。
A.C.Kak和M.Slaney,在他们题为“计算机化的层析成像原理”(IEEE出版社,1998)的书中,描述了利用傅立叶片段定理将来自所述空间域的被传送的或者反射光映射到所述频域,如图1所示。通过从多个视点获取投影图像并且将二维傅立叶变换应用到每个视点,可产生频域(k空间)的一组平表面。这些平表面的总和然后可通过三维反傅立叶变换操作产生所述对象区域的三维重构。当所述对象区域中存在微弱的散射时,所述平表面成为球形,并且所述傅立叶衍射定理可被傅立叶片段定理所取代。然而,当存在很强的散射时,这些方法失效。
单个投影的傅立叶变换通过k空间映射一组球表面,当计算不同视点的表面的总和时,这产生了不明确的值。
Pernick等人(1978)、Wohlers等人(1978)以及Backman,等人(2001)的工作已经证明在二维傅立叶域检查生物材料是无用的。(参考,例如,B.Pernick等人的“利用相干光处理对子宫颈细胞样本的拍摄。第1部分”光学应用17,21(1978);R.Wohlers等人的“利用相干光处理对子宫颈细胞样本的拍摄。第2部分”光学应用17,35(1978);B.Pernick等人的“利用相干光处理对子宫颈细胞样本的拍摄。第3部分”光学应用17,43(1978);B.J.Pernick等人的“在一流动系统中由生物细胞散射的光的旁轴分析”光学应用17,3205(1978);V.Backman等人的“利用光散射光谱在亚微米级测量细胞结构”IEEE J.Selected TopicsQuantum Electron,7,887(2001))。
利用光衍射来检查小特征的技术已经被Kopp等人的美国专利US4,150,360,
公开日为1979年4月17日,发明名称为“用于将生物细胞分类的方法和装置”以及Kopp等人的美国专利US 4,213,036,
公开日为1980年7月15日,发明名称为“用于将生物细胞分类的方法”所公开,其中采用傅立叶光学元件获取生物细胞的单个二维傅立叶变换。然而,Kopp等人没有考虑三维对象区域。相反的,本发明的方法和装置从几个不同视点获得多个二维傅立叶变换。利用所述不同视点,利用常规的可依据特定的几何配置修改的图像重构技术计算三维傅立叶变换。
与现有的方法相反,本发明提供了一种允许对通过所述样本区域的整体体积的光进行实时、原位处理的方法。本发明的方法采用傅立叶光学元件从而将所述对象区域中光的角分布映射到一透镜或者反射镜系统的后焦平面的实空间。因此,由于在光层析成像中所述光射线无需起源于单个平面,所以所述对象区域的三维性不会产生问题。

发明内容
本发明提供了一种用于对象区域的多维成像的方法和装置。所述方法包括使准直光通过对象区域从而产生被传送的光射线的步骤。在另一步骤,通过至少一个光学元件捕获所述被传送的光射线,所述至少一个光学元件中的每一个都具有一后焦平面。至少一个检测器用于捕获二维傅立叶变换的功率分布,其中至少一个检测器位于所述至少一个光学元件的后焦平面。对于两个或者更多的视点,对于至少部分地包围所述对象区域的弧形周围重复所述方法的步骤,从而获得多个二维傅立叶变换。


图1描述了所述傅立叶片段定理;图2示意地表示了如本发明的一个实施例所述的,光射线通过在三维成像系统中的对象区域,从两个不同视图角度进入并退出时光射线的实施例;图2A示意地表示了如本发明实施例所述的图2的对象区域的详细视图;图3示意地表示了如本发明所述的用于傅立叶域的三维成像的方法和装置的高水平方框图的示例性描述;图4示意地表示了采用如本发明所述的用于傅立叶域的三维成像的系统的光学层析成像系统的示例性描述。
具体实施例方式
本发明的方法和装置无需对光散射强度进行任何的假设。实际上,本发明利用了以下因素在透镜的后焦平面中测量的强度图形产生了到达该透镜的光射线的傅立叶变换的幅度。另一方面,所测量的X射线投影的强度图形可利用傅立叶变换关系来变换从而产生k空间的平面的实际和虚拟的成分。在本发明中,所述Wiener-Khintchine定理的结果可被应用。所述Wiener-Khintchine定理规定了对象g(x,y)的自相关函数cgg等于对所述对象的傅立叶变换的的平方幅度的反傅立叶变换 其中F和F-1表示傅立叶变换和反傅立叶变换运算。以类似于非衍射系统中傅立叶片段定理的应用的方式,所述透镜的后焦平面中的强度可从多个视点中的每个视点被测量,从而发现用于k空间的每个平面的|F(g)|2。然后可使用反三维傅立叶变换,F-1,求和以产生三维自相关函数。
所述Wiener-Khintchine定理是Parseval的定理的特殊情况,其规定两个对象g(x,y)和h(x,y)的交叉相关函数cgh等于它们的傅立叶变换的反傅立叶变换cgh=F-1[F(g)F*(h)]其中F*表示所述傅立叶变换F的复共轭。
除了利用本发明产生自相关和交叉相关信息,被测量的值可被直接利用,这使得图象分析方法能寻找衍射图形中的特定特征。
受透镜系统的孔径所限,本发明的方法和装置利用光学层析成像设备中的傅立叶光学元件来充分通过存在于对象区域中的所有光。依据本发明的一个实施例,所述二维傅立叶变换被映射到所述透镜系统的后焦平面。多个视图提供了构建三维傅立叶变换并利用此傅立叶变换所包含信息来提取关于所述对象区域的信息的能力。
本发明的方法和装置,部分地,基于以下规则。好的特性,诸如小对象或者近距离光栅,具有高空间频率。由于它们的高空间频率,好的特性产生满足此特性的光射线的大偏差。相反地,差的特性具有低空间频率,并且光射线只偏转一点。在常规成像中,由于平滑了边缘和小特征,消除高空间频率会损失图像的分辨率,而消除低空间频率将产生具有尖锐边缘而不具有填充空间的图像“轮廓”。
参照图2和2A,描述了用于在傅立叶域三维成像的光学层析成像的实施例。在图2中,显示了沿傅立叶平面上的光分布的三维对象区域的两个视点。应该知晓的是,此描述只作为例子而不限制本发明。例如,当两个视点被示意性地显示时,通过旋转成变化着的视点的单个光学成像系统,或者通过在单个成像光学系统或者多光学成像系统之前旋转所述对象区域,所述两个视点可被位于不同视点的多个光成像系统所获得,其中依据此处教导构建所述光学成像系统从而将傅立叶变换用于三维成像。
所述光学层析成像系统包括至少一个准直光源11a、11b、包括感兴趣点21、22、23的至少一个特征的对象区域9,所述对象区域位于沿准直光源11a、11b照亮的光轴φa或φb的至少一个光学路径上。至少一个检测器12a、12b位于沿光轴φa或φb的至少一个光学路径上,以接收通过所述对象区域9的光。至少一个透镜13a、13b位于沿所述对象区域9和至少一个检测器12a、12b之间的光轴φa或φb的至少一个光学路径上,从而在每个透镜的后焦平面上创建傅立叶平面64a、64b。至少一个检测器12a、12b位于所述傅立叶平面64a、64b上,用于映射兴趣点的至少一个特征的空间频率分布。
在一个实施例中,所述准直光源11a、11b可包括单色的准直光源11,发射包括几乎平行的射线32的光束,所述射线32例如可由高质量的气体激光器产生。为减少由于非散射光通过所述对象区域9而产生的信号,可在每个视点采用一孔径14a、14b。
图2表示在所述对象区域9中具有多个特征21、22、23的例子,其中两个特征是球形并且第三个特征是椭圆形。在沿光轴φa的光学路径上的第一视点上,由于它们在入射光平面上的投影的大小和形状与所述检测器12a登记的相同,因此所述多个特征21、22和23中的每一个都相同。但是从沿光轴φb的光学路径的第二视点看,所述第三对象23的各向异性产生了与所述其它两个对象所产生的衍射图形不同的衍射图形。
如图2所示,将一光学元件,例如透镜13a或13b或等同的光学系统,置于沿所述对象区域9和检测器12a或12b之间的光轴φa或φb的光学路径上,从而可在所述透镜的后焦平面上,即与焦距为f的透镜距离为(f)的位置,创建一傅立叶平面64a、64b。因此,在后焦平面上形成的图像包括所述对象区域9中的光在k空间上的傅立叶变换,其中k是表示光路径方向的向量。所述图像可被放大,其中光轴以上的高度y与散射角度θ的关系为y=fsinθ。
注意,所述射线绕光轴φ的旋转位置ω与所述傅立叶平面和所述对象区域相同。因此,无论这些射线处于哪个位置,在所述傅立叶平面上的一个点可被映射到所述对象区域中的射线的特定方向。尽管高空间频率还将从所述光轴通过,低空间频率将通过接近所述光轴(即靠近映射成k=0的点)的傅立叶平面。通过将一系列检测器元件放在此平面上,可获得所述二维傅立叶变换的功率分布。假如所述对象区域或者所述源检测器对然后绕中心轴旋转,则每个新视点可获得附加的二维傅立叶变换。
以上描述了本发明的装置,以下将通过描述其操作来进一步理解此装置。在工作过程中,所述至少一个准直光源11a、11b的每一个发射包括几乎平行的光线32a、32b的光束。在到达对象区域9之前,所述几乎平行的光线32a、32b可被空间滤波,从而消除任何的发散光。为减少由于非散射光透过所述对象区域9所产生的信号,优选地可采用一透镜14。透镜13a位于所述对象区域9和所述检测器12a之间的光学路径上,这使得可在所述透镜的后焦平面上创建一傅立叶平面。通过将一系列检测器元件12a放在所述傅立叶平面上,由所述特征21、22和23产生的空间频率分布可被映射。
从第二视点看,所有三个特征21、22和23散射以一角度θ1从11b射入的射入光,这使得所述检测器12b为所有三个特征登记相同的强度分布,具有(如图示)中心峰值和距离中心的半径为y1的第二峰值。然而,从视点a,特征23的各向异性很明显;它散射成角度θ2,在距离中心的半径为y2处产生侧峰值,而由于散射成角度θ1的光,特征21和22继续在半径y1产生侧峰值。
参照如图3,其显示了多维成像系统200的高水平方框图的示例性描述,多维成像系统200采用本发明的用于在所述傅立叶域三维成像的方法和装置。所述多维成像系统200包括准直光源11、可选择的孔径14、可选择的空间滤光器42、对象区域9、至少一个透镜或者等同的光学部件9、至少一个检测器12和计算机113。在一个实施例中,所述计算机113可包括个人计算机或者工作站,包括常规设计的用作空间频率分布映射器48和图像分析算法52的计算机程序,用于从二维傅立叶变换产生三维图像或相关函数。所述准直光源11产生可选的由空间滤光器42滤波的几乎平行的光射线32。被滤波的光34照亮所述对象区域9。被传送的光射线36穿过所述对象区域并通过透镜13。透镜13将平面光射线38传送回后焦平面,从而紧密接触位于所述傅立叶平面的检测器12。所述检测器12优选地可包括,例如,图像传感器,诸如,例如CCD或CMOS固态图像传感器,检测器阵列等。
参照图4,其示意性地描述了采用本发明的用于在傅立叶域上三维成像的系统的光学层析成像系统。所述光学层析成像(OT)系统100的一个实施例包括重构圆柱体12,在对象周围包含对象的管2。依据光学层析成像系统的种类,所述包含对象的管2可包括,例如,细胞卷吸管,或者用于细胞流动的毛细管,其中所述细胞1保持在凝胶体中。
所述OT系统100以具有X、Y和Z方向上坐标的坐标系统40来定位。在工作中,兴趣点1的一个对象(诸如,例如一个细胞,包括人体细胞)被保持或流经包含管2的对象。可以知晓的是,线15和16表示在所述OT系统100和计算机113之间的通信和控制线,用于在所述计算机和所述OT系统100之间通信数据、图像信息、控制信号及其他信号。所述重构圆柱体12可优选地包括利用上述如图2的傅立叶变换的多维成像的系统。来自所述重构圆柱体12的信号可被直接分析或利用已知的图像处理、图像分析和/或计算机化的层析成像图像重构技术来进行处理,从而提供关于细胞以及兴趣点的其它对象的二维或者三维信息。
在另一个实施例中,所述对象区域可位于至少一个透镜或类似的光学部件与其后焦平面之间,这样所述对象区域中的光的傅立叶变换的近似值可在后焦平面形成。此近似的傅立叶变换可被认为与所提供的精确傅立叶变换等同,所述会聚光的最大角度(即所述光系统的数值孔径)、兴趣点的最大散射角度(与散射的入射光相关测量的),以及所述对象区域的厚度小得足以允许以各自角度(与导致散射的光射线相关)散射的所有光到达单个检测器元件。
在另一些实施例中,可采用Parseval的定理产生所述对象区域的自相关和交叉相关函数。为了产生自相关函数,测量所述至少一个光学元件的后平面上的光强度|F(g)|2足矣。为了产生交叉相关函数,根据不同对象所获得的散射图形形成的掩码,可被放在所述至少一个光学元件的后焦平面上。
为了满足专利法,并为本领域技术人员提供应用本发明新颖原理以及按照需要构建和使用这样的典型和具体的部件所需的信息,以上已经详细描述了本发明。然而,可以知晓的是,本发明可采用特定的不同装备和设备以及重构算法来实现,并且无论对装备细节和操作过程的各种修改,均可在不脱离本发明的真实精神和范围的情况下得以实现。
权利要求
1.一种用于对象区域(9)的多维成像的方法,所述方法包括以下步骤a)使光通过一对象区域(9),从而产生被传送的光射线(36);b)通过至少一个光元件(13)捕获被传送的光射线(36),所述至少一个光元件(13)具有后焦平面;c)利用至少一个检测器(12)捕获二维傅立叶变换的功率谱,其中至少一个检测器(12)位于所述至少一个光学元件(13)的后焦平面;以及d)对于至少部分地包围所述对象区域(9)的大约为弧形的两个或更多视点重复步骤a)-c),从而获得多个二维傅立叶变换。
2.如权利要求1所述的方法,还包括利用图像分析计算机算法(52)从一个或更多的多个二维傅立叶变换提取兴趣点(21、22、23)的至少一个特征。
3.如权利要求1所述的方法,其中所述光学元件(13)选自于透镜或反射表面。
4.如权利要求1所述的方法,还包括使光通过位于所述光源(11)和所述对象区域(9)之间的光学路径上的空间滤光器(42)的步骤。
5.如权利要求1所述的方法,其中由至少一个光学元件(13)捕获的被传送的光射线(36)在通过所述至少一个光学元件(13)之前要通过所述对象区域(9)。
6.如权利要求1所述的方法,其中所述光射线(36)在通过所述至少一个光学元件(13)之后通过所述对象区域(9)。
7.如权利要求1所述的方法,还包括重构所述多个二维傅立叶变换(48、52)从而创建三维傅立叶变换的步骤。
8.如权利要求7所述的方法,还包括利用图象分析计算机算法(52)从所述三维傅立叶变换中提取至少一个兴趣点(21、22、23)的步骤。
9.如权利要求7所述的方法,还包括采用掩码和图像分析算法(52)来构建预先检查对象区域(9)和所述对象区域(9)的交叉相关函数的步骤。
10.如权利要求7所述的方法,还包括采用图像分析算法(52)构建所述对象区域(9)的自相关函数。
11.如权利要求9所述的方法,其中所述预检查对象区域(9)包括细胞(1)。
12.如权利要求9所述的方法,其中所述预检查对象区域(9)包括人工产生的幻影。
13.一种用于对象区域(9)的多维成像的系统,所述系统包括光源(11);对象区域(9),包括兴趣点(21、22、23)的至少一个特征,所述对象区域(9)位于所述光源(11)所照亮的光路径上;至少一个检测器(12),位于所述光路径上,从而接收通过所述对象区域(9)的光;至少一个透镜(13),位于所述对象区域(9)和所述至少一个检测器(12)之间的光学路径上,使得在所述透镜的后焦平面上创建傅立叶平面,其中所述至少一个检测器(12)位于所述傅立叶平面;并且其中所述光源(11),所述至少一个检测器(12)和所述至少一个透镜(13)被配置成提供所述对象区域(9)的多个视图,用于在每个视图上映射兴趣点(21、22、23)的至少一个特征的至少一个n维空间频率分布,以提供多个用于构建(n+1)维数据组的空间频率分布,其中n大于或等于1,由此将n维傅立叶变换重构为(n+1)维傅立叶变换。
14.如权利要求13所述的方法,其中所述光源(11)包括激光器。
15.如权利要求13所述的系统,还包括位于所述光源(11)和所述对象区域(9)之间的光学路径上的空间滤光器(42)。
16.如权利要求13所述的系统,还包括位于所述光源(11)和所述对象区域(9)之间的光学路径上的孔径(14)。
17.如权利要求13所述的系统,其中所述至少一个检测器(12)包括选自于CCD、CMOS、固态图像传感器或固态图像传感器检测器阵列的检测器。
18.一种平行束光学层析成像系统,用于成像具有兴趣点(21、22、23)的至少一个特征的兴趣对象,所述平行束光学层析成像系统包括光源(11),将一列光沿一光学路径投影;对象包含管(2),位于所述光学路径上,其中兴趣点(1)的对象被保持在所述对象包含管(2)中;至少一个检测器(12),其中所述至少一个检测器(12)位于接收兴趣点(1)对象的射线的位置;至少一个透镜(13),位于兴趣(1)对象和所述至少一个检测器(12)之间的光学路径上,以在所述透镜的后焦平面上创建傅立叶平面,其中所述至少一个检测器(12)位于所述傅立叶平面上;并且其中所述光源(11),所述至少一个检测器(12)和所述至少一个透镜被安排成用于提供所述对象取样(9)的多个视图,用于每个视图上映射兴趣点(21、22、23)的至少一个特征的至少一个n维(n>1)空间频率分布,从而提供多个空间频率分布,用于构建(n+1)维数据组,其中n大于或等于1,由此将n维傅立叶变换重构成(n+1)维傅立叶变换。
19.如权利要求18所述的系统,其中所述至少一个检测器(12)包括选自于CCD、CMOS、固态图像传感器或固态图像传感器检测器阵列的检测器。
20.如权利要求18的平行光束光学层析成像系统,其中兴趣点(1)的对象包括细胞(1)。
21.如权利要求18的系统,其中所述光源(11)包括激光器。
22.如权利要求18所述的系统,还包括位于所述光源(11)和所述对象区域(9)之间的光学路径上的空间滤光器(42)。
23.如权利要求18所述的系统,还包括位于所述光源(11)和所述对象区域(9)之间的光学路径上的孔径(14)。
全文摘要
一种用于从三维对象区域(9)的不同视图获取两个或更多二维傅立叶变换的方法。然后可利用层析成像方法进行构建三维傅立叶变换,三维傅立叶变换允许应用那些与用于二维图像类似的图像分析算法(52)。
文档编号G06T11/00GK1720538SQ200380104717
公开日2006年1月11日 申请日期2003年11月25日 优先权日2002年12月2日
发明者J·R·拉恩, A·C·尼尔森 申请人:维森盖特有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1